metal-organic compounds
Poly[(μ3-quinoline-6-carboxylato-κ3N:O:O′)silver(I)]
aDepartment of Chemistry, Chung-Yuan Christian University, Jhongli 32023, Taiwan, bDepartment of Applied Cosmetology, Taoyuan Innovation Institute of Technology, Jhongli 32091, Taiwan, cDepartment of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan, dDepartment of Civil and Environmental Engineering, Department of Materials Science and Engineering, Taoyuan Innovation Institute of Technology, Jhongli 32091, Taiwan, and eDepartment of Materials and Fibers, Taoyuan Innovation Institute of Technology, Jhongli 32091, Taiwan
*Correspondence e-mail: sun@tiit.edu.tw
In the title coordination polymer, [Ag(C10H6NO2)]n, the AgI cation is coordinated by two O atoms and one N atom from three 6-quinolinecarboxylate anions in a distorted T-shaped AgNO2 geometry, in which the O—Ag—O angle is 160.44 (9)°. The 6-quinolinecarboxylate anion bridges three Ag+ cations, forming a nearly planar polymeric sheet parallel to (101). The distance between Ag+ cations bridged by the carboxyl group is 2.9200 (5) Å. In the crystal, π–π stacking is observed between parallel quinoline ring systems, the centroid–centroid distance being 3.7735 (16) Å.
Related literature
For background to coordination polymers with organic ligands, see: Kitagawa et al. (2004); Chiang et al. (2008); Yeh et al. (2008, 2009); Hsu et al. (2009). For related pyridinecarboxylate structures, see: Yeh et al. (2004); Ockwig et al. (2005); Chen et al. (2008); Hirano et al. (2002) and for related 6-quinolinecarboxylate structures, see: Lin & Maggard (2007); Du et al. (2008a,b); Hu et al. (2008); Xu et al. (2009).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2010); cell SAINT (Bruker, 2010); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536812023835/xu5546sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812023835/xu5546Isup2.hkl
An aqueous solution (5.0 ml) of AgNO3 (1.0 mmol) was layered carefully over a methanolic solution (5.0 ml) of 6-quinolinecarboxylic acid (1.0 mmol) in a tube and kept it in the dark. Colourless crystals were obtained after several weeks.
All the H atoms were constrained to ideal geometries, with C—H = 0.93 Å (aromatic) and Uiso(H) = 1.2Ueq(C).
Data collection: APEX2 (Bruker, 2010); cell
SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[Ag(C10H6NO2)] | F(000) = 1088 |
Mr = 280.03 | Dx = 2.188 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 3671 reflections |
a = 13.0008 (10) Å | θ = 2.2–26.0° |
b = 14.3900 (11) Å | µ = 2.34 mm−1 |
c = 9.3431 (7) Å | T = 294 K |
β = 103.446 (1)° | Block, colourless |
V = 1700.0 (2) Å3 | 0.39 × 0.28 × 0.25 mm |
Z = 8 |
Bruker APEXII CCD diffractometer | 1674 independent reflections |
Radiation source: fine-focus sealed tube | 1543 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.021 |
ϕ and ω scans | θmax = 26.0°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | h = −16→7 |
Tmin = 0.471, Tmax = 1.000 | k = −17→17 |
4717 measured reflections | l = −11→11 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.027 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.075 | H-atom parameters constrained |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0444P)2 + 2.6516P] where P = (Fo2 + 2Fc2)/3 |
1674 reflections | (Δ/σ)max = 0.001 |
127 parameters | Δρmax = 0.37 e Å−3 |
0 restraints | Δρmin = −0.94 e Å−3 |
[Ag(C10H6NO2)] | V = 1700.0 (2) Å3 |
Mr = 280.03 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 13.0008 (10) Å | µ = 2.34 mm−1 |
b = 14.3900 (11) Å | T = 294 K |
c = 9.3431 (7) Å | 0.39 × 0.28 × 0.25 mm |
β = 103.446 (1)° |
Bruker APEXII CCD diffractometer | 1674 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | 1543 reflections with I > 2σ(I) |
Tmin = 0.471, Tmax = 1.000 | Rint = 0.021 |
4717 measured reflections |
R[F2 > 2σ(F2)] = 0.027 | 0 restraints |
wR(F2) = 0.075 | H-atom parameters constrained |
S = 1.08 | Δρmax = 0.37 e Å−3 |
1674 reflections | Δρmin = −0.94 e Å−3 |
127 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ag | 0.47914 (2) | 0.410289 (16) | 0.06057 (3) | 0.04647 (13) | |
O1 | 0.12021 (17) | −0.00759 (14) | 0.3242 (2) | 0.0426 (5) | |
O2 | 0.1053 (2) | 0.12550 (16) | 0.4404 (3) | 0.0530 (6) | |
N | 0.42688 (18) | 0.25041 (16) | 0.0564 (2) | 0.0345 (5) | |
C1 | 0.4658 (2) | 0.2003 (2) | −0.0380 (3) | 0.0422 (7) | |
H1A | 0.5138 | 0.2286 | −0.0840 | 0.051* | |
C2 | 0.4390 (3) | 0.1078 (2) | −0.0724 (4) | 0.0460 (7) | |
H2A | 0.4675 | 0.0765 | −0.1412 | 0.055* | |
C3 | 0.3706 (2) | 0.0635 (2) | −0.0040 (3) | 0.0398 (6) | |
H3A | 0.3529 | 0.0015 | −0.0243 | 0.048* | |
C4 | 0.3274 (2) | 0.11373 (19) | 0.0982 (3) | 0.0303 (5) | |
C5 | 0.3568 (2) | 0.20801 (18) | 0.1252 (3) | 0.0298 (5) | |
C6 | 0.3125 (2) | 0.25912 (18) | 0.2252 (3) | 0.0328 (5) | |
H6A | 0.3305 | 0.3213 | 0.2434 | 0.039* | |
C7 | 0.2435 (2) | 0.21763 (19) | 0.2955 (3) | 0.0326 (5) | |
H7A | 0.2150 | 0.2522 | 0.3610 | 0.039* | |
C8 | 0.2145 (2) | 0.12338 (19) | 0.2705 (3) | 0.0297 (5) | |
C9 | 0.2555 (2) | 0.07253 (19) | 0.1723 (3) | 0.0320 (5) | |
H9A | 0.2360 | 0.0107 | 0.1544 | 0.038* | |
C10 | 0.1398 (2) | 0.07663 (19) | 0.3510 (3) | 0.0324 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ag | 0.0560 (2) | 0.03486 (17) | 0.0611 (2) | 0.00687 (9) | 0.03898 (14) | −0.00040 (9) |
O1 | 0.0516 (12) | 0.0344 (11) | 0.0518 (11) | −0.0060 (9) | 0.0324 (10) | −0.0010 (9) |
O2 | 0.0695 (15) | 0.0394 (12) | 0.0698 (15) | −0.0088 (11) | 0.0563 (13) | −0.0094 (11) |
N | 0.0351 (12) | 0.0319 (12) | 0.0425 (12) | −0.0010 (9) | 0.0209 (10) | 0.0046 (9) |
C1 | 0.0440 (16) | 0.0419 (16) | 0.0501 (15) | −0.0009 (13) | 0.0304 (13) | 0.0016 (13) |
C2 | 0.0533 (19) | 0.0432 (16) | 0.0529 (18) | 0.0022 (14) | 0.0354 (15) | −0.0056 (13) |
C3 | 0.0457 (16) | 0.0351 (14) | 0.0453 (15) | −0.0009 (13) | 0.0246 (13) | −0.0048 (12) |
C4 | 0.0313 (13) | 0.0293 (12) | 0.0342 (13) | 0.0022 (10) | 0.0159 (10) | 0.0024 (10) |
C5 | 0.0293 (12) | 0.0313 (13) | 0.0319 (12) | 0.0013 (10) | 0.0135 (10) | 0.0040 (10) |
C6 | 0.0377 (14) | 0.0260 (12) | 0.0380 (13) | −0.0021 (10) | 0.0158 (11) | −0.0021 (10) |
C7 | 0.0359 (13) | 0.0328 (14) | 0.0334 (12) | 0.0022 (11) | 0.0168 (10) | −0.0018 (10) |
C8 | 0.0306 (12) | 0.0300 (13) | 0.0327 (12) | 0.0021 (11) | 0.0158 (10) | 0.0041 (10) |
C9 | 0.0364 (14) | 0.0270 (12) | 0.0377 (13) | −0.0004 (10) | 0.0193 (11) | 0.0009 (10) |
C10 | 0.0323 (13) | 0.0349 (14) | 0.0358 (13) | 0.0022 (11) | 0.0196 (11) | 0.0046 (10) |
Ag—O1i | 2.2067 (19) | C2—H2A | 0.9300 |
Ag—O2ii | 2.252 (2) | C3—C4 | 1.414 (4) |
Ag—N | 2.397 (2) | C3—H3A | 0.9300 |
Ag—Agiii | 2.9200 (5) | C4—C5 | 1.416 (4) |
O1—C10 | 1.252 (3) | C4—C9 | 1.415 (4) |
O1—Agiv | 2.2067 (19) | C5—C6 | 1.413 (4) |
O2—C10 | 1.252 (4) | C6—C7 | 1.366 (4) |
O2—Agv | 2.252 (2) | C6—H6A | 0.9300 |
N—C1 | 1.327 (4) | C7—C8 | 1.412 (4) |
N—C5 | 1.374 (3) | C7—H7A | 0.9300 |
C1—C2 | 1.395 (5) | C8—C9 | 1.375 (4) |
C1—H1A | 0.9300 | C8—C10 | 1.517 (4) |
C2—C3 | 1.367 (5) | C9—H9A | 0.9300 |
O1i—Ag—O2ii | 160.44 (9) | C5—C4—C9 | 119.7 (2) |
O1i—Ag—N | 109.04 (8) | C3—C4—C9 | 121.8 (3) |
O2ii—Ag—N | 90.51 (8) | N—C5—C4 | 121.6 (2) |
O1i—Ag—Agiii | 84.15 (5) | N—C5—C6 | 119.7 (2) |
O2ii—Ag—Agiii | 77.68 (6) | C4—C5—C6 | 118.8 (2) |
N—Ag—Agiii | 156.92 (6) | C7—C6—C5 | 120.3 (2) |
C10—O1—Agiv | 122.44 (18) | C7—C6—H6A | 119.8 |
C10—O2—Agv | 128.3 (2) | C5—C6—H6A | 119.8 |
C1—N—C5 | 117.8 (2) | C6—C7—C8 | 121.3 (2) |
C1—N—Ag | 112.45 (18) | C6—C7—H7A | 119.3 |
C5—N—Ag | 129.42 (18) | C8—C7—H7A | 119.3 |
N—C1—C2 | 123.9 (3) | C9—C8—C7 | 119.4 (2) |
N—C1—H1A | 118.0 | C9—C8—C10 | 119.2 (2) |
C2—C1—H1A | 118.0 | C7—C8—C10 | 121.4 (2) |
C3—C2—C1 | 119.5 (3) | C8—C9—C4 | 120.4 (3) |
C3—C2—H2A | 120.3 | C8—C9—H9A | 119.8 |
C1—C2—H2A | 120.3 | C4—C9—H9A | 119.8 |
C2—C3—C4 | 118.8 (3) | O1—C10—O2 | 126.1 (3) |
C2—C3—H3A | 120.6 | O1—C10—C8 | 117.1 (2) |
C4—C3—H3A | 120.6 | O2—C10—C8 | 116.9 (2) |
C5—C4—C3 | 118.4 (2) |
Symmetry codes: (i) −x+1/2, y+1/2, −z+1/2; (ii) x+1/2, −y+1/2, z−1/2; (iii) −x+1, −y+1, −z; (iv) −x+1/2, y−1/2, −z+1/2; (v) x−1/2, −y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Ag(C10H6NO2)] |
Mr | 280.03 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 294 |
a, b, c (Å) | 13.0008 (10), 14.3900 (11), 9.3431 (7) |
β (°) | 103.446 (1) |
V (Å3) | 1700.0 (2) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 2.34 |
Crystal size (mm) | 0.39 × 0.28 × 0.25 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2000) |
Tmin, Tmax | 0.471, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4717, 1674, 1543 |
Rint | 0.021 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.027, 0.075, 1.08 |
No. of reflections | 1674 |
No. of parameters | 127 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.37, −0.94 |
Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2010).
Ag—O1i | 2.2067 (19) | Ag—N | 2.397 (2) |
Ag—O2ii | 2.252 (2) |
Symmetry codes: (i) −x+1/2, y+1/2, −z+1/2; (ii) x+1/2, −y+1/2, z−1/2. |
Acknowledgements
We are grateful to the National Science Council of the Republic of China and the Taoyuan Innovation Institute of Technology for support.
References
Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chen, C., Chan, Z.-K., Yeh, C.-W. & Chen, J.-D. (2008). Struct. Chem. 19, 87–94. Web of Science CSD CrossRef Google Scholar
Chiang, L.-M., Yeh, C.-W., Chan, Z.-K., Wang, K.-M., Chou, Y.-C., Chen, J.-D., Wang, J.-C. & Lai, J. Y. (2008). Cryst. Growth Des. 8, 470–477. Web of Science CSD CrossRef CAS Google Scholar
Du, M., Zou, R.-Q., Zhong, R.-Q., Tamada, T., Maruta, G., Takeda, S. & Xu, Q. (2008b). Inorg. Chim. Acta 361, 1827–1831. Web of Science CrossRef CAS Google Scholar
Du, M., Zou, R.-Q., Zhong, R.-Q. & Xu, Q. (2008a). Inorg. Chim. Acta, 361, 1555–1561. Web of Science CSD CrossRef CAS Google Scholar
Hirano, T., Kuroda, M., Takeda, N., Hayashi, M., Mukaida, M., Oi, T. & Nagao, H. (2002). Dalton Trans. pp. 2158–2162. CrossRef Google Scholar
Hsu, Y.-F., Hu, H.-L., Wu, C.-J., Yeh, C.-W., Proserpio, D. M. & Chen, J.-D. (2009). CrystEngComm, 11, 168–176. Web of Science CSD CrossRef CAS Google Scholar
Hu, S., Zou, H.-H., Zeng, M.-H., Wang, Q.-X. & Liang, H. (2008). Cryst. Growth Des. 8, 2346–2351. Web of Science CrossRef CAS Google Scholar
Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334–2375. Web of Science CrossRef CAS Google Scholar
Lin, H. & Maggard, P. A. (2007). Inorg. Chem. 46, 1283–1290. Web of Science CSD CrossRef PubMed CAS Google Scholar
Ockwig, N. W., Delgado-Friedrichs, O., O'Keeffe, M. & Yaghi, O. M. (2005). Acc. Chem. Res. 38, 176–182. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xu, B., Guo, Z., Yang, H., Li, G., Liu, T. & Cao, R. (2009). J. Mol. Struct. 922, 140–143. Web of Science CSD CrossRef CAS Google Scholar
Yeh, C.-W., Chen, T.-R., Chen, J.-D. & Wang, J.-C. (2009). Cryst. Growth Des. 9, 2595–2603. Web of Science CSD CrossRef CAS Google Scholar
Yeh, C.-W., Chen, J.-D. & Wang, J.-C. (2008). Polyhedron, 27, 3611–3618. Web of Science CSD CrossRef CAS Google Scholar
Yeh, C.-W., Suen, M.-C., Hu, H.-L., Chen, J.-D. & Wang, J.-C. (2004). Polyhedron, 23, 1947–1952. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The synthesis of metal coordination polymers has been a subject of intense research due to their interesting structural chemistry and potential applications in gas storage, separation, catalysis, magnetism, luminescence, and drug delivery (Kitagawa et al., 2004). Roles of anion, solvent and ligand comformations in self-assembly of coordination complexes containing polydentate nitrogen ligands are very intersting (Chiang et al., 2008; Yeh et al., 2008; Hsu et al., 2009; Yeh et al., 2009). In the past, the pyridinecarboxylate ligands have been subjected to many studies of its coordination ability to metal centers (Yeh et al., 2004; Ockwig et al., 2005; Chen et al., 2008; Hirano et al., 2002). The various metal complexes containing 6-quinolinecarboxylate (L-) ligands have been reported, which show various multi-dimensional frameworks (Lin & Maggard, 2007; Du et al., 2008a,b; Hu et al., 2008; Xu et al., 2009). The Ag+ cations are coordinated with two N atoms from two 1,2-bis(4,4-dimethyl-4,5-dihydrooxazol-2-yl)ethane (L) ligands (Fig. 1). The Ag···Ag distances separated by the bridging L- anions are 2.9200 (5), 9.974 (1) and 10.469 (1) Å, while the unit of dinuclear Ag+ are forming (4,4) polymeric nets (Fig. 2). The two-dimensional polymeric nets are interlinking through Ag···O interactions [2.954 (2) Å] and pi—pi stacking interactions in the crystal structure (Fig. 3).