metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages m850-m851

Poly[(μ3-quinoline-6-carboxyl­ato-κ3N:O:O′)silver(I)]

aDepartment of Chemistry, Chung-Yuan Christian University, Jhongli 32023, Taiwan, bDepartment of Applied Cosmetology, Taoyuan Innovation Institute of Technology, Jhongli 32091, Taiwan, cDepartment of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan, dDepartment of Civil and Environmental Engineering, Department of Materials Science and Engineering, Taoyuan Innovation Institute of Technology, Jhongli 32091, Taiwan, and eDepartment of Materials and Fibers, Taoyuan Innovation Institute of Technology, Jhongli 32091, Taiwan
*Correspondence e-mail: sun@tiit.edu.tw

(Received 21 May 2012; accepted 25 May 2012; online 31 May 2012)

In the title coordination polymer, [Ag(C10H6NO2)]n, the AgI cation is coordinated by two O atoms and one N atom from three 6-quinoline­carboxyl­ate anions in a distorted T-shaped AgNO2 geometry, in which the O—Ag—O angle is 160.44 (9)°. The 6-quinoline­carboxyl­ate anion bridges three Ag+ cations, forming a nearly planar polymeric sheet parallel to (101). The distance between Ag+ cations bridged by the carboxyl group is 2.9200 (5) Å. In the crystal, ππ stacking is observed between parallel quinoline ring systems, the centroid–centroid distance being 3.7735 (16) Å.

Related literature

For background to coordination polymers with organic ligands, see: Kitagawa et al. (2004[Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334-2375.]); Chiang et al. (2008[Chiang, L.-M., Yeh, C.-W., Chan, Z.-K., Wang, K.-M., Chou, Y.-C., Chen, J.-D., Wang, J.-C. & Lai, J. Y. (2008). Cryst. Growth Des. 8, 470-477.]); Yeh et al. (2008[Yeh, C.-W., Chen, J.-D. & Wang, J.-C. (2008). Polyhedron, 27, 3611-3618.], 2009[Yeh, C.-W., Chen, T.-R., Chen, J.-D. & Wang, J.-C. (2009). Cryst. Growth Des. 9, 2595-2603.]); Hsu et al. (2009[Hsu, Y.-F., Hu, H.-L., Wu, C.-J., Yeh, C.-W., Proserpio, D. M. & Chen, J.-D. (2009). CrystEngComm, 11, 168-176.]). For related pyridine­carboxyl­ate structures, see: Yeh et al. (2004[Yeh, C.-W., Suen, M.-C., Hu, H.-L., Chen, J.-D. & Wang, J.-C. (2004). Polyhedron, 23, 1947-1952.]); Ockwig et al. (2005[Ockwig, N. W., Delgado-Friedrichs, O., O'Keeffe, M. & Yaghi, O. M. (2005). Acc. Chem. Res. 38, 176-182.]); Chen et al. (2008[Chen, C., Chan, Z.-K., Yeh, C.-W. & Chen, J.-D. (2008). Struct. Chem. 19, 87-94.]); Hirano et al. (2002[Hirano, T., Kuroda, M., Takeda, N., Hayashi, M., Mukaida, M., Oi, T. & Nagao, H. (2002). Dalton Trans. pp. 2158-2162.]) and for related 6-quinoline­carboxyl­ate structures, see: Lin & Maggard (2007[Lin, H. & Maggard, P. A. (2007). Inorg. Chem. 46, 1283-1290.]); Du et al. (2008a[Du, M., Zou, R.-Q., Zhong, R.-Q. & Xu, Q. (2008a). Inorg. Chim. Acta, 361, 1555-1561.],b[Du, M., Zou, R.-Q., Zhong, R.-Q., Tamada, T., Maruta, G., Takeda, S. & Xu, Q. (2008b). Inorg. Chim. Acta 361, 1827-1831.]); Hu et al. (2008[Hu, S., Zou, H.-H., Zeng, M.-H., Wang, Q.-X. & Liang, H. (2008). Cryst. Growth Des. 8, 2346-2351.]); Xu et al. (2009[Xu, B., Guo, Z., Yang, H., Li, G., Liu, T. & Cao, R. (2009). J. Mol. Struct. 922, 140-143.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(C10H6NO2)]

  • Mr = 280.03

  • Monoclinic, C 2/c

  • a = 13.0008 (10) Å

  • b = 14.3900 (11) Å

  • c = 9.3431 (7) Å

  • β = 103.446 (1)°

  • V = 1700.0 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.34 mm−1

  • T = 294 K

  • 0.39 × 0.28 × 0.25 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.471, Tmax = 1.000

  • 4717 measured reflections

  • 1674 independent reflections

  • 1543 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.075

  • S = 1.08

  • 1674 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.94 e Å−3

Table 1
Selected bond lengths (Å)

Ag—O1i 2.2067 (19)
Ag—O2ii 2.252 (2)
Ag—N 2.397 (2)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The synthesis of metal coordination polymers has been a subject of intense research due to their interesting structural chemistry and potential applications in gas storage, separation, catalysis, magnetism, luminescence, and drug delivery (Kitagawa et al., 2004). Roles of anion, solvent and ligand comformations in self-assembly of coordination complexes containing polydentate nitrogen ligands are very intersting (Chiang et al., 2008; Yeh et al., 2008; Hsu et al., 2009; Yeh et al., 2009). In the past, the pyridinecarboxylate ligands have been subjected to many studies of its coordination ability to metal centers (Yeh et al., 2004; Ockwig et al., 2005; Chen et al., 2008; Hirano et al., 2002). The various metal complexes containing 6-quinolinecarboxylate (L-) ligands have been reported, which show various multi-dimensional frameworks (Lin & Maggard, 2007; Du et al., 2008a,b; Hu et al., 2008; Xu et al., 2009). The Ag+ cations are coordinated with two N atoms from two 1,2-bis(4,4-dimethyl-4,5-dihydrooxazol-2-yl)ethane (L) ligands (Fig. 1). The Ag···Ag distances separated by the bridging L- anions are 2.9200 (5), 9.974 (1) and 10.469 (1) Å, while the unit of dinuclear Ag+ are forming (4,4) polymeric nets (Fig. 2). The two-dimensional polymeric nets are interlinking through Ag···O interactions [2.954 (2) Å] and pi—pi stacking interactions in the crystal structure (Fig. 3).

Related literature top

For background to coordination polymers with organic ligands, see: Kitagawa et al. (2004); Chiang et al. (2008); Yeh et al. (2008, 2009); Hsu et al. (2009). For related pyridinecarboxylate structures, see: Yeh et al. (2004); Ockwig et al. (2005); Chen et al. (2008); Hirano et al. (2002) and for related 6-quinolinecarboxylate structures, see: Lin & Maggard (2007); Du et al. (2008a,b); Hu et al. (2008); Xu et al. (2009).

Experimental top

An aqueous solution (5.0 ml) of AgNO3 (1.0 mmol) was layered carefully over a methanolic solution (5.0 ml) of 6-quinolinecarboxylic acid (1.0 mmol) in a tube and kept it in the dark. Colourless crystals were obtained after several weeks.

Refinement top

All the H atoms were constrained to ideal geometries, with C—H = 0.93 Å (aromatic) and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A portion of the two-dimensional grid. Ellipsoids are drawn at 30% probability level. Symmetry codes: (i) -x + 1/2,y + 1/2,-z + 1/2;(ii) x + 1/2,-y + 1/2,z - 1/2; (iii) -x + 1,-y + 1,-z; (iv) -x + 1/2,y - 1/2,-z + 1/2; (v) x - 1/2,-y + 1/2,z + 1/2.
[Figure 2] Fig. 2. The view shows the pleated (4,4) net along (001) direction.
[Figure 3] Fig. 3. The packing diagram shows the Ag···O interactions and π-π stacking interactions between the two-dimensional networks.
Poly[(µ3-quinoline-6-carboxylato-κ3N:O:O')silver(I)] top
Crystal data top
[Ag(C10H6NO2)]F(000) = 1088
Mr = 280.03Dx = 2.188 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3671 reflections
a = 13.0008 (10) Åθ = 2.2–26.0°
b = 14.3900 (11) ŵ = 2.34 mm1
c = 9.3431 (7) ÅT = 294 K
β = 103.446 (1)°Block, colourless
V = 1700.0 (2) Å30.39 × 0.28 × 0.25 mm
Z = 8
Data collection top
Bruker APEXII CCD
diffractometer
1674 independent reflections
Radiation source: fine-focus sealed tube1543 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 167
Tmin = 0.471, Tmax = 1.000k = 1717
4717 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0444P)2 + 2.6516P]
where P = (Fo2 + 2Fc2)/3
1674 reflections(Δ/σ)max = 0.001
127 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.94 e Å3
Crystal data top
[Ag(C10H6NO2)]V = 1700.0 (2) Å3
Mr = 280.03Z = 8
Monoclinic, C2/cMo Kα radiation
a = 13.0008 (10) ŵ = 2.34 mm1
b = 14.3900 (11) ÅT = 294 K
c = 9.3431 (7) Å0.39 × 0.28 × 0.25 mm
β = 103.446 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
1674 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1543 reflections with I > 2σ(I)
Tmin = 0.471, Tmax = 1.000Rint = 0.021
4717 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.075H-atom parameters constrained
S = 1.08Δρmax = 0.37 e Å3
1674 reflectionsΔρmin = 0.94 e Å3
127 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag0.47914 (2)0.410289 (16)0.06057 (3)0.04647 (13)
O10.12021 (17)0.00759 (14)0.3242 (2)0.0426 (5)
O20.1053 (2)0.12550 (16)0.4404 (3)0.0530 (6)
N0.42688 (18)0.25041 (16)0.0564 (2)0.0345 (5)
C10.4658 (2)0.2003 (2)0.0380 (3)0.0422 (7)
H1A0.51380.22860.08400.051*
C20.4390 (3)0.1078 (2)0.0724 (4)0.0460 (7)
H2A0.46750.07650.14120.055*
C30.3706 (2)0.0635 (2)0.0040 (3)0.0398 (6)
H3A0.35290.00150.02430.048*
C40.3274 (2)0.11373 (19)0.0982 (3)0.0303 (5)
C50.3568 (2)0.20801 (18)0.1252 (3)0.0298 (5)
C60.3125 (2)0.25912 (18)0.2252 (3)0.0328 (5)
H6A0.33050.32130.24340.039*
C70.2435 (2)0.21763 (19)0.2955 (3)0.0326 (5)
H7A0.21500.25220.36100.039*
C80.2145 (2)0.12338 (19)0.2705 (3)0.0297 (5)
C90.2555 (2)0.07253 (19)0.1723 (3)0.0320 (5)
H9A0.23600.01070.15440.038*
C100.1398 (2)0.07663 (19)0.3510 (3)0.0324 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag0.0560 (2)0.03486 (17)0.0611 (2)0.00687 (9)0.03898 (14)0.00040 (9)
O10.0516 (12)0.0344 (11)0.0518 (11)0.0060 (9)0.0324 (10)0.0010 (9)
O20.0695 (15)0.0394 (12)0.0698 (15)0.0088 (11)0.0563 (13)0.0094 (11)
N0.0351 (12)0.0319 (12)0.0425 (12)0.0010 (9)0.0209 (10)0.0046 (9)
C10.0440 (16)0.0419 (16)0.0501 (15)0.0009 (13)0.0304 (13)0.0016 (13)
C20.0533 (19)0.0432 (16)0.0529 (18)0.0022 (14)0.0354 (15)0.0056 (13)
C30.0457 (16)0.0351 (14)0.0453 (15)0.0009 (13)0.0246 (13)0.0048 (12)
C40.0313 (13)0.0293 (12)0.0342 (13)0.0022 (10)0.0159 (10)0.0024 (10)
C50.0293 (12)0.0313 (13)0.0319 (12)0.0013 (10)0.0135 (10)0.0040 (10)
C60.0377 (14)0.0260 (12)0.0380 (13)0.0021 (10)0.0158 (11)0.0021 (10)
C70.0359 (13)0.0328 (14)0.0334 (12)0.0022 (11)0.0168 (10)0.0018 (10)
C80.0306 (12)0.0300 (13)0.0327 (12)0.0021 (11)0.0158 (10)0.0041 (10)
C90.0364 (14)0.0270 (12)0.0377 (13)0.0004 (10)0.0193 (11)0.0009 (10)
C100.0323 (13)0.0349 (14)0.0358 (13)0.0022 (11)0.0196 (11)0.0046 (10)
Geometric parameters (Å, º) top
Ag—O1i2.2067 (19)C2—H2A0.9300
Ag—O2ii2.252 (2)C3—C41.414 (4)
Ag—N2.397 (2)C3—H3A0.9300
Ag—Agiii2.9200 (5)C4—C51.416 (4)
O1—C101.252 (3)C4—C91.415 (4)
O1—Agiv2.2067 (19)C5—C61.413 (4)
O2—C101.252 (4)C6—C71.366 (4)
O2—Agv2.252 (2)C6—H6A0.9300
N—C11.327 (4)C7—C81.412 (4)
N—C51.374 (3)C7—H7A0.9300
C1—C21.395 (5)C8—C91.375 (4)
C1—H1A0.9300C8—C101.517 (4)
C2—C31.367 (5)C9—H9A0.9300
O1i—Ag—O2ii160.44 (9)C5—C4—C9119.7 (2)
O1i—Ag—N109.04 (8)C3—C4—C9121.8 (3)
O2ii—Ag—N90.51 (8)N—C5—C4121.6 (2)
O1i—Ag—Agiii84.15 (5)N—C5—C6119.7 (2)
O2ii—Ag—Agiii77.68 (6)C4—C5—C6118.8 (2)
N—Ag—Agiii156.92 (6)C7—C6—C5120.3 (2)
C10—O1—Agiv122.44 (18)C7—C6—H6A119.8
C10—O2—Agv128.3 (2)C5—C6—H6A119.8
C1—N—C5117.8 (2)C6—C7—C8121.3 (2)
C1—N—Ag112.45 (18)C6—C7—H7A119.3
C5—N—Ag129.42 (18)C8—C7—H7A119.3
N—C1—C2123.9 (3)C9—C8—C7119.4 (2)
N—C1—H1A118.0C9—C8—C10119.2 (2)
C2—C1—H1A118.0C7—C8—C10121.4 (2)
C3—C2—C1119.5 (3)C8—C9—C4120.4 (3)
C3—C2—H2A120.3C8—C9—H9A119.8
C1—C2—H2A120.3C4—C9—H9A119.8
C2—C3—C4118.8 (3)O1—C10—O2126.1 (3)
C2—C3—H3A120.6O1—C10—C8117.1 (2)
C4—C3—H3A120.6O2—C10—C8116.9 (2)
C5—C4—C3118.4 (2)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z1/2; (iii) x+1, y+1, z; (iv) x+1/2, y1/2, z+1/2; (v) x1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ag(C10H6NO2)]
Mr280.03
Crystal system, space groupMonoclinic, C2/c
Temperature (K)294
a, b, c (Å)13.0008 (10), 14.3900 (11), 9.3431 (7)
β (°) 103.446 (1)
V3)1700.0 (2)
Z8
Radiation typeMo Kα
µ (mm1)2.34
Crystal size (mm)0.39 × 0.28 × 0.25
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.471, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
4717, 1674, 1543
Rint0.021
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.075, 1.08
No. of reflections1674
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.94

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2010).

Selected bond lengths (Å) top
Ag—O1i2.2067 (19)Ag—N2.397 (2)
Ag—O2ii2.252 (2)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z1/2.
 

Acknowledgements

We are grateful to the National Science Council of the Republic of China and the Taoyuan Innovation Institute of Technology for support.

References

First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, C., Chan, Z.-K., Yeh, C.-W. & Chen, J.-D. (2008). Struct. Chem. 19, 87–94.  Web of Science CSD CrossRef Google Scholar
First citationChiang, L.-M., Yeh, C.-W., Chan, Z.-K., Wang, K.-M., Chou, Y.-C., Chen, J.-D., Wang, J.-C. & Lai, J. Y. (2008). Cryst. Growth Des. 8, 470–477.  Web of Science CSD CrossRef CAS Google Scholar
First citationDu, M., Zou, R.-Q., Zhong, R.-Q., Tamada, T., Maruta, G., Takeda, S. & Xu, Q. (2008b). Inorg. Chim. Acta 361, 1827–1831.  Web of Science CrossRef CAS Google Scholar
First citationDu, M., Zou, R.-Q., Zhong, R.-Q. & Xu, Q. (2008a). Inorg. Chim. Acta, 361, 1555–1561.  Web of Science CSD CrossRef CAS Google Scholar
First citationHirano, T., Kuroda, M., Takeda, N., Hayashi, M., Mukaida, M., Oi, T. & Nagao, H. (2002). Dalton Trans. pp. 2158–2162.  CrossRef Google Scholar
First citationHsu, Y.-F., Hu, H.-L., Wu, C.-J., Yeh, C.-W., Proserpio, D. M. & Chen, J.-D. (2009). CrystEngComm, 11, 168–176.  Web of Science CSD CrossRef CAS Google Scholar
First citationHu, S., Zou, H.-H., Zeng, M.-H., Wang, Q.-X. & Liang, H. (2008). Cryst. Growth Des. 8, 2346–2351.  Web of Science CrossRef CAS Google Scholar
First citationKitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334–2375.  Web of Science CrossRef CAS Google Scholar
First citationLin, H. & Maggard, P. A. (2007). Inorg. Chem. 46, 1283–1290.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOckwig, N. W., Delgado-Friedrichs, O., O'Keeffe, M. & Yaghi, O. M. (2005). Acc. Chem. Res. 38, 176–182.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, B., Guo, Z., Yang, H., Li, G., Liu, T. & Cao, R. (2009). J. Mol. Struct. 922, 140–143.  Web of Science CSD CrossRef CAS Google Scholar
First citationYeh, C.-W., Chen, T.-R., Chen, J.-D. & Wang, J.-C. (2009). Cryst. Growth Des. 9, 2595–2603.  Web of Science CSD CrossRef CAS Google Scholar
First citationYeh, C.-W., Chen, J.-D. & Wang, J.-C. (2008). Polyhedron, 27, 3611–3618.  Web of Science CSD CrossRef CAS Google Scholar
First citationYeh, C.-W., Suen, M.-C., Hu, H.-L., Chen, J.-D. & Wang, J.-C. (2004). Polyhedron, 23, 1947–1952.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages m850-m851
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds