metal-organic compounds
catena-Poly[[(5,5′-dimethyl-2,2′-bipyridine-κ2N,N′)cadmium]-di-μ-bromido]
aDepartment of Chemistry, Islamic Azad University, Omidieh Branch, Omidieh, Iran
*Correspondence e-mail: sadif_shirvan1@yahoo.com
In the crystal of the title polymeric compound, [CdBr2(C12H12N2)]n, the CdII cation is located on a twofold rotation axis. The CdII cation is six-coordinated in a distorted octahedral geometry formed by two N atoms from the 5,5′-dimethyl-2,2′-bipyridine ligand and four bridging Br− anions. The bridging function of the Br− anions leads to a polymeric chain running along the c axis.
Related literature
For related structures, see: Ahmadi et al. (2008, 2010); Albada et al. (2004); Amani et al. (2007, 2009); Han et al. (2006); Kalateh et al. (2010); Karaca et al. (2009); Khalighi et al. (2008); Maheshwari et al. (2007); Tadayon Pour et al. (2008); Zhang (2007).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536812023860/xu5547sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812023860/xu5547Isup2.hkl
For the preparation of the title compound, a solution of 5,5'-dimethyl-2,2'-bipyridine (0.25 g, 1.33 mmol) in methanol (10 ml) was added to a solution of CdBr2.4H2O (0.46 g, 1.33 mmol) in methanol (10 ml) at room temperature. The suitable crystals for X-ray diffraction experiment were obtained by methanol diffusion to a colorless solution in DMSO. Suitable crystals were isolated after one week (yield; 0.45 g, 74.1%).
H atoms were positioned geometrically with C—H = 0.93 Å and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level [Symmetry codes: (a) 1 - x,y,1/2 - z]. |
[CdBr2(C12H12N2)] | F(000) = 864 |
Mr = 456.45 | Dx = 2.209 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 19.637 (5) Å | Cell parameters from 5378 reflections |
b = 9.6563 (15) Å | θ = 2.2–26.0° |
c = 7.485 (2) Å | µ = 7.39 mm−1 |
β = 104.76 (2)° | T = 298 K |
V = 1372.4 (6) Å3 | Prism, colorless |
Z = 4 | 0.12 × 0.11 × 0.09 mm |
Bruker APEXII CCD area-detector diffractometer | 1346 independent reflections |
Radiation source: fine-focus sealed tube | 1015 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.110 |
ω scans | θmax = 26.0°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −22→24 |
Tmin = 0.435, Tmax = 0.548 | k = −10→11 |
5378 measured reflections | l = −9→9 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.091 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0403P)2] where P = (Fo2 + 2Fc2)/3 |
1346 reflections | (Δ/σ)max = 0.004 |
78 parameters | Δρmax = 0.85 e Å−3 |
0 restraints | Δρmin = −0.70 e Å−3 |
[CdBr2(C12H12N2)] | V = 1372.4 (6) Å3 |
Mr = 456.45 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 19.637 (5) Å | µ = 7.39 mm−1 |
b = 9.6563 (15) Å | T = 298 K |
c = 7.485 (2) Å | 0.12 × 0.11 × 0.09 mm |
β = 104.76 (2)° |
Bruker APEXII CCD area-detector diffractometer | 1346 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | 1015 reflections with I > 2σ(I) |
Tmin = 0.435, Tmax = 0.548 | Rint = 0.110 |
5378 measured reflections |
R[F2 > 2σ(F2)] = 0.041 | 0 restraints |
wR(F2) = 0.091 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.85 e Å−3 |
1346 reflections | Δρmin = −0.70 e Å−3 |
78 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.3751 (3) | 0.2708 (6) | −0.0036 (8) | 0.0498 (15) | |
H1 | 0.3565 | 0.1843 | −0.0435 | 0.060* | |
C2 | 0.3367 (3) | 0.3894 (7) | −0.0747 (9) | 0.0549 (16) | |
C3 | 0.2663 (4) | 0.3740 (9) | −0.2097 (11) | 0.085 (3) | |
H3A | 0.2355 | 0.3221 | −0.1537 | 0.102* | |
H3B | 0.2718 | 0.3261 | −0.3175 | 0.102* | |
H3C | 0.2465 | 0.4639 | −0.2444 | 0.102* | |
C4 | 0.3660 (3) | 0.5147 (7) | −0.0143 (9) | 0.0600 (18) | |
H4 | 0.3423 | 0.5960 | −0.0591 | 0.072* | |
C5 | 0.4299 (3) | 0.5211 (6) | 0.1118 (8) | 0.0506 (15) | |
H5 | 0.4494 | 0.6067 | 0.1527 | 0.061* | |
C6 | 0.4659 (3) | 0.4006 (5) | 0.1792 (8) | 0.0421 (13) | |
N1 | 0.4378 (2) | 0.2774 (5) | 0.1198 (6) | 0.0412 (11) | |
Cd1 | 0.5000 | 0.07821 (6) | 0.2500 | 0.0476 (2) | |
Br1 | 0.41572 (3) | −0.09792 (6) | 0.02140 (9) | 0.0507 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.041 (3) | 0.047 (3) | 0.054 (4) | −0.004 (3) | −0.001 (3) | 0.008 (3) |
C2 | 0.041 (3) | 0.066 (4) | 0.055 (4) | 0.003 (3) | 0.008 (3) | 0.020 (3) |
C3 | 0.048 (4) | 0.109 (6) | 0.086 (6) | 0.006 (4) | −0.005 (4) | 0.034 (5) |
C4 | 0.055 (4) | 0.061 (4) | 0.069 (4) | 0.026 (3) | 0.026 (3) | 0.029 (4) |
C5 | 0.062 (4) | 0.040 (3) | 0.056 (4) | 0.012 (3) | 0.027 (3) | 0.007 (3) |
C6 | 0.044 (3) | 0.036 (3) | 0.049 (3) | 0.003 (2) | 0.017 (3) | 0.007 (2) |
N1 | 0.033 (2) | 0.038 (2) | 0.049 (3) | 0.0021 (18) | 0.003 (2) | 0.006 (2) |
Cd1 | 0.0456 (4) | 0.0318 (3) | 0.0530 (4) | 0.000 | −0.0102 (3) | 0.000 |
Br1 | 0.0474 (4) | 0.0423 (3) | 0.0550 (4) | −0.0094 (2) | −0.0006 (3) | −0.0064 (2) |
C1—N1 | 1.339 (6) | C5—C6 | 1.388 (8) |
C1—C2 | 1.400 (8) | C5—H5 | 0.9300 |
C1—H1 | 0.9300 | C6—N1 | 1.339 (7) |
C2—C4 | 1.366 (10) | C6—C6i | 1.481 (11) |
C2—C3 | 1.497 (9) | Cd1—N1 | 2.352 (4) |
C3—H3A | 0.9600 | Cd1—N1i | 2.352 (4) |
C3—H3B | 0.9600 | Cd1—Br1 | 2.6676 (8) |
C3—H3C | 0.9600 | Cd1—Br1i | 2.6676 (8) |
C4—C5 | 1.366 (9) | Cd1—Br1ii | 2.9351 (10) |
C4—H4 | 0.9300 | Cd1—Br1iii | 2.9352 (10) |
N1—C1—C2 | 122.3 (6) | C5—C6—C6i | 123.0 (4) |
N1—C1—H1 | 118.8 | C6—N1—C1 | 120.0 (5) |
C2—C1—H1 | 118.8 | C6—N1—Cd1 | 117.6 (3) |
C4—C2—C1 | 117.3 (5) | C1—N1—Cd1 | 122.4 (4) |
C4—C2—C3 | 123.3 (6) | N1—Cd1—N1i | 70.3 (2) |
C1—C2—C3 | 119.4 (6) | N1—Cd1—Br1 | 94.81 (10) |
C2—C3—H3A | 109.5 | N1i—Cd1—Br1 | 163.48 (11) |
C2—C3—H3B | 109.5 | N1—Cd1—Br1i | 163.48 (11) |
H3A—C3—H3B | 109.5 | N1i—Cd1—Br1i | 94.81 (10) |
C2—C3—H3C | 109.5 | Br1—Cd1—Br1i | 100.78 (4) |
H3A—C3—H3C | 109.5 | N1—Cd1—Br1ii | 84.78 (12) |
H3B—C3—H3C | 109.5 | N1i—Cd1—Br1ii | 89.13 (12) |
C5—C4—C2 | 120.2 (6) | Br1—Cd1—Br1ii | 96.79 (3) |
C5—C4—H4 | 119.9 | Br1i—Cd1—Br1ii | 87.96 (3) |
C2—C4—H4 | 119.9 | N1—Cd1—Br1iii | 89.13 (12) |
C4—C5—C6 | 120.4 (6) | N1i—Cd1—Br1iii | 84.78 (12) |
C4—C5—H5 | 119.8 | Br1—Cd1—Br1iii | 87.96 (2) |
C6—C5—H5 | 119.8 | Br1i—Cd1—Br1iii | 96.79 (3) |
N1—C6—C5 | 119.7 (5) | Br1ii—Cd1—Br1iii | 172.56 (3) |
N1—C6—C6i | 117.3 (3) | Cd1—Br1—Cd1iii | 92.04 (3) |
N1—C1—C2—C4 | 0.5 (10) | C1—N1—Cd1—N1i | −177.4 (6) |
N1—C1—C2—C3 | −178.9 (6) | C6—N1—Cd1—Br1 | −172.9 (4) |
C1—C2—C4—C5 | −0.6 (10) | C1—N1—Cd1—Br1 | 10.0 (5) |
C3—C2—C4—C5 | 178.8 (6) | C6—N1—Cd1—Br1i | 26.4 (8) |
C2—C4—C5—C6 | 0.2 (10) | C1—N1—Cd1—Br1i | −150.8 (4) |
C4—C5—C6—N1 | 0.2 (10) | C6—N1—Cd1—Br1ii | 90.7 (4) |
C4—C5—C6—C6i | −177.8 (7) | C1—N1—Cd1—Br1ii | −86.4 (4) |
C5—C6—N1—C1 | −0.3 (9) | C6—N1—Cd1—Br1iii | −85.0 (4) |
C6i—C6—N1—C1 | 177.8 (6) | C1—N1—Cd1—Br1iii | 97.8 (4) |
C5—C6—N1—Cd1 | −177.5 (4) | N1—Cd1—Br1—Cd1iii | 88.96 (12) |
C6i—C6—N1—Cd1 | 0.5 (9) | N1i—Cd1—Br1—Cd1iii | 63.9 (4) |
C2—C1—N1—C6 | −0.1 (9) | Br1i—Cd1—Br1—Cd1iii | −96.53 (2) |
C2—C1—N1—Cd1 | 177.0 (5) | Br1ii—Cd1—Br1—Cd1iii | 174.26 (2) |
C6—N1—Cd1—N1i | −0.2 (3) | Br1iii—Cd1—Br1—Cd1iii | 0.0 |
Symmetry codes: (i) −x+1, y, −z+1/2; (ii) x, −y, z+1/2; (iii) −x+1, −y, −z. |
Experimental details
Crystal data | |
Chemical formula | [CdBr2(C12H12N2)] |
Mr | 456.45 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 298 |
a, b, c (Å) | 19.637 (5), 9.6563 (15), 7.485 (2) |
β (°) | 104.76 (2) |
V (Å3) | 1372.4 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 7.39 |
Crystal size (mm) | 0.12 × 0.11 × 0.09 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2001) |
Tmin, Tmax | 0.435, 0.548 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5378, 1346, 1015 |
Rint | 0.110 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.091, 1.03 |
No. of reflections | 1346 |
No. of parameters | 78 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.85, −0.70 |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).
Cd1—N1 | 2.352 (4) | Cd1—Br1i | 2.9351 (10) |
Cd1—Br1 | 2.6676 (8) |
Symmetry code: (i) x, −y, z+1/2. |
Acknowledgements
We are grateful to the Islamic Azad University, Omidieh Branch, for financial support.
References
Ahmadi, R., Kalateh, K. & Amani, V. (2010). Acta Cryst. E66, m562. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ahmadi, R., Khalighi, A., Kalateh, K., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1233. Web of Science CSD CrossRef IUCr Journals Google Scholar
Albada, G. A., Mohamadou, A., Mutikainen, I., Turpeinen, U. & Reedijk, J. (2004). Eur. J. Inorg. Chem. pp. 3733–3742. Google Scholar
Amani, V., Safari, N. & Khavasi, H. R. (2007). Polyhedron, 26, 4257–4262. Web of Science CSD CrossRef CAS Google Scholar
Amani, V., Safari, N., Khavasi, H. R. & Akkurt, M. (2009). Polyhedron, 28, 3026–3030. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Han, J., Fang, J., Dong, Y. & Chang, H. (2006). Acta Cryst. E62, m183–m184. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kalateh, K., Ahmadi, R. & Amani, V. (2010). Acta Cryst. E66, m512. Web of Science CSD CrossRef IUCr Journals Google Scholar
Karaca, S., Akkurt, M., Safari, N., Amani, V., Büyükgüngör, O. & Abedi, A. (2009). Acta Cryst. E65, m335–m336. Web of Science CSD CrossRef IUCr Journals Google Scholar
Khalighi, A., Ahmadi, R., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1211–m1212. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Maheshwari, V., Carlone, M., Fronczek, F. R. & Marzilli, L. G. (2007). Acta Cryst. B63, 603–611. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tadayon Pour, N., Ebadi, A., Abedi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1305. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhang, B.-S. (2007). Acta Cryst. E63, m1562. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
5,5'-Dimethyl-2,2'-bipyridine (5,5'-dmbipy), is a good bidentate ligand, and numerous complexes with 5,5'-dmbipy have been prepared, such as that of zinc (Khalighi et al., 2008), indium (Kalateh et al., 2010), iron (Amani et al., 2007), platin (Amani et al., 2009; Maheshwari et al., 2007), copper (Albada et al., 2004), gold (Karaca et al., 2009), cadmium (Ahmadi et al., 2008,2010) and mercury (Tadayon Pour et al., 2008). Here, we report the synthesis and structure of the title compound.
The asymmetric unit of the title compound, (Fig. 1), contains one half-molecule; a twofold rotation axis passes through the Cd atom. The CdII atom is six-coordinated in a distorted octahedral configuration by two N atoms from 5,5'-dimethyl-2,2'-bipyridine and four bridging Br atoms. The bridging function of the bromide atoms leads to a one-dimensional chain structure. The Cd—Br and Cd—N bond lengths and angles (Table 1) are within normal range [Cd(phen)(µ-Br)2]n, (Zhang, 2007) and [Cd(bipy)(µ-Br)2]n, (Han et al., 2006) [where phen is 1,10-phenanthroline and bipy is 2,2'-bipyridine].