organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1965-o1966

2-Amino-4-(4-chloro­phen­yl)-7,7-di­methyl-5-oxo-5,6,7,8-tetra­hydro-4H-chromene-3-carbo­nitrile propan-2-one monosolvate

aChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cUniversity of Sargodha, Department of Physics, Sargodha, Pakistan, and dKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 25 May 2012; accepted 26 May 2012; online 31 May 2012)

In the title compound, C18H17ClN2O2·C3H6O, the 4H-pyran ring is nearly planar [maximum deviation = −0.108 (1) Å] and the cyclo­hexene ring is puckered [puckering parameters QT = 0.4596 (17) Å, θ = 55.9 (2)° and φ = 226.5 (3)°]. The 4H-pyran ring is approximately perpendicular to the benzene ring [dihedral angle = 84.35 (7)°] and is almost coplanar with the mean plane of the cyclo­hexene ring [dihedral angle = 8.64 (7)°]. In the crystal, inversion-related main mol­ecules are linked into dimers by pairs of N—H⋯N hydrogen bonds, generating an R22(12) graph-set motif. These dimers are further connected by N—H⋯O and C—H⋯N hydrogen bonds, forming a layer structure extending parallel to the (011) plane. In addition, the mol­ecules within the layers inter­act with each other via C—H⋯π inter­actions.

Related literature

For the synthesis of chromene compounds, see: Coujon et al. (2002[Coujon, J. Y., Zammattio, F., Pagnoncelli, S., Boursereau, Y. & Kirschleger, B. (2002). Synlett, pp. 322-324.]). For the bioactivity of chromene compounds see: Kaye & Nocanda (2002[Kaye, P. T. & Nocanda, X. W. (2002). J. Chem. Soc. Perkin Trans. 1, pp. 1318-1323.]). For similar structures, see: Hu et al. (2012[Hu, X.-L., Wang, Z.-X., Wang, F.-M. & Han, G.-F. (2012). Acta Cryst. E68, o823.]); Mohamed et al. (2012[Mohamed, S. K., Akkurt, M., Abdelhamid, A. A., Singh, K. & Allahverdiyev, M. A. (2012). Acta Cryst. E68, o1414-o1415.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C18H17ClN2O2·C3H6O

  • Mr = 386.86

  • Triclinic, [P \overline 1]

  • a = 8.1707 (2) Å

  • b = 9.4386 (2) Å

  • c = 13.5192 (4) Å

  • α = 84.446 (1)°

  • β = 82.546 (2)°

  • γ = 78.625 (1)°

  • V = 1010.76 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 296 K

  • 0.28 × 0.25 × 0.23 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.942, Tmax = 0.952

  • 16320 measured reflections

  • 4769 independent reflections

  • 3390 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.126

  • S = 1.04

  • 4769 reflections

  • 248 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the O1/C7–C11 and C1–C6 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯N1i 0.86 2.30 3.1552 (19) 171
N2—H2B⋯O2ii 0.86 2.15 2.9949 (18) 167
C2—H2⋯N1iii 0.93 2.51 3.234 (2) 135
C17—H17ACg2iv 0.96 2.93 3.8221 (18) 155
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x-1, y, z; (iii) -x+2, -y, -z+1; (iv) x, y+1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Chromene compounds are important group of oxygen heterocycles. They have employed as useful intermediate in the synthesis of a wide range of natural products (Coujon et al., 2002). Such compounds have exhibited anti-depressant, anti-hypertensive as well as anti-ischaemic properties (Kaye & Nocanda, 2002). This triggered us to extend our on-going research program in synthesis of bioactive molecules and their pharmaceutical applications towards the synthesis of chromene nucleus containing compounds. We report in this study the synthesis and crystal structure study of 2-amino-4-(4-chlorophenyl)-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile–propan-2-one (1:1).

In the title compound (I), (Fig. 1), the C10/C11/C13–C16 cyclohexene ring is puckered with the puckering parameters (Cremer & Pople, 1975) of QT = 0.4596 (17) Å, θ = 55.9 (2)° and ϕ = 226.5 (3)°. The O1/C7–C11 4H-pyran ring is nearly planar with a maximum deviation of -0.108 (1) Å for C7 and is approximately perpendicular to the C1–C6 benzene ring [dihedral angle = 84.35 (7)°] and is almost co-planar with the mean plane of the cyclohexene ring [dihedral angle = 8.64 (7) °]. Bond lengths (Allen et al., 1987) and angles of the title compound are within normal ranges and are comparable to similar structures (Hu et al., 2012; Mohamed et al., 2012).

In the crystal, a pair of intermolecular N—H···N hydrogen bonds link the main molecules into an inversion dimer, generating an R22(12) graph-set motif (Bernstein et al., 1995; Table 1, Fig. 2). The dimers are further connected by N—H···O and C—H···N hydrogen bonds, forming a layer of molecules parallel to (011) (Table 1, Fig. 2). The layers are interconnected by weak C—H···π interactions, producing a three-dimensional network.

Related literature top

For the synthesis of chromene compounds, see: Coujon et al. (2002). For the bioactivity of chromene compounds see: Kaye & Nocanda (2002). For similar structures, see: Hu et al. (2012); Mohamed et al. (2012). For bond-length data, see: Allen et al. (1987). For puckering parameters, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A mixture of 140 mg (1 mmol) 5,5-dimethylcyclohexane-1,3-dione, 140 mg (1 mmol) 4-chlorobenzaldehyde and 123 mg (4-aminophenyl)methanol in 50 ml ethanol was refluxed for 5 h. The excess solvent was removed under vacuum and the residual resin was washed with cold acetone. The solid that formed was filtered off, washed with cold ethanol, well drained then recrystallized from a mixture of ethanol–acetone (1:1). Crystals obtained were in good quality and suitable for X-ray diffraction (m.p. 461 K).

Refinement top

H atoms were positioned geometrically and refined by using a riding model, with N—H = 0.86 Å and C—H = 0.93 Å (aromatic), 0.96 Å (methyl), 0.97 Å (methylene) and 0.98 Å (methine), with Uiso(H) = 1.5Ueq(C) for methyl groups and Uiso(H) = 1.2Ueq(C,N) for others.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. View of the dimers formed by pairs of N—H···N hydrogen bonds, with an R22(12) motif and the N—H···O and C—H···N hydrogen bonds which connect the dimers with each other. H atoms not involved in hydrogen bonds have been omitted for clarity.
2-Amino-4-(4-chlorophenyl)-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4H- chromene-3-carbonitrile propan-2-one monosolvate top
Crystal data top
C18H17ClN2O2·C3H6OZ = 2
Mr = 386.86F(000) = 408
Triclinic, P1Dx = 1.271 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.1707 (2) ÅCell parameters from 430 reflections
b = 9.4386 (2) Åθ = 2.2–21°
c = 13.5192 (4) ŵ = 0.21 mm1
α = 84.446 (1)°T = 296 K
β = 82.546 (2)°Prism, colourless
γ = 78.625 (1)°0.28 × 0.25 × 0.23 mm
V = 1010.76 (4) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4769 independent reflections
Radiation source: fine-focus sealed tube3390 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 0.81 pixels mm-1θmax = 27.9°, θmin = 1.5°
ω scansh = 910
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1212
Tmin = 0.942, Tmax = 0.952l = 1717
16320 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0552P)2 + 0.2106P]
where P = (Fo2 + 2Fc2)/3
4769 reflections(Δ/σ)max < 0.001
248 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C18H17ClN2O2·C3H6Oγ = 78.625 (1)°
Mr = 386.86V = 1010.76 (4) Å3
Triclinic, P1Z = 2
a = 8.1707 (2) ÅMo Kα radiation
b = 9.4386 (2) ŵ = 0.21 mm1
c = 13.5192 (4) ÅT = 296 K
α = 84.446 (1)°0.28 × 0.25 × 0.23 mm
β = 82.546 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4769 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3390 reflections with I > 2σ(I)
Tmin = 0.942, Tmax = 0.952Rint = 0.027
16320 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.04Δρmax = 0.33 e Å3
4769 reflectionsΔρmin = 0.34 e Å3
248 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.23217 (8)0.04097 (7)0.07282 (5)0.0908 (3)
O10.49042 (12)0.48205 (10)0.35120 (8)0.0400 (3)
O21.05221 (14)0.51811 (13)0.37189 (11)0.0565 (5)
N10.67987 (18)0.01830 (15)0.51140 (12)0.0536 (5)
N20.36160 (16)0.29958 (14)0.40904 (11)0.0480 (5)
C10.92881 (17)0.24000 (15)0.30888 (11)0.0342 (4)
C21.05201 (19)0.12327 (17)0.33381 (14)0.0460 (5)
C31.1449 (2)0.03660 (19)0.26177 (16)0.0555 (6)
C41.1148 (2)0.06724 (19)0.16419 (15)0.0531 (6)
C50.9934 (2)0.18223 (19)0.13653 (14)0.0513 (6)
C60.9008 (2)0.26753 (17)0.20960 (12)0.0430 (5)
C70.82134 (17)0.32702 (15)0.39096 (11)0.0337 (4)
C80.65888 (18)0.27155 (15)0.42120 (11)0.0335 (4)
C90.50856 (18)0.34425 (15)0.39607 (11)0.0342 (4)
C100.62537 (18)0.55179 (15)0.33926 (11)0.0334 (4)
C110.77873 (17)0.48648 (15)0.36014 (11)0.0326 (4)
C120.66848 (18)0.13136 (16)0.47074 (12)0.0380 (4)
C130.90997 (19)0.57350 (16)0.35344 (12)0.0388 (5)
C140.8623 (2)0.73361 (17)0.32758 (14)0.0463 (5)
C150.7272 (2)0.77363 (16)0.25591 (12)0.0409 (5)
C160.57651 (18)0.70488 (15)0.30076 (12)0.0387 (5)
C170.6697 (2)0.93797 (18)0.24419 (17)0.0592 (7)
C180.7976 (2)0.7186 (2)0.15339 (14)0.0564 (6)
O30.5451 (2)0.50051 (18)0.11608 (13)0.0843 (7)
C190.4295 (3)0.4388 (2)0.11692 (15)0.0603 (7)
C200.4577 (4)0.2802 (3)0.1159 (2)0.0995 (13)
C210.2546 (3)0.5175 (3)0.1176 (3)0.1166 (13)
H21.072600.102800.400200.0550*
H2A0.355100.214500.436600.0580*
H2B0.273400.355800.389900.0580*
H31.226900.041700.279500.0670*
H50.974000.202300.069900.0620*
H60.818000.345000.191500.0520*
H70.883700.314700.449400.0410*
H14A0.961800.769800.297400.0560*
H14B0.821900.781600.388700.0560*
H16A0.515300.760700.355000.0460*
H16B0.501600.709600.250000.0460*
H17A0.764400.982700.220100.0890*
H17B0.620600.972800.307800.0890*
H17C0.587800.961600.197400.0890*
H18A0.712400.743900.108700.0850*
H18B0.832100.615100.160000.0850*
H18C0.892400.762100.127100.0850*
H20A0.419900.254900.056800.1490*
H20B0.396300.240900.174000.1490*
H20C0.575500.241200.116200.1490*
H21A0.250200.618000.126200.1750*
H21B0.185500.477300.171700.1750*
H21C0.214100.508400.055400.1750*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0881 (4)0.0749 (4)0.1017 (5)0.0010 (3)0.0216 (3)0.0411 (3)
O10.0293 (5)0.0326 (5)0.0566 (7)0.0079 (4)0.0069 (5)0.0111 (5)
O20.0351 (6)0.0490 (7)0.0871 (10)0.0102 (5)0.0169 (6)0.0050 (6)
N10.0469 (8)0.0429 (8)0.0700 (10)0.0113 (6)0.0163 (7)0.0197 (7)
N20.0314 (7)0.0391 (7)0.0715 (10)0.0099 (6)0.0074 (6)0.0151 (7)
C10.0271 (7)0.0287 (7)0.0468 (9)0.0067 (6)0.0050 (6)0.0019 (6)
C20.0354 (8)0.0405 (9)0.0591 (11)0.0009 (7)0.0090 (7)0.0036 (8)
C30.0384 (9)0.0392 (9)0.0830 (14)0.0046 (7)0.0040 (9)0.0041 (9)
C40.0451 (10)0.0430 (9)0.0698 (13)0.0097 (8)0.0099 (8)0.0169 (8)
C50.0579 (11)0.0464 (10)0.0500 (10)0.0122 (8)0.0019 (8)0.0055 (8)
C60.0431 (9)0.0350 (8)0.0497 (10)0.0035 (7)0.0075 (7)0.0016 (7)
C70.0304 (7)0.0318 (7)0.0395 (8)0.0065 (6)0.0093 (6)0.0036 (6)
C80.0330 (7)0.0294 (7)0.0371 (8)0.0063 (6)0.0038 (6)0.0036 (6)
C90.0344 (7)0.0308 (7)0.0365 (8)0.0083 (6)0.0020 (6)0.0037 (6)
C100.0323 (7)0.0291 (7)0.0384 (8)0.0078 (6)0.0012 (6)0.0006 (6)
C110.0306 (7)0.0287 (7)0.0383 (8)0.0060 (6)0.0031 (6)0.0011 (6)
C120.0315 (7)0.0387 (8)0.0430 (8)0.0066 (6)0.0072 (6)0.0050 (7)
C130.0363 (8)0.0367 (8)0.0443 (9)0.0093 (6)0.0050 (6)0.0024 (6)
C140.0442 (9)0.0355 (8)0.0619 (11)0.0141 (7)0.0079 (8)0.0013 (7)
C150.0423 (8)0.0298 (8)0.0508 (9)0.0108 (6)0.0030 (7)0.0019 (7)
C160.0360 (8)0.0286 (7)0.0488 (9)0.0032 (6)0.0022 (7)0.0016 (6)
C170.0613 (11)0.0318 (9)0.0848 (14)0.0125 (8)0.0127 (10)0.0085 (9)
C180.0596 (11)0.0564 (11)0.0512 (11)0.0167 (9)0.0037 (8)0.0048 (8)
O30.0928 (12)0.0868 (11)0.0863 (12)0.0419 (10)0.0209 (9)0.0046 (9)
C190.0682 (13)0.0644 (12)0.0506 (11)0.0211 (10)0.0033 (9)0.0024 (9)
C200.109 (2)0.0637 (15)0.132 (3)0.0259 (15)0.0305 (18)0.0047 (15)
C210.0753 (18)0.115 (2)0.140 (3)0.0068 (16)0.0197 (17)0.006 (2)
Geometric parameters (Å, º) top
Cl1—C41.743 (2)C15—C171.528 (2)
O1—C91.3697 (17)C15—C181.529 (2)
O1—C101.3765 (18)C2—H20.9300
O2—C131.223 (2)C3—H30.9300
O3—C191.202 (3)C5—H50.9300
N1—C121.145 (2)C6—H60.9300
N2—C91.335 (2)C7—H70.9800
N2—H2B0.8600C14—H14B0.9700
N2—H2A0.8600C14—H14A0.9700
C1—C21.385 (2)C16—H16A0.9700
C1—C61.382 (2)C16—H16B0.9700
C1—C71.522 (2)C17—H17B0.9600
C2—C31.383 (3)C17—H17C0.9600
C3—C41.366 (3)C17—H17A0.9600
C4—C51.377 (2)C18—H18B0.9600
C5—C61.384 (2)C18—H18C0.9600
C7—C111.507 (2)C18—H18A0.9600
C7—C81.515 (2)C19—C201.470 (3)
C8—C91.351 (2)C19—C211.474 (4)
C8—C121.417 (2)C20—H20A0.9600
C10—C111.335 (2)C20—H20B0.9600
C10—C161.483 (2)C20—H20C0.9600
C11—C131.463 (2)C21—H21A0.9600
C13—C141.503 (2)C21—H21B0.9600
C14—C151.530 (2)C21—H21C0.9600
C15—C161.533 (2)
C9—O1—C10118.92 (11)C4—C5—H5121.00
C9—N2—H2B120.00C6—C5—H5121.00
H2A—N2—H2B120.00C1—C6—H6119.00
C9—N2—H2A120.00C5—C6—H6119.00
C6—C1—C7122.04 (13)C1—C7—H7108.00
C2—C1—C6118.08 (14)C8—C7—H7108.00
C2—C1—C7119.74 (14)C11—C7—H7108.00
C1—C2—C3121.22 (17)C13—C14—H14A109.00
C2—C3—C4119.25 (16)C13—C14—H14B109.00
Cl1—C4—C3119.52 (14)C15—C14—H14A109.00
C3—C4—C5121.21 (17)C15—C14—H14B109.00
Cl1—C4—C5119.27 (15)H14A—C14—H14B108.00
C4—C5—C6118.86 (17)C10—C16—H16A109.00
C1—C6—C5121.37 (15)C10—C16—H16B109.00
C1—C7—C11112.80 (12)C15—C16—H16A109.00
C1—C7—C8110.40 (12)C15—C16—H16B109.00
C8—C7—C11108.40 (12)H16A—C16—H16B108.00
C7—C8—C9123.08 (13)C15—C17—H17A109.00
C7—C8—C12117.87 (13)C15—C17—H17B109.00
C9—C8—C12118.83 (14)C15—C17—H17C109.00
N2—C9—C8128.24 (14)H17A—C17—H17B109.00
O1—C9—N2110.31 (12)H17A—C17—H17C110.00
O1—C9—C8121.45 (13)H17B—C17—H17C109.00
O1—C10—C11122.99 (13)C15—C18—H18A109.00
O1—C10—C16111.12 (12)C15—C18—H18B109.00
C11—C10—C16125.89 (14)C15—C18—H18C109.00
C10—C11—C13118.65 (13)H18A—C18—H18B109.00
C7—C11—C10122.53 (13)H18A—C18—H18C109.00
C7—C11—C13118.81 (12)H18B—C18—H18C110.00
N1—C12—C8178.38 (17)O3—C19—C20120.9 (2)
O2—C13—C11120.84 (14)O3—C19—C21122.05 (19)
O2—C13—C14121.28 (14)C20—C19—C21117.0 (2)
C11—C13—C14117.84 (13)C19—C20—H20A109.00
C13—C14—C15113.74 (13)C19—C20—H20B110.00
C16—C15—C17108.70 (13)C19—C20—H20C109.00
C16—C15—C18110.90 (13)H20A—C20—H20B109.00
C17—C15—C18108.98 (15)H20A—C20—H20C109.00
C14—C15—C18109.79 (14)H20B—C20—H20C109.00
C14—C15—C16108.05 (13)C19—C21—H21A109.00
C14—C15—C17110.41 (13)C19—C21—H21B109.00
C10—C16—C15113.11 (12)C19—C21—H21C109.00
C1—C2—H2119.00H21A—C21—H21B109.00
C3—C2—H2119.00H21A—C21—H21C110.00
C2—C3—H3120.00H21B—C21—H21C109.00
C4—C3—H3120.00
C9—O1—C10—C16173.19 (12)C8—C7—C11—C1015.79 (19)
C10—O1—C9—N2174.51 (12)C8—C7—C11—C13163.79 (13)
C10—O1—C9—C85.5 (2)C7—C8—C9—N2172.17 (15)
C9—O1—C10—C117.0 (2)C12—C8—C9—O1177.72 (13)
C7—C1—C2—C3176.02 (14)C12—C8—C9—N22.3 (2)
C2—C1—C6—C50.5 (2)C7—C8—C9—O17.8 (2)
C7—C1—C6—C5176.29 (15)O1—C10—C11—C75.0 (2)
C6—C1—C2—C30.1 (2)O1—C10—C11—C13174.58 (13)
C2—C1—C7—C894.69 (16)C16—C10—C11—C7174.80 (14)
C2—C1—C7—C11143.88 (14)C16—C10—C11—C135.6 (2)
C6—C1—C7—C881.04 (17)O1—C10—C16—C15162.22 (12)
C6—C1—C7—C1140.39 (19)C11—C10—C16—C1517.6 (2)
C1—C2—C3—C40.3 (3)C7—C11—C13—O20.4 (2)
C2—C3—C4—Cl1179.66 (13)C7—C11—C13—C14176.99 (14)
C2—C3—C4—C50.3 (3)C10—C11—C13—O2180.00 (17)
Cl1—C4—C5—C6180.00 (15)C10—C11—C13—C142.6 (2)
C3—C4—C5—C60.1 (3)O2—C13—C14—C15148.89 (16)
C4—C5—C6—C10.5 (3)C11—C13—C14—C1533.7 (2)
C1—C7—C8—C1267.77 (17)C13—C14—C15—C1653.89 (18)
C11—C7—C8—C917.28 (19)C13—C14—C15—C17172.65 (15)
C11—C7—C8—C12168.22 (13)C13—C14—C15—C1867.18 (18)
C1—C7—C11—C10106.77 (16)C14—C15—C16—C1045.43 (17)
C1—C7—C8—C9106.73 (16)C17—C15—C16—C10165.27 (14)
C1—C7—C11—C1373.65 (17)C18—C15—C16—C1074.94 (17)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the O1/C7–C11 and C1–C6 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N2—H2A···N1i0.862.303.1552 (19)171
N2—H2B···O2ii0.862.152.9949 (18)167
C2—H2···N1iii0.932.513.234 (2)135
C6—H6···Cg10.932.763.0785 (17)101
C17—H17A···Cg2iv0.962.933.8221 (18)155
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y, z; (iii) x+2, y, z+1; (iv) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC18H17ClN2O2·C3H6O
Mr386.86
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.1707 (2), 9.4386 (2), 13.5192 (4)
α, β, γ (°)84.446 (1), 82.546 (2), 78.625 (1)
V3)1010.76 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.28 × 0.25 × 0.23
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.942, 0.952
No. of measured, independent and
observed [I > 2σ(I)] reflections
16320, 4769, 3390
Rint0.027
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.126, 1.04
No. of reflections4769
No. of parameters248
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.34

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the O1/C7–C11 and C1–C6 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N2—H2A···N1i0.862.303.1552 (19)171
N2—H2B···O2ii0.862.152.9949 (18)167
C2—H2···N1iii0.932.513.234 (2)135
C17—H17A···Cg2iv0.962.933.8221 (18)155
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y, z; (iii) x+2, y, z+1; (iv) x, y+1, z.
 

Acknowledgements

AAA is grateful to the Azerbaijan Academic Exchange programme for financial support of this study. We thank Manchester Metropolitan University, Erciyes University and the University of Sargodha for facilitating this work.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCoujon, J. Y., Zammattio, F., Pagnoncelli, S., Boursereau, Y. & Kirschleger, B. (2002). Synlett, pp. 322–324.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHu, X.-L., Wang, Z.-X., Wang, F.-M. & Han, G.-F. (2012). Acta Cryst. E68, o823.  CSD CrossRef IUCr Journals Google Scholar
First citationKaye, P. T. & Nocanda, X. W. (2002). J. Chem. Soc. Perkin Trans. 1, pp. 1318–1323.  Web of Science CrossRef Google Scholar
First citationMohamed, S. K., Akkurt, M., Abdelhamid, A. A., Singh, K. & Allahverdiyev, M. A. (2012). Acta Cryst. E68, o1414–o1415.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1965-o1966
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds