organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2-methyl-1H-imidazol-3-ium) naphthalene-1,5-di­sulfonate dihydrate

aOrdered Matter Science Research Center, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: seuwei@126.com

(Received 11 April 2012; accepted 28 April 2012; online 5 May 2012)

The asymmetric unit of the title organic salt, 2C4H7N2+·C10H6O6S22−·2H2O, consists of a 2-methyl­imidazolium cation, a half of a naphthalene-1,5-disulfonate anion, which lies about a center of symmetry, and a water mol­ecule. In the crystal, N—H⋯O and O—H⋯O hydrogen bonds link the cations, anions and water mol­ecules into the layers parallel to (111).

Related literature

For general background to dielectric–ferroelectric phase transitions, see: Ye et al. (2009[Ye, H. Y., Fu, D. W., Zhang, Y., Zhang, W., Xiong, R. G. & Huang, S. P. (2009). J. Am. Chem. Soc. 131, 42-43.]); Zhang et al. (2009[Zhang, W., Cheng, L. Z., Xiong, R. G., Nakamura, T. & Huang, S. P. (2009). J. Am. Chem. Soc. 131, 12544-12545.]). For the structures of naphthalene-1,5-disulfonate salts with N-heterocyclic cations, see: Janczak & Perpétuo (2008[Janczak, J. & Perpétuo, G. J. (2008). Acta Cryst. C64, o91-o94.]); Wang et al. (2008[Wang, Z.-L., Jin, L.-Y. & Wei, L.-H. (2008). Acta Cryst. E64, o674.]).

[Scheme 1]

Experimental

Crystal data
  • 2C4H7N2+·C10H6O6S22−·2H2O

  • Mr = 488.53

  • Triclinic, [P \overline 1]

  • a = 7.1301 (14) Å

  • b = 8.1773 (16) Å

  • c = 9.970 (2) Å

  • α = 75.58 (3)°

  • β = 75.10 (3)°

  • γ = 80.34 (3)°

  • V = 540.7 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 293 K

  • 0.23 × 0.22 × 0.18 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.933, Tmax = 0.947

  • 5695 measured reflections

  • 2475 independent reflections

  • 1490 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.107

  • S = 0.94

  • 2475 reflections

  • 154 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4C⋯O2i 0.82 (2) 1.95 (2) 2.754 (3) 167 (3)
O4—H4B⋯O2ii 0.82 (2) 1.92 (2) 2.730 (3) 166 (3)
N1—H1D⋯O1iii 0.86 2.00 2.768 (3) 149
N2—H2B⋯O4 0.86 1.78 2.628 (3) 169
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x+1, y-1, z; (iii) -x, -y+1, -z+1.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The compounds exhibiting the dielectric-ferroelectric phase transition constitute an interesting class of materials, comprising organic and metal-organic coordination compounds, organic-inorganic hybrids and organic salts (Ye et al., 2009; Zhang et al., 2009). Unfortunately, the temperature dependence of dielectric constant of the title compound indicates that the permittivity is temperature-independent below the melting point (388 - 389 K) of the compound. Herein we descibe the crystal structure of this compound.

The asymmetric unit of the title compound consists of a 2-methylimidazolium cation, a half of naphthalene-1,5-disulfonate anion and a water molecule (Fig. 1). The cations, anions and water molecules are connected by N—H···O and O—H···O hydrogen bonds, which form the layers parallel to the (1 1 1) plane (Fig. 2 and Table 1).

Related literature top

For general background to dielectric–ferroelectric structure phase transitions, see: Ye et al. (2009); Zhang et al. (2009). For the structures of naphthalene-1,5-disulfonate salts with N-heterocyclic cations, see: Janczak & Perpétuo (2008); Wang et al. (2008).

Experimental top

The title compound was obtained by the addition of naphthalene-1,5-disulfonic acid (2.88 g, 0.01 mol) to a solution of 2-methylimidazole (1.6 g, 0.02 mol) in water. Good quality single crystals were obtained by slow evaporation after two days (the chemical yield is 45%).

Refinement top

All H atoms attached to C and N atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H = 0.93 Å–0.96 Å and N—H = 0.86 Å and with Uiso(H) = 1.5Ueq(C,N) Bond lengths O—H were restrained to 0.82 (2) Å.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Atoms labelled with suffix A are generated by the symmetry operator (1 - x, 1 - y, -z).
[Figure 2] Fig. 2. A view of the packing of the title compound, stacking along the a axis. Dashed lines indicate hydrogen bonds.
Bis(2-methyl-1H-imidazol-3-ium) naphthalene-1,5-disulfonate dihydrate top
Crystal data top
2C4H7N2+·C10H6O6S22·2H2OZ = 1
Mr = 488.53F(000) = 256
Triclinic, P1Dx = 1.500 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1301 (14) ÅCell parameters from 3638 reflections
b = 8.1773 (16) Åθ = 3.0–27.5°
c = 9.970 (2) ŵ = 0.30 mm1
α = 75.58 (3)°T = 293 K
β = 75.10 (3)°Block, colourless
γ = 80.34 (3)°0.23 × 0.22 × 0.18 mm
V = 540.7 (2) Å3
Data collection top
Rigaku SCXmini
diffractometer
2475 independent reflections
Radiation source: fine-focus sealed tube1490 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.3°
ω scansh = 99
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1010
Tmin = 0.933, Tmax = 0.947l = 1212
5695 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 0.94 w = 1/[σ2(Fo2) + (0.0396P)2]
where P = (Fo2 + 2Fc2)/3
2475 reflections(Δ/σ)max = 0.005
154 parametersΔρmax = 0.20 e Å3
3 restraintsΔρmin = 0.33 e Å3
Crystal data top
2C4H7N2+·C10H6O6S22·2H2Oγ = 80.34 (3)°
Mr = 488.53V = 540.7 (2) Å3
Triclinic, P1Z = 1
a = 7.1301 (14) ÅMo Kα radiation
b = 8.1773 (16) ŵ = 0.30 mm1
c = 9.970 (2) ÅT = 293 K
α = 75.58 (3)°0.23 × 0.22 × 0.18 mm
β = 75.10 (3)°
Data collection top
Rigaku SCXmini
diffractometer
2475 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1490 reflections with I > 2σ(I)
Tmin = 0.933, Tmax = 0.947Rint = 0.059
5695 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0553 restraints
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 0.94Δρmax = 0.20 e Å3
2475 reflectionsΔρmin = 0.33 e Å3
154 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O40.7815 (4)0.0540 (4)0.1408 (3)0.0873 (9)
C90.7423 (4)0.6967 (3)0.0199 (3)0.0419 (7)
H9A0.80890.78090.01150.050*
S10.13194 (10)0.66733 (9)0.23893 (7)0.0342 (2)
O30.2455 (3)0.6595 (2)0.33926 (19)0.0438 (5)
O20.1153 (3)0.8363 (2)0.1501 (2)0.0481 (5)
C70.4534 (3)0.5560 (3)0.0451 (2)0.0255 (5)
C60.2599 (3)0.5340 (3)0.1233 (2)0.0271 (6)
O10.0547 (2)0.6045 (2)0.3027 (2)0.0501 (5)
N20.4574 (3)0.1263 (3)0.3230 (2)0.0410 (6)
H2B0.55800.09030.26470.049*
N10.2739 (3)0.2647 (3)0.4672 (2)0.0438 (6)
H1D0.23180.33660.52120.053*
C20.4508 (4)0.2493 (3)0.3875 (3)0.0342 (6)
C80.5575 (4)0.6821 (3)0.0549 (3)0.0349 (6)
H8A0.49770.75670.11400.042*
C50.1658 (4)0.4121 (3)0.1091 (3)0.0375 (7)
H5C0.03780.40080.15970.045*
C30.2826 (4)0.0645 (4)0.3619 (3)0.0571 (9)
H3A0.24960.02280.33080.069*
C10.6089 (4)0.3484 (4)0.3718 (3)0.0500 (8)
H1A0.64610.32830.46100.075*
H1B0.56640.46690.34290.075*
H1C0.71880.31560.30120.075*
C40.1682 (5)0.1513 (4)0.4521 (3)0.0565 (9)
H4A0.03860.13720.49700.068*
H4B0.876 (4)0.014 (4)0.158 (3)0.083 (13)*
H4C0.796 (4)0.096 (4)0.056 (2)0.069 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.0703 (17)0.107 (2)0.0409 (17)0.0527 (15)0.0101 (13)0.0005 (15)
C90.0391 (16)0.0428 (18)0.0478 (19)0.0129 (13)0.0012 (14)0.0228 (14)
S10.0311 (4)0.0392 (4)0.0294 (4)0.0027 (3)0.0011 (3)0.0144 (3)
O30.0459 (11)0.0558 (13)0.0349 (11)0.0010 (9)0.0114 (10)0.0213 (9)
O20.0517 (12)0.0362 (12)0.0419 (12)0.0143 (9)0.0011 (10)0.0067 (9)
C70.0236 (13)0.0277 (14)0.0237 (14)0.0011 (10)0.0050 (11)0.0058 (10)
C60.0269 (13)0.0310 (14)0.0219 (14)0.0001 (11)0.0032 (11)0.0075 (11)
O10.0318 (11)0.0682 (14)0.0485 (13)0.0118 (9)0.0141 (9)0.0293 (10)
N20.0377 (13)0.0429 (15)0.0381 (14)0.0014 (11)0.0069 (11)0.0192 (11)
N10.0426 (14)0.0420 (15)0.0422 (15)0.0042 (11)0.0096 (12)0.0209 (11)
C20.0340 (15)0.0357 (16)0.0281 (16)0.0021 (12)0.0008 (13)0.0059 (12)
C80.0340 (15)0.0366 (16)0.0367 (16)0.0023 (12)0.0023 (13)0.0194 (12)
C50.0231 (14)0.0485 (18)0.0402 (17)0.0082 (12)0.0031 (13)0.0162 (13)
C30.057 (2)0.048 (2)0.066 (2)0.0220 (16)0.0103 (18)0.0273 (17)
C10.0377 (17)0.060 (2)0.055 (2)0.0064 (15)0.0092 (15)0.0183 (16)
C40.0457 (18)0.052 (2)0.068 (2)0.0221 (15)0.0142 (17)0.0241 (17)
Geometric parameters (Å, º) top
O4—H4B0.824 (17)N2—H2B0.8600
O4—H4C0.816 (16)N1—C21.311 (3)
C9—C81.346 (3)N1—C41.347 (3)
C9—C5i1.382 (3)N1—H1D0.8600
C9—H9A0.9300C2—C11.451 (3)
S1—O31.4237 (18)C8—H8A0.9300
S1—O11.4392 (19)C5—C9i1.382 (3)
S1—O21.4483 (19)C5—H5C0.9300
S1—C61.761 (2)C3—C41.313 (4)
C7—C81.402 (3)C3—H3A0.9300
C7—C7i1.410 (4)C1—H1A0.9600
C7—C61.415 (3)C1—H1B0.9600
C6—C51.345 (3)C1—H1C0.9600
N2—C21.310 (3)C4—H4A0.9300
N2—C31.351 (3)
H4B—O4—H4C112 (2)N2—C2—N1106.4 (2)
C8—C9—C5i120.6 (2)N2—C2—C1126.3 (2)
C8—C9—H9A119.7N1—C2—C1127.3 (2)
C5i—C9—H9A119.7C9—C8—C7121.1 (2)
O3—S1—O1113.33 (12)C9—C8—H8A119.5
O3—S1—O2111.00 (12)C7—C8—H8A119.5
O1—S1—O2112.51 (12)C6—C5—C9i120.6 (2)
O3—S1—C6107.66 (11)C6—C5—H5C119.7
O1—S1—C6106.15 (12)C9i—C5—H5C119.7
O2—S1—C6105.65 (11)C4—C3—N2106.8 (3)
C8—C7—C7i118.6 (3)C4—C3—H3A126.6
C8—C7—C6123.1 (2)N2—C3—H3A126.6
C7i—C7—C6118.3 (3)C2—C1—H1A109.5
C5—C6—C7120.8 (2)C2—C1—H1B109.5
C5—C6—S1117.62 (19)H1A—C1—H1B109.5
C7—C6—S1121.57 (18)C2—C1—H1C109.5
C2—N2—C3109.9 (2)H1A—C1—H1C109.5
C2—N2—H2B125.1H1B—C1—H1C109.5
C3—N2—H2B125.1C3—C4—N1107.1 (3)
C2—N1—C4109.9 (2)C3—C4—H4A126.5
C2—N1—H1D125.1N1—C4—H4A126.5
C4—N1—H1D125.1
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4C···O2i0.82 (2)1.95 (2)2.754 (3)167 (3)
O4—H4B···O2ii0.82 (2)1.92 (2)2.730 (3)166 (3)
N1—H1D···O1iii0.862.002.768 (3)149
N2—H2B···O40.861.782.628 (3)169
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y1, z; (iii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula2C4H7N2+·C10H6O6S22·2H2O
Mr488.53
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.1301 (14), 8.1773 (16), 9.970 (2)
α, β, γ (°)75.58 (3), 75.10 (3), 80.34 (3)
V3)540.7 (2)
Z1
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.23 × 0.22 × 0.18
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.933, 0.947
No. of measured, independent and
observed [I > 2σ(I)] reflections
5695, 2475, 1490
Rint0.059
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.107, 0.94
No. of reflections2475
No. of parameters154
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.33

Computer programs: CrystalClear (Rigaku, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4C···O2i0.816 (16)1.952 (19)2.754 (3)167 (3)
O4—H4B···O2ii0.824 (17)1.92 (2)2.730 (3)166 (3)
N1—H1D···O1iii0.862.002.768 (3)148.8
N2—H2B···O40.861.782.628 (3)169.1
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y1, z; (iii) x, y+1, z+1.
 

Acknowledgements

The author is grateful to the starter fund of Southeast University for the purchase of the diffractometer.

References

First citationJanczak, J. & Perpétuo, G. J. (2008). Acta Cryst. C64, o91–o94.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Z.-L., Jin, L.-Y. & Wei, L.-H. (2008). Acta Cryst. E64, o674.  Web of Science CrossRef IUCr Journals Google Scholar
First citationYe, H. Y., Fu, D. W., Zhang, Y., Zhang, W., Xiong, R. G. & Huang, S. P. (2009). J. Am. Chem. Soc. 131, 42–43.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Cheng, L. Z., Xiong, R. G., Nakamura, T. & Huang, S. P. (2009). J. Am. Chem. Soc. 131, 12544–12545.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds