inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages i45-i46

Bis[hexa­amminecobalt(III)] penta­chloride nitrate

aDepartment of Materials and Chemical Engineering, Ministry of Education Key Laboratory of Advanced Materials of Tropical Island Resources, Hainan University, Haikou 570228, People's Republic of China
*Correspondence e-mail: panqinhe@163.com

(Received 26 April 2012; accepted 10 May 2012; online 16 May 2012)

The title compound, [Co(NH3)6]2Cl5(NO3), was obtained under hydro­thermal conditions. The asymmetric unit contains three Co3+ ions, one lying on an inversion center and the other two located at 2/m positions. All Co3+ ions are six-coordinated by NH3 mol­ecules, forming [Co(NH3)6]3+ octahedra, with Co—N distances in the range 1.945 (4)–1.967 (3) Å. The nitrate N atom and one of the O atoms lie at a mirror plane. Among the Cl anions, one lies in a general position, one on a twofold axis and two on a mirror plane. N—H⋯O and N—H⋯Cl hydrogen bonds link the cations and anions into a three-dimensional network.

Related literature

For metal phosphates and germanates prepared using metal complexes as templates, see: Wang et al. (2003a[Wang, Y., Yu, J. H., Guo, M. & Xu, R. R. (2003a). Angew. Chem. Int. Ed. 42, 4089-4092.],b[Wang, Y., Yu, J. H., Li, Y., Shi, Z. & Xu, R. R. (2003b). Chem. Eur. J. 9, 5048-5055.]); Pan et al. (2005[Pan, Q. H., Li, J. Y., Yu, J. H., Wang, Y., Fang, Q. R. & Xu, R. R. (2005). Chem. J. Chin. Univ. 26, 2199-2202.], 2008[Pan, Q. H., Li, J. Y., Ren, X. Y., Wang, Z. P., Li, G. H. & Xu, R. R. (2008). Chem. Mater. 20, 370-372.]). For our continued research inter­est focused on the synthesis of microporous open-framework metal-organic hybride materials by introducing transition metal complexes as templates, see: Pan et al. (2010a[Pan, Q. H., Li, J. Y., Chen, Q. A., Han, Y. D., Chang, Z., Song, W. C. & Bu, X.-H. (2010a). Microporous Mesoporous Mater. 132, 453-457.],b[Pan, Q. H., Chen, Q. A., Song, W. C., Hu, T. L. & Bu, X.-H. (2010b). CrystEngComm, 12, 4198-4204.], 2011[Pan, Q. H., Cheng, Q., Han, Y. D., Hu, T. L. & Bu, X.-H. (2011). Chem. J. Chin. Univ. 32, 527-531.]); Tong & Pan (2011[Tong, J. & Pan, Q. (2011). Acta Cryst. E67, m579-m580.]); Liang et al. (2011[Liang, Z., Wang, F., Wu, Q., Zhi, X. & Pan, Q. (2011). Acta Cryst. E67, m1399.]). For a structure containing a [Co(NH3)6]3+ cation, see: Han et al. (2012[Han, Y. D., Li, Y., Yu, J. H., Pan, Q. H. & Xu, R. R. (2012). Eur. J. Inorg. Chem. pp. 36-39.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(NH3)6]2Cl5(NO3)

  • Mr = 561.53

  • Monoclinic, C 2/m

  • a = 21.118 (4) Å

  • b = 14.985 (3) Å

  • c = 6.8491 (11) Å

  • β = 92.147 (3)°

  • V = 2165.8 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.18 mm−1

  • T = 296 K

  • 0.20 × 0.12 × 0.10 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.738, Tmax = 0.770

  • 7927 measured reflections

  • 2813 independent reflections

  • 1870 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.140

  • S = 1.02

  • 2813 reflections

  • 119 parameters

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.71 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl1 0.89 2.89 3.427 (4) 120
N1—H1A⋯Cl3i 0.89 2.90 3.484 (4) 125
N1—H1B⋯Cl1ii 0.89 2.59 3.410 (4) 154
N1—H1C⋯Cl3iii 0.89 2.63 3.431 (4) 150
N3—H3A⋯O2iv 0.89 2.53 3.155 (6) 128
N4—H4A⋯Cl3v 0.89 2.79 3.287 (4) 117
N4—H4B⋯Cl4 0.89 2.62 3.448 (5) 155
N4—H4C⋯Cl2v 0.89 2.73 3.321 (4) 125
N5—H5A⋯Cl1vi 0.89 2.77 3.375 (4) 127
N5—H5A⋯Cl4vii 0.89 2.91 3.456 (4) 122
N5—H5B⋯O2vii 0.89 2.17 3.048 (5) 168
N5—H5C⋯Cl3vi 0.89 2.56 3.337 (4) 146
N6—H6A⋯Cl4vii 0.89 2.76 3.339 (4) 124
N6—H6C⋯Cl3viii 0.89 2.93 3.445 (4) 118
N7—H7A⋯Cl4iv 0.89 2.78 3.368 (4) 125
N7—H7B⋯Cl3viii 0.89 2.87 3.394 (4) 119
Symmetry codes: (i) x, -y+1, z; (ii) -x, -y+1, -z+1; (iii) -x, -y+1, -z; (iv) -x+1, -y+1, -z+1; (v) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (vi) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (vii) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (viii) x, y, z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Rencently, more attention has been paid to transition metal complexes, because they can to be employed as templates in the synthesis of various open-framework materials, including metal phosphates (Wang et al., 2003a,b) and germanates (Pan et al., 2005,2008). Our continued interest has been focused on the synthesis of microporous open-framework metal-organic hybride materials by introducing transition metal complexes as templates (Pan et al., 2010a,b, 2011; Tong & Pan, 2011; Liang et al., 2011). Unexpectedly, the title compound, [Co(NH3)6]2(NO3)Cl5, was obtained.

The title compound is composed of [Co(NH3)6]3+ cations and the counterions Cl- and NO3-, as shown in Fig. 1. The asymmetric part of this crystal structure contains three Co3+ ions; one is located on an inversion center, and the other two are positioned on the twofold rotation axis with center of symmetry (2/m). All Co(III) ions are six coordinated by NH3 molecules to form [Co(NH3)6]3+ cations, having a slightly distorted octahedral geometry, as in the structure of [Co(NH3)6]3[Zn8(HPO4)8(PO4)2](PO4) (Han et al., 2012). The Co—N bond distances are in the range from 1.945 (4) to 1.967 (3) Å. For the counterions, the N8 atom of NO3- anion is located on mirror plane and displays a trigonal geometry by bonded to three O atoms with the N—O distances of 1.234 (6)–1.253 (4) Å. The Cl- anions are located in different positions: inversion center for Cl2, mirror plane for Cl1 and Cl4, and general position for Cl3. The [Co(NH3)6]3+ cations interact with the counterions Cl- and NO3- via hydrogen bonds; the distances of N—H···O hydrogen bonds are in the range 3.048 (5)–3.155 (6) Å, and the distances of N—H···Cl hydrogen bonds lie in the range from 3.287 (4) to 3.484 (4) Å (Table 1), to form an extensive three-dimensional hydrogen-bonding network.

Related literature top

For metal phosphates and germanates prepared using metal complexes as templates, see: Wang et al. (2003a,b); Pan et al. (2005, 2008). For our continued research interest focused on the synthesis of microporous open-framework

metal-organic hybride materials by introducing transition metal complexes as

templates, see: Pan et al. (2010a,b, 2011); Tong & Pan (2011); Liang et al. (2011). For a structure containing a [Co(NH3)6]3+ cation, see: Han et al. (2012).

Experimental top

In a typical synthesis, a mixture of Cd(NO3)2.4H2O (0.231 g), pyromellitic acid (0.0254 g), [Co(NH3)6]Cl3 (0.03 g), NaOH (0.016 g) and H2O (10 ml) were added in a 20 ml Teflon-lined reactor under autogenous pressure at 100°C for 3 days. Yellow rod-like crystals were obtained.

Refinement top

All H atoms were positioned geometrically (N—H = 0.89 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(parent atom).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the asymmetric unit of title compound showing the atom labelling scheme. Ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) -x, 1 - y, -z; (ii) -x, y, -z; (iii) x, 1 - y, z; (iv) 1 - x, 1 - y, -z; (v) 1 - x, y, -z; (vi) 1/2 - x, 1/2 - y, 1 - z]. (iv) x, -y + 1, z; (v) -x, -y + 1, -z; (vi) -x, y, -z.
Bis[hexaamminecobalt(III)] pentachloride nitrate top
Crystal data top
[Co(NH3)6]2Cl5(NO3)F(000) = 1160
Mr = 561.53Dx = 1.722 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yCell parameters from 7927 reflections
a = 21.118 (4) Åθ = 1.7–28.4°
b = 14.985 (3) ŵ = 2.18 mm1
c = 6.8491 (11) ÅT = 296 K
β = 92.147 (3)°Rod, yellow
V = 2165.8 (6) Å30.2 × 0.12 × 0.10 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2813 independent reflections
Radiation source: fine-focus sealed tube1870 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 83.66 pixels mm-1θmax = 28.4°, θmin = 1.7°
ϕ and ω scansh = 2728
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1920
Tmin = 0.738, Tmax = 0.770l = 69
7927 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0641P)2 + 4.8344P]
where P = (Fo2 + 2Fc2)/3
2813 reflections(Δ/σ)max < 0.001
119 parametersΔρmax = 0.65 e Å3
0 restraintsΔρmin = 0.71 e Å3
Crystal data top
[Co(NH3)6]2Cl5(NO3)V = 2165.8 (6) Å3
Mr = 561.53Z = 4
Monoclinic, C2/mMo Kα radiation
a = 21.118 (4) ŵ = 2.18 mm1
b = 14.985 (3) ÅT = 296 K
c = 6.8491 (11) Å0.2 × 0.12 × 0.10 mm
β = 92.147 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2813 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1870 reflections with I > 2σ(I)
Tmin = 0.738, Tmax = 0.770Rint = 0.046
7927 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 1.02Δρmax = 0.65 e Å3
2813 reflectionsΔρmin = 0.71 e Å3
119 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.25000.25000.50000.0193 (2)
N70.25395 (17)0.3197 (3)0.7422 (5)0.0329 (9)
H7A0.29230.34400.75850.040*
H7B0.24650.28420.84290.040*
H7C0.22490.36270.73530.040*
N60.16170 (16)0.2158 (3)0.5415 (5)0.0342 (9)
H6A0.14770.18120.44340.041*
H6B0.13780.26460.54630.041*
H6C0.15960.18610.65350.041*
N50.27844 (19)0.1439 (3)0.6414 (6)0.0401 (10)
H5A0.28110.09840.55850.048*
H5B0.25090.13060.73230.048*
H5C0.31640.15410.69820.048*
Co20.50000.50000.00000.0212 (3)
Cl40.66930 (8)0.50000.4229 (2)0.0350 (4)
N40.55640 (18)0.5926 (3)0.1076 (6)0.0411 (10)
H4A0.58520.60620.02080.049*
H4B0.57580.57270.21680.049*
H4C0.53390.64100.13410.049*
N30.4522 (2)0.50000.2394 (7)0.0329 (12)
H3A0.42780.45170.24350.040*
H3B0.47870.50000.34350.040*
Co30.00000.50000.00000.0208 (3)
N20.0927 (2)0.50000.0085 (7)0.0289 (11)
H2A0.10720.45170.07120.035*
H2B0.10750.50000.11140.035*
N10.00050 (17)0.5934 (3)0.2019 (5)0.0330 (9)
H1A0.04030.60750.23600.040*
H1B0.01910.57340.30610.040*
H1C0.01950.64150.15510.040*
Cl30.12244 (5)0.28432 (8)0.00154 (16)0.0351 (3)
Cl20.00000.19040 (14)0.50000.0485 (5)
Cl10.11173 (8)0.50000.5167 (2)0.0459 (5)
O20.68054 (15)0.5722 (2)0.9173 (5)0.0392 (8)
N80.7099 (2)0.50000.9396 (7)0.0291 (11)
O10.7671 (2)0.50000.9832 (8)0.0507 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0190 (4)0.0185 (4)0.0206 (4)0.0001 (3)0.0021 (3)0.0002 (3)
N70.032 (2)0.039 (2)0.028 (2)0.0044 (17)0.0031 (15)0.0072 (15)
N60.0265 (19)0.036 (2)0.041 (2)0.0052 (17)0.0084 (16)0.0079 (18)
N50.046 (2)0.032 (2)0.042 (2)0.0034 (19)0.0037 (18)0.0093 (17)
Co20.0179 (5)0.0211 (6)0.0247 (6)0.0000.0025 (4)0.000
Cl40.0419 (9)0.0284 (8)0.0347 (9)0.0000.0006 (7)0.000
N40.033 (2)0.044 (3)0.047 (2)0.0102 (19)0.0093 (18)0.0124 (19)
N30.027 (3)0.043 (3)0.028 (3)0.0000.005 (2)0.000
Co30.0165 (5)0.0220 (6)0.0239 (6)0.0000.0019 (4)0.000
N20.017 (2)0.029 (3)0.040 (3)0.0000.001 (2)0.000
N10.030 (2)0.035 (2)0.034 (2)0.0027 (17)0.0011 (16)0.0044 (16)
Cl30.0334 (6)0.0315 (6)0.0405 (7)0.0048 (5)0.0037 (5)0.0012 (5)
Cl20.0462 (10)0.0521 (12)0.0478 (11)0.0000.0079 (8)0.000
Cl10.0361 (9)0.0683 (13)0.0337 (9)0.0000.0056 (7)0.000
O20.0395 (19)0.036 (2)0.043 (2)0.0092 (15)0.0046 (15)0.0019 (14)
N80.024 (3)0.037 (3)0.027 (3)0.0000.004 (2)0.000
O10.022 (2)0.053 (4)0.077 (4)0.0000.005 (2)0.000
Geometric parameters (Å, º) top
Co1—N5i1.945 (4)Co2—N3ii1.958 (5)
Co1—N51.945 (4)N4—H4A0.8900
Co1—N71.960 (3)N4—H4B0.8900
Co1—N7i1.960 (3)N4—H4C0.8900
Co1—N61.965 (3)N3—H3A0.8900
Co1—N6i1.965 (3)N3—H3B0.8900
N7—H7A0.8900Co3—N21.956 (5)
N7—H7B0.8900Co3—N2v1.956 (5)
N7—H7C0.8900Co3—N11.967 (3)
N6—H6A0.8900Co3—N1vi1.967 (3)
N6—H6B0.8900Co3—N1v1.967 (3)
N6—H6C0.8900Co3—N1iv1.967 (3)
N5—H5A0.8900N2—H2A0.8900
N5—H5B0.8900N2—H2B0.8900
N5—H5C0.8900N1—H1A0.8900
Co2—N41.955 (4)N1—H1B0.8900
Co2—N4ii1.955 (4)N1—H1C0.8900
Co2—N4iii1.955 (4)O2—N81.253 (4)
Co2—N4iv1.955 (4)N8—O11.234 (6)
Co2—N31.958 (5)N8—O2iv1.253 (4)
N5i—Co1—N5180.000 (1)N4iv—Co2—N390.59 (16)
N5i—Co1—N789.33 (16)N4—Co2—N3ii89.41 (16)
N5—Co1—N790.67 (16)N4ii—Co2—N3ii90.59 (16)
N5i—Co1—N7i90.67 (16)N4iii—Co2—N3ii90.59 (16)
N5—Co1—N7i89.33 (16)N4iv—Co2—N3ii89.41 (16)
N7—Co1—N7i180.0N3—Co2—N3ii180.000 (1)
N5i—Co1—N690.47 (17)Co2—N4—H4A109.5
N5—Co1—N689.53 (17)Co2—N4—H4B109.5
N7—Co1—N691.56 (15)H4A—N4—H4B109.5
N7i—Co1—N688.44 (15)Co2—N4—H4C109.5
N5i—Co1—N6i89.53 (17)H4A—N4—H4C109.5
N5—Co1—N6i90.47 (17)H4B—N4—H4C109.5
N7—Co1—N6i88.44 (15)Co2—N3—H3A110.1
N7i—Co1—N6i91.56 (15)Co2—N3—H3B110.0
N6—Co1—N6i180.00 (6)H3A—N3—H3B108.9
Co1—N7—H7A109.5N2—Co3—N2v180.0
Co1—N7—H7B109.5N2—Co3—N190.00 (15)
H7A—N7—H7B109.5N2v—Co3—N190.00 (15)
Co1—N7—H7C109.5N2—Co3—N1vi90.00 (15)
H7A—N7—H7C109.5N2v—Co3—N1vi90.00 (15)
H7B—N7—H7C109.5N1—Co3—N1vi89.3 (2)
Co1—N6—H6A109.5N2—Co3—N1v90.00 (15)
Co1—N6—H6B109.5N2v—Co3—N1v90.00 (15)
H6A—N6—H6B109.5N1—Co3—N1v180.0 (2)
Co1—N6—H6C109.5N1vi—Co3—N1v90.7 (2)
H6A—N6—H6C109.5N2—Co3—N1iv90.00 (15)
H6B—N6—H6C109.5N2v—Co3—N1iv90.00 (15)
Co1—N5—H5A109.5N1—Co3—N1iv90.7 (2)
Co1—N5—H5B109.5N1vi—Co3—N1iv180.00 (16)
H5A—N5—H5B109.5N1v—Co3—N1iv89.3 (2)
Co1—N5—H5C109.5Co3—N2—H2A109.9
H5A—N5—H5C109.5Co3—N2—H2B111.0
H5B—N5—H5C109.5H2A—N2—H2B108.6
N4—Co2—N4ii180.0Co3—N1—H1A109.5
N4—Co2—N4iii89.6 (3)Co3—N1—H1B109.5
N4ii—Co2—N4iii90.4 (3)H1A—N1—H1B109.5
N4—Co2—N4iv90.4 (3)Co3—N1—H1C109.5
N4ii—Co2—N4iv89.6 (3)H1A—N1—H1C109.5
N4iii—Co2—N4iv180.00 (17)H1B—N1—H1C109.5
N4—Co2—N390.59 (16)O1—N8—O2iv120.3 (3)
N4ii—Co2—N389.41 (16)O1—N8—O2120.3 (3)
N4iii—Co2—N389.41 (16)O2iv—N8—O2119.4 (5)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1, y+1, z; (iii) x+1, y, z; (iv) x, y+1, z; (v) x, y+1, z; (vi) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl10.892.893.427 (4)120
N1—H1A···Cl3iv0.892.903.484 (4)125
N1—H1B···Cl1vii0.892.593.410 (4)154
N1—H1C···Cl3v0.892.633.431 (4)150
N3—H3A···O2viii0.892.533.155 (6)128
N4—H4A···Cl3ix0.892.793.287 (4)117
N4—H4B···Cl40.892.623.448 (5)155
N4—H4C···Cl2ix0.892.733.321 (4)125
N5—H5A···Cl1i0.892.773.375 (4)127
N5—H5A···Cl4x0.892.913.456 (4)122
N5—H5B···O2x0.892.173.048 (5)168
N5—H5C···Cl3i0.892.563.337 (4)146
N6—H6A···Cl4x0.892.763.339 (4)124
N6—H6C···Cl3xi0.892.933.445 (4)118
N7—H7A···Cl4viii0.892.783.368 (4)125
N7—H7B···Cl3xi0.892.873.394 (4)119
Symmetry codes: (i) x+1/2, y+1/2, z+1; (iv) x, y+1, z; (v) x, y+1, z; (vii) x, y+1, z+1; (viii) x+1, y+1, z+1; (ix) x+1/2, y+1/2, z; (x) x1/2, y1/2, z; (xi) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Co(NH3)6]2Cl5(NO3)
Mr561.53
Crystal system, space groupMonoclinic, C2/m
Temperature (K)296
a, b, c (Å)21.118 (4), 14.985 (3), 6.8491 (11)
β (°) 92.147 (3)
V3)2165.8 (6)
Z4
Radiation typeMo Kα
µ (mm1)2.18
Crystal size (mm)0.2 × 0.12 × 0.10
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.738, 0.770
No. of measured, independent and
observed [I > 2σ(I)] reflections
7927, 2813, 1870
Rint0.046
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.140, 1.02
No. of reflections2813
No. of parameters119
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.65, 0.71

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl10.892.893.427 (4)120.4
N1—H1A···Cl3i0.892.903.484 (4)124.5
N1—H1B···Cl1ii0.892.593.410 (4)154.4
N1—H1C···Cl3iii0.892.633.431 (4)149.6
N3—H3A···O2iv0.892.533.155 (6)128.2
N4—H4A···Cl3v0.892.793.287 (4)116.9
N4—H4B···Cl40.892.623.448 (5)154.8
N4—H4C···Cl2v0.892.733.321 (4)124.6
N5—H5A···Cl1vi0.892.773.375 (4)126.7
N5—H5A···Cl4vii0.892.913.456 (4)121.6
N5—H5B···O2vii0.892.173.048 (5)167.6
N5—H5C···Cl3vi0.892.563.337 (4)146.2
N6—H6A···Cl4vii0.892.763.339 (4)124.1
N6—H6C···Cl3viii0.892.933.445 (4)118.2
N7—H7A···Cl4iv0.892.783.368 (4)124.5
N7—H7B···Cl3viii0.892.873.394 (4)118.8
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z+1; (iii) x, y+1, z; (iv) x+1, y+1, z+1; (v) x+1/2, y+1/2, z; (vi) x+1/2, y+1/2, z+1; (vii) x1/2, y1/2, z; (viii) x, y, z+1.
 

Acknowledgements

This work was supported by the Program for New Century Excellent Talents in Universities (NCET-11–0929), the National Natural Science Foundation of China (No. 21101047), the Natural Science Foundation of Hainan Province (No. 211010) and the Priming Scientific Research Foundation of Hainan University (No. kyqd1051).

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHan, Y. D., Li, Y., Yu, J. H., Pan, Q. H. & Xu, R. R. (2012). Eur. J. Inorg. Chem. pp. 36–39.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiang, Z., Wang, F., Wu, Q., Zhi, X. & Pan, Q. (2011). Acta Cryst. E67, m1399.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPan, Q. H., Chen, Q. A., Song, W. C., Hu, T. L. & Bu, X.-H. (2010b). CrystEngComm, 12, 4198–4204.  Web of Science CSD CrossRef CAS Google Scholar
First citationPan, Q. H., Cheng, Q., Han, Y. D., Hu, T. L. & Bu, X.-H. (2011). Chem. J. Chin. Univ. 32, 527–531.  CAS Google Scholar
First citationPan, Q. H., Li, J. Y., Chen, Q. A., Han, Y. D., Chang, Z., Song, W. C. & Bu, X.-H. (2010a). Microporous Mesoporous Mater. 132, 453–457.  Web of Science CSD CrossRef CAS Google Scholar
First citationPan, Q. H., Li, J. Y., Ren, X. Y., Wang, Z. P., Li, G. H. & Xu, R. R. (2008). Chem. Mater. 20, 370–372.  Web of Science CSD CrossRef CAS Google Scholar
First citationPan, Q. H., Li, J. Y., Yu, J. H., Wang, Y., Fang, Q. R. & Xu, R. R. (2005). Chem. J. Chin. Univ. 26, 2199–2202.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTong, J. & Pan, Q. (2011). Acta Cryst. E67, m579–m580.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y., Yu, J. H., Guo, M. & Xu, R. R. (2003a). Angew. Chem. Int. Ed. 42, 4089–4092.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, Y., Yu, J. H., Li, Y., Shi, Z. & Xu, R. R. (2003b). Chem. Eur. J. 9, 5048–5055.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages i45-i46
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds