inorganic compounds
Bis[hexaamminecobalt(III)] pentachloride nitrate
aDepartment of Materials and Chemical Engineering, Ministry of Education Key Laboratory of Advanced Materials of Tropical Island Resources, Hainan University, Haikou 570228, People's Republic of China
*Correspondence e-mail: panqinhe@163.com
The title compound, [Co(NH3)6]2Cl5(NO3), was obtained under hydrothermal conditions. The contains three Co3+ ions, one lying on an inversion center and the other two located at 2/m positions. All Co3+ ions are six-coordinated by NH3 molecules, forming [Co(NH3)6]3+ octahedra, with Co—N distances in the range 1.945 (4)–1.967 (3) Å. The nitrate N atom and one of the O atoms lie at a mirror plane. Among the Cl− anions, one lies in a general position, one on a twofold axis and two on a mirror plane. N—H⋯O and N—H⋯Cl hydrogen bonds link the cations and anions into a three-dimensional network.
Related literature
For metal phosphates and germanates prepared using metal complexes as templates, see: Wang et al. (2003a,b); Pan et al. (2005, 2008). For our continued research interest focused on the synthesis of microporous open-framework metal-organic hybride materials by introducing transition metal complexes as templates, see: Pan et al. (2010a,b, 2011); Tong & Pan (2011); Liang et al. (2011). For a structure containing a [Co(NH3)6]3+ cation, see: Han et al. (2012).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2005); cell SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536812021332/yk2056sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812021332/yk2056Isup2.hkl
In a typical synthesis, a mixture of Cd(NO3)2.4H2O (0.231 g), pyromellitic acid (0.0254 g), [Co(NH3)6]Cl3 (0.03 g), NaOH (0.016 g) and H2O (10 ml) were added in a 20 ml Teflon-lined reactor under autogenous pressure at 100°C for 3 days. Yellow rod-like crystals were obtained.
All H atoms were positioned geometrically (N—H = 0.89 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(parent atom).
Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. A view of the asymmetric unit of title compound showing the atom labelling scheme. Ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) -x, 1 - y, -z; (ii) -x, y, -z; (iii) x, 1 - y, z; (iv) 1 - x, 1 - y, -z; (v) 1 - x, y, -z; (vi) 1/2 - x, 1/2 - y, 1 - z]. (iv) x, -y + 1, z; (v) -x, -y + 1, -z; (vi) -x, y, -z. |
[Co(NH3)6]2Cl5(NO3) | F(000) = 1160 |
Mr = 561.53 | Dx = 1.722 Mg m−3 |
Monoclinic, C2/m | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2y | Cell parameters from 7927 reflections |
a = 21.118 (4) Å | θ = 1.7–28.4° |
b = 14.985 (3) Å | µ = 2.18 mm−1 |
c = 6.8491 (11) Å | T = 296 K |
β = 92.147 (3)° | Rod, yellow |
V = 2165.8 (6) Å3 | 0.2 × 0.12 × 0.10 mm |
Z = 4 |
Bruker APEXII CCD area-detector diffractometer | 2813 independent reflections |
Radiation source: fine-focus sealed tube | 1870 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.046 |
Detector resolution: 83.66 pixels mm-1 | θmax = 28.4°, θmin = 1.7° |
ϕ and ω scans | h = −27→28 |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | k = −19→20 |
Tmin = 0.738, Tmax = 0.770 | l = −6→9 |
7927 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.050 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.140 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0641P)2 + 4.8344P] where P = (Fo2 + 2Fc2)/3 |
2813 reflections | (Δ/σ)max < 0.001 |
119 parameters | Δρmax = 0.65 e Å−3 |
0 restraints | Δρmin = −0.71 e Å−3 |
[Co(NH3)6]2Cl5(NO3) | V = 2165.8 (6) Å3 |
Mr = 561.53 | Z = 4 |
Monoclinic, C2/m | Mo Kα radiation |
a = 21.118 (4) Å | µ = 2.18 mm−1 |
b = 14.985 (3) Å | T = 296 K |
c = 6.8491 (11) Å | 0.2 × 0.12 × 0.10 mm |
β = 92.147 (3)° |
Bruker APEXII CCD area-detector diffractometer | 2813 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 1870 reflections with I > 2σ(I) |
Tmin = 0.738, Tmax = 0.770 | Rint = 0.046 |
7927 measured reflections |
R[F2 > 2σ(F2)] = 0.050 | 0 restraints |
wR(F2) = 0.140 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.65 e Å−3 |
2813 reflections | Δρmin = −0.71 e Å−3 |
119 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Co1 | 0.2500 | 0.2500 | 0.5000 | 0.0193 (2) | |
N7 | 0.25395 (17) | 0.3197 (3) | 0.7422 (5) | 0.0329 (9) | |
H7A | 0.2923 | 0.3440 | 0.7585 | 0.040* | |
H7B | 0.2465 | 0.2842 | 0.8429 | 0.040* | |
H7C | 0.2249 | 0.3627 | 0.7353 | 0.040* | |
N6 | 0.16170 (16) | 0.2158 (3) | 0.5415 (5) | 0.0342 (9) | |
H6A | 0.1477 | 0.1812 | 0.4434 | 0.041* | |
H6B | 0.1378 | 0.2646 | 0.5463 | 0.041* | |
H6C | 0.1596 | 0.1861 | 0.6535 | 0.041* | |
N5 | 0.27844 (19) | 0.1439 (3) | 0.6414 (6) | 0.0401 (10) | |
H5A | 0.2811 | 0.0984 | 0.5585 | 0.048* | |
H5B | 0.2509 | 0.1306 | 0.7323 | 0.048* | |
H5C | 0.3164 | 0.1541 | 0.6982 | 0.048* | |
Co2 | 0.5000 | 0.5000 | 0.0000 | 0.0212 (3) | |
Cl4 | 0.66930 (8) | 0.5000 | 0.4229 (2) | 0.0350 (4) | |
N4 | 0.55640 (18) | 0.5926 (3) | 0.1076 (6) | 0.0411 (10) | |
H4A | 0.5852 | 0.6062 | 0.0208 | 0.049* | |
H4B | 0.5758 | 0.5727 | 0.2168 | 0.049* | |
H4C | 0.5339 | 0.6410 | 0.1341 | 0.049* | |
N3 | 0.4522 (2) | 0.5000 | 0.2394 (7) | 0.0329 (12) | |
H3A | 0.4278 | 0.4517 | 0.2435 | 0.040* | |
H3B | 0.4787 | 0.5000 | 0.3435 | 0.040* | |
Co3 | 0.0000 | 0.5000 | 0.0000 | 0.0208 (3) | |
N2 | −0.0927 (2) | 0.5000 | −0.0085 (7) | 0.0289 (11) | |
H2A | −0.1072 | 0.4517 | −0.0712 | 0.035* | |
H2B | −0.1075 | 0.5000 | 0.1114 | 0.035* | |
N1 | 0.00050 (17) | 0.5934 (3) | 0.2019 (5) | 0.0330 (9) | |
H1A | 0.0403 | 0.6075 | 0.2360 | 0.040* | |
H1B | −0.0191 | 0.5734 | 0.3061 | 0.040* | |
H1C | −0.0195 | 0.6415 | 0.1551 | 0.040* | |
Cl3 | 0.12244 (5) | 0.28432 (8) | 0.00154 (16) | 0.0351 (3) | |
Cl2 | 0.0000 | 0.19040 (14) | 0.5000 | 0.0485 (5) | |
Cl1 | 0.11173 (8) | 0.5000 | 0.5167 (2) | 0.0459 (5) | |
O2 | 0.68054 (15) | 0.5722 (2) | 0.9173 (5) | 0.0392 (8) | |
N8 | 0.7099 (2) | 0.5000 | 0.9396 (7) | 0.0291 (11) | |
O1 | 0.7671 (2) | 0.5000 | 0.9832 (8) | 0.0507 (14) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.0190 (4) | 0.0185 (4) | 0.0206 (4) | 0.0001 (3) | 0.0021 (3) | 0.0002 (3) |
N7 | 0.032 (2) | 0.039 (2) | 0.028 (2) | −0.0044 (17) | 0.0031 (15) | −0.0072 (15) |
N6 | 0.0265 (19) | 0.036 (2) | 0.041 (2) | −0.0052 (17) | 0.0084 (16) | −0.0079 (18) |
N5 | 0.046 (2) | 0.032 (2) | 0.042 (2) | 0.0034 (19) | −0.0037 (18) | 0.0093 (17) |
Co2 | 0.0179 (5) | 0.0211 (6) | 0.0247 (6) | 0.000 | 0.0025 (4) | 0.000 |
Cl4 | 0.0419 (9) | 0.0284 (8) | 0.0347 (9) | 0.000 | −0.0006 (7) | 0.000 |
N4 | 0.033 (2) | 0.044 (3) | 0.047 (2) | −0.0102 (19) | 0.0093 (18) | −0.0124 (19) |
N3 | 0.027 (3) | 0.043 (3) | 0.028 (3) | 0.000 | 0.005 (2) | 0.000 |
Co3 | 0.0165 (5) | 0.0220 (6) | 0.0239 (6) | 0.000 | 0.0019 (4) | 0.000 |
N2 | 0.017 (2) | 0.029 (3) | 0.040 (3) | 0.000 | −0.001 (2) | 0.000 |
N1 | 0.030 (2) | 0.035 (2) | 0.034 (2) | 0.0027 (17) | −0.0011 (16) | −0.0044 (16) |
Cl3 | 0.0334 (6) | 0.0315 (6) | 0.0405 (7) | 0.0048 (5) | 0.0037 (5) | 0.0012 (5) |
Cl2 | 0.0462 (10) | 0.0521 (12) | 0.0478 (11) | 0.000 | 0.0079 (8) | 0.000 |
Cl1 | 0.0361 (9) | 0.0683 (13) | 0.0337 (9) | 0.000 | 0.0056 (7) | 0.000 |
O2 | 0.0395 (19) | 0.036 (2) | 0.043 (2) | 0.0092 (15) | 0.0046 (15) | −0.0019 (14) |
N8 | 0.024 (3) | 0.037 (3) | 0.027 (3) | 0.000 | 0.004 (2) | 0.000 |
O1 | 0.022 (2) | 0.053 (4) | 0.077 (4) | 0.000 | −0.005 (2) | 0.000 |
Co1—N5i | 1.945 (4) | Co2—N3ii | 1.958 (5) |
Co1—N5 | 1.945 (4) | N4—H4A | 0.8900 |
Co1—N7 | 1.960 (3) | N4—H4B | 0.8900 |
Co1—N7i | 1.960 (3) | N4—H4C | 0.8900 |
Co1—N6 | 1.965 (3) | N3—H3A | 0.8900 |
Co1—N6i | 1.965 (3) | N3—H3B | 0.8900 |
N7—H7A | 0.8900 | Co3—N2 | 1.956 (5) |
N7—H7B | 0.8900 | Co3—N2v | 1.956 (5) |
N7—H7C | 0.8900 | Co3—N1 | 1.967 (3) |
N6—H6A | 0.8900 | Co3—N1vi | 1.967 (3) |
N6—H6B | 0.8900 | Co3—N1v | 1.967 (3) |
N6—H6C | 0.8900 | Co3—N1iv | 1.967 (3) |
N5—H5A | 0.8900 | N2—H2A | 0.8900 |
N5—H5B | 0.8900 | N2—H2B | 0.8900 |
N5—H5C | 0.8900 | N1—H1A | 0.8900 |
Co2—N4 | 1.955 (4) | N1—H1B | 0.8900 |
Co2—N4ii | 1.955 (4) | N1—H1C | 0.8900 |
Co2—N4iii | 1.955 (4) | O2—N8 | 1.253 (4) |
Co2—N4iv | 1.955 (4) | N8—O1 | 1.234 (6) |
Co2—N3 | 1.958 (5) | N8—O2iv | 1.253 (4) |
N5i—Co1—N5 | 180.000 (1) | N4iv—Co2—N3 | 90.59 (16) |
N5i—Co1—N7 | 89.33 (16) | N4—Co2—N3ii | 89.41 (16) |
N5—Co1—N7 | 90.67 (16) | N4ii—Co2—N3ii | 90.59 (16) |
N5i—Co1—N7i | 90.67 (16) | N4iii—Co2—N3ii | 90.59 (16) |
N5—Co1—N7i | 89.33 (16) | N4iv—Co2—N3ii | 89.41 (16) |
N7—Co1—N7i | 180.0 | N3—Co2—N3ii | 180.000 (1) |
N5i—Co1—N6 | 90.47 (17) | Co2—N4—H4A | 109.5 |
N5—Co1—N6 | 89.53 (17) | Co2—N4—H4B | 109.5 |
N7—Co1—N6 | 91.56 (15) | H4A—N4—H4B | 109.5 |
N7i—Co1—N6 | 88.44 (15) | Co2—N4—H4C | 109.5 |
N5i—Co1—N6i | 89.53 (17) | H4A—N4—H4C | 109.5 |
N5—Co1—N6i | 90.47 (17) | H4B—N4—H4C | 109.5 |
N7—Co1—N6i | 88.44 (15) | Co2—N3—H3A | 110.1 |
N7i—Co1—N6i | 91.56 (15) | Co2—N3—H3B | 110.0 |
N6—Co1—N6i | 180.00 (6) | H3A—N3—H3B | 108.9 |
Co1—N7—H7A | 109.5 | N2—Co3—N2v | 180.0 |
Co1—N7—H7B | 109.5 | N2—Co3—N1 | 90.00 (15) |
H7A—N7—H7B | 109.5 | N2v—Co3—N1 | 90.00 (15) |
Co1—N7—H7C | 109.5 | N2—Co3—N1vi | 90.00 (15) |
H7A—N7—H7C | 109.5 | N2v—Co3—N1vi | 90.00 (15) |
H7B—N7—H7C | 109.5 | N1—Co3—N1vi | 89.3 (2) |
Co1—N6—H6A | 109.5 | N2—Co3—N1v | 90.00 (15) |
Co1—N6—H6B | 109.5 | N2v—Co3—N1v | 90.00 (15) |
H6A—N6—H6B | 109.5 | N1—Co3—N1v | 180.0 (2) |
Co1—N6—H6C | 109.5 | N1vi—Co3—N1v | 90.7 (2) |
H6A—N6—H6C | 109.5 | N2—Co3—N1iv | 90.00 (15) |
H6B—N6—H6C | 109.5 | N2v—Co3—N1iv | 90.00 (15) |
Co1—N5—H5A | 109.5 | N1—Co3—N1iv | 90.7 (2) |
Co1—N5—H5B | 109.5 | N1vi—Co3—N1iv | 180.00 (16) |
H5A—N5—H5B | 109.5 | N1v—Co3—N1iv | 89.3 (2) |
Co1—N5—H5C | 109.5 | Co3—N2—H2A | 109.9 |
H5A—N5—H5C | 109.5 | Co3—N2—H2B | 111.0 |
H5B—N5—H5C | 109.5 | H2A—N2—H2B | 108.6 |
N4—Co2—N4ii | 180.0 | Co3—N1—H1A | 109.5 |
N4—Co2—N4iii | 89.6 (3) | Co3—N1—H1B | 109.5 |
N4ii—Co2—N4iii | 90.4 (3) | H1A—N1—H1B | 109.5 |
N4—Co2—N4iv | 90.4 (3) | Co3—N1—H1C | 109.5 |
N4ii—Co2—N4iv | 89.6 (3) | H1A—N1—H1C | 109.5 |
N4iii—Co2—N4iv | 180.00 (17) | H1B—N1—H1C | 109.5 |
N4—Co2—N3 | 90.59 (16) | O1—N8—O2iv | 120.3 (3) |
N4ii—Co2—N3 | 89.41 (16) | O1—N8—O2 | 120.3 (3) |
N4iii—Co2—N3 | 89.41 (16) | O2iv—N8—O2 | 119.4 (5) |
Symmetry codes: (i) −x+1/2, −y+1/2, −z+1; (ii) −x+1, −y+1, −z; (iii) −x+1, y, −z; (iv) x, −y+1, z; (v) −x, −y+1, −z; (vi) −x, y, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···Cl1 | 0.89 | 2.89 | 3.427 (4) | 120 |
N1—H1A···Cl3iv | 0.89 | 2.90 | 3.484 (4) | 125 |
N1—H1B···Cl1vii | 0.89 | 2.59 | 3.410 (4) | 154 |
N1—H1C···Cl3v | 0.89 | 2.63 | 3.431 (4) | 150 |
N3—H3A···O2viii | 0.89 | 2.53 | 3.155 (6) | 128 |
N4—H4A···Cl3ix | 0.89 | 2.79 | 3.287 (4) | 117 |
N4—H4B···Cl4 | 0.89 | 2.62 | 3.448 (5) | 155 |
N4—H4C···Cl2ix | 0.89 | 2.73 | 3.321 (4) | 125 |
N5—H5A···Cl1i | 0.89 | 2.77 | 3.375 (4) | 127 |
N5—H5A···Cl4x | 0.89 | 2.91 | 3.456 (4) | 122 |
N5—H5B···O2x | 0.89 | 2.17 | 3.048 (5) | 168 |
N5—H5C···Cl3i | 0.89 | 2.56 | 3.337 (4) | 146 |
N6—H6A···Cl4x | 0.89 | 2.76 | 3.339 (4) | 124 |
N6—H6C···Cl3xi | 0.89 | 2.93 | 3.445 (4) | 118 |
N7—H7A···Cl4viii | 0.89 | 2.78 | 3.368 (4) | 125 |
N7—H7B···Cl3xi | 0.89 | 2.87 | 3.394 (4) | 119 |
Symmetry codes: (i) −x+1/2, −y+1/2, −z+1; (iv) x, −y+1, z; (v) −x, −y+1, −z; (vii) −x, −y+1, −z+1; (viii) −x+1, −y+1, −z+1; (ix) x+1/2, y+1/2, z; (x) x−1/2, y−1/2, z; (xi) x, y, z+1. |
Experimental details
Crystal data | |
Chemical formula | [Co(NH3)6]2Cl5(NO3) |
Mr | 561.53 |
Crystal system, space group | Monoclinic, C2/m |
Temperature (K) | 296 |
a, b, c (Å) | 21.118 (4), 14.985 (3), 6.8491 (11) |
β (°) | 92.147 (3) |
V (Å3) | 2165.8 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 2.18 |
Crystal size (mm) | 0.2 × 0.12 × 0.10 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.738, 0.770 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7927, 2813, 1870 |
Rint | 0.046 |
(sin θ/λ)max (Å−1) | 0.669 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.050, 0.140, 1.02 |
No. of reflections | 2813 |
No. of parameters | 119 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.65, −0.71 |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···Cl1 | 0.89 | 2.89 | 3.427 (4) | 120.4 |
N1—H1A···Cl3i | 0.89 | 2.90 | 3.484 (4) | 124.5 |
N1—H1B···Cl1ii | 0.89 | 2.59 | 3.410 (4) | 154.4 |
N1—H1C···Cl3iii | 0.89 | 2.63 | 3.431 (4) | 149.6 |
N3—H3A···O2iv | 0.89 | 2.53 | 3.155 (6) | 128.2 |
N4—H4A···Cl3v | 0.89 | 2.79 | 3.287 (4) | 116.9 |
N4—H4B···Cl4 | 0.89 | 2.62 | 3.448 (5) | 154.8 |
N4—H4C···Cl2v | 0.89 | 2.73 | 3.321 (4) | 124.6 |
N5—H5A···Cl1vi | 0.89 | 2.77 | 3.375 (4) | 126.7 |
N5—H5A···Cl4vii | 0.89 | 2.91 | 3.456 (4) | 121.6 |
N5—H5B···O2vii | 0.89 | 2.17 | 3.048 (5) | 167.6 |
N5—H5C···Cl3vi | 0.89 | 2.56 | 3.337 (4) | 146.2 |
N6—H6A···Cl4vii | 0.89 | 2.76 | 3.339 (4) | 124.1 |
N6—H6C···Cl3viii | 0.89 | 2.93 | 3.445 (4) | 118.2 |
N7—H7A···Cl4iv | 0.89 | 2.78 | 3.368 (4) | 124.5 |
N7—H7B···Cl3viii | 0.89 | 2.87 | 3.394 (4) | 118.8 |
Symmetry codes: (i) x, −y+1, z; (ii) −x, −y+1, −z+1; (iii) −x, −y+1, −z; (iv) −x+1, −y+1, −z+1; (v) x+1/2, y+1/2, z; (vi) −x+1/2, −y+1/2, −z+1; (vii) x−1/2, y−1/2, z; (viii) x, y, z+1. |
Acknowledgements
This work was supported by the Program for New Century Excellent Talents in Universities (NCET-11–0929), the National Natural Science Foundation of China (No. 21101047), the Natural Science Foundation of Hainan Province (No. 211010) and the Priming Scientific Research Foundation of Hainan University (No. kyqd1051).
References
Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Han, Y. D., Li, Y., Yu, J. H., Pan, Q. H. & Xu, R. R. (2012). Eur. J. Inorg. Chem. pp. 36–39. Web of Science CSD CrossRef CAS Google Scholar
Liang, Z., Wang, F., Wu, Q., Zhi, X. & Pan, Q. (2011). Acta Cryst. E67, m1399. Web of Science CSD CrossRef IUCr Journals Google Scholar
Pan, Q. H., Chen, Q. A., Song, W. C., Hu, T. L. & Bu, X.-H. (2010b). CrystEngComm, 12, 4198–4204. Web of Science CSD CrossRef CAS Google Scholar
Pan, Q. H., Cheng, Q., Han, Y. D., Hu, T. L. & Bu, X.-H. (2011). Chem. J. Chin. Univ. 32, 527–531. CAS Google Scholar
Pan, Q. H., Li, J. Y., Chen, Q. A., Han, Y. D., Chang, Z., Song, W. C. & Bu, X.-H. (2010a). Microporous Mesoporous Mater. 132, 453–457. Web of Science CSD CrossRef CAS Google Scholar
Pan, Q. H., Li, J. Y., Ren, X. Y., Wang, Z. P., Li, G. H. & Xu, R. R. (2008). Chem. Mater. 20, 370–372. Web of Science CSD CrossRef CAS Google Scholar
Pan, Q. H., Li, J. Y., Yu, J. H., Wang, Y., Fang, Q. R. & Xu, R. R. (2005). Chem. J. Chin. Univ. 26, 2199–2202. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tong, J. & Pan, Q. (2011). Acta Cryst. E67, m579–m580. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Wang, Y., Yu, J. H., Guo, M. & Xu, R. R. (2003a). Angew. Chem. Int. Ed. 42, 4089–4092. Web of Science CSD CrossRef CAS Google Scholar
Wang, Y., Yu, J. H., Li, Y., Shi, Z. & Xu, R. R. (2003b). Chem. Eur. J. 9, 5048–5055. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Rencently, more attention has been paid to transition metal complexes, because they can to be employed as templates in the synthesis of various open-framework materials, including metal phosphates (Wang et al., 2003a,b) and germanates (Pan et al., 2005,2008). Our continued interest has been focused on the synthesis of microporous open-framework metal-organic hybride materials by introducing transition metal complexes as templates (Pan et al., 2010a,b, 2011; Tong & Pan, 2011; Liang et al., 2011). Unexpectedly, the title compound, [Co(NH3)6]2(NO3)Cl5, was obtained.
The title compound is composed of [Co(NH3)6]3+ cations and the counterions Cl- and NO3-, as shown in Fig. 1. The asymmetric part of this crystal structure contains three Co3+ ions; one is located on an inversion center, and the other two are positioned on the twofold rotation axis with center of symmetry (2/m). All Co(III) ions are six coordinated by NH3 molecules to form [Co(NH3)6]3+ cations, having a slightly distorted octahedral geometry, as in the structure of [Co(NH3)6]3[Zn8(HPO4)8(PO4)2](PO4) (Han et al., 2012). The Co—N bond distances are in the range from 1.945 (4) to 1.967 (3) Å. For the counterions, the N8 atom of NO3- anion is located on mirror plane and displays a trigonal geometry by bonded to three O atoms with the N—O distances of 1.234 (6)–1.253 (4) Å. The Cl- anions are located in different positions: inversion center for Cl2, mirror plane for Cl1 and Cl4, and general position for Cl3. The [Co(NH3)6]3+ cations interact with the counterions Cl- and NO3- via hydrogen bonds; the distances of N—H···O hydrogen bonds are in the range 3.048 (5)–3.155 (6) Å, and the distances of N—H···Cl hydrogen bonds lie in the range from 3.287 (4) to 3.484 (4) Å (Table 1), to form an extensive three-dimensional hydrogen-bonding network.