metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{N2,N6-bis­­[(pyridin-3-yl)meth­yl]pyridine-2,6-dicarboxamide-κN}bis­­(methanol-κO)bis­­(thio­cyanato-κN)cobalt(II)

aDepartment of Environmental and Municipal Engineering, North China University of Water Conservancy and Electric Power, Zhengzhou 450011, People's Republic of China, and bHenan Vocational College of Chemical Technology, Zhengzhou 450052, People's Republic of China
*Correspondence e-mail: yangguangrui@ncwu.edu.cn

(Received 2 May 2012; accepted 6 May 2012; online 12 May 2012)

In the title compound, [Co(NCS)2(C19H17N5O2)2(CH3OH)2], the CoII atom lies on an inversion center and is coordinated by two isothio­cyanate N atoms, two O atoms of methanol mol­ecules and two pyridine N atoms in a slightly distorted octa­hedral environment. Inter­molecular O—H⋯O and N—H⋯N hydrogen bonds join the complex mol­ecules into layers parallel to the bc plane.

Related literature

For the coordination chemistry of pyridyl­carboxamides, see: Thompson (2002[Thompson, L. K. (2002). Coord. Chem. Rev. 233, 193-206.]); Wu et al. (2008[Wu, B., Liu, C., Yuan, D., Jiang, F. & Hong, M. (2008). Cryst. Growth Des. 8, 3791-3802.]). For the architectures of complexes with pyridyl­carboxamide ligands and various metal ions, see: Uemura et al. (2002[Uemura, K., Kitagawa, S., Kondo, M., Fukui, K., Kitaura, R., Chang, H. C. & Mizutani, T. (2002). Chem. Eur. J. 8, 3586-3600.]); Burchell et al. (2006[Burchell, T. J., Eisler, D. J. & Puddephatt, R. J. (2006). Cryst. Growth Des. 6, 974-982.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(NCS)2(C19H17N5O2)2(CH4O)2]

  • Mr = 933.93

  • Monoclinic, P 21 /c

  • a = 9.6728 (19) Å

  • b = 17.631 (4) Å

  • c = 13.041 (3) Å

  • β = 100.13 (3)°

  • V = 2189.4 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.55 mm−1

  • T = 293 K

  • 0.22 × 0.21 × 0.18 mm

Data collection
  • Siemens SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.892, Tmax = 0.914

  • 21676 measured reflections

  • 3803 independent reflections

  • 3435 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.101

  • S = 1.15

  • 3803 reflections

  • 291 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Selected bond lengths (Å)

Co1—N6 2.074 (2)
Co1—O3 2.134 (2)
Co1—N4 2.162 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯N5i 0.88 2.18 2.980 (3) 151
O3—H1⋯O2ii 0.76 (3) 1.94 (3) 2.679 (3) 163 (3)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x, y, z-1.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Pyridylcarboxamides derived from carboxylic acids form a class of spectacularly multidentate heterocyclic ligands and hold an important position in biochemistry and coordination chemistry (Thompson, 2002; Wu et al., 2008). Over the last decades, several research groups worldwide have provided a wide range of structural motifs from isolated macrocycles, helicates to dynamic porous frameworks based on pyridylcarboxamide ligands (Uemura, et al., 2002; Burchell, et al., 2006). In course of such studies, we synthesized the symmetric multifunctional ligand N2,N6-bis((pyridin-3-yl)methyl)pyridine-2,6-dicarboxamide (BPDA) and prepared complexes of BPDA with some metal ions. Here we present the structure of such complex, [Co(BPDA)2(CH4O)2(SCN)2] (1).

The title compound is a mononuclear complex, where the Co2+ ion lies at the inversion center, thus the asymmetric unit consists of Co atom, one BPDA, one methanol molecule, and one SCN- anion (Fig. 1). In (1) the coordination center is ligated by two isothiocyanato N atoms, two methanol O atoms, and two BPDA acting as monodentate ligands through their pyridyl N atoms. The octahedral coordination environment is slightly distorted, the largest deviation of coordination angles from idealized values are 1.59 (9) °.

Further aggregation of complex molecules is formed by the multiple hydrogen-bonding between the dicarboxamide groups of BPDA (as donors) and the uncoordinated pyridyl groups of other BPDA (as acceptors) as well as between the coordination methanol molecules (as donors) and the dicarboxamide groups of BPDA (as acceptors) (Table 2). Consequently, monomers are linked by O—H···O and N—H···N hydrogen bonds into a two-dimensional network parallel to the bc plane (Fig. 2). The layer structure is stabilized by face-to-face π···π stacking interactions between adjacent central pyridine rings of BPDA with a centroid to centroid distance of 3.793 (2) Å. Notably, that the ligand BPDA in (1) have pseudo-C2 symmetry and adopts helical conformation with the dihedral angles of the pendant pyridyl groups with the central pyridine ring of 76.1 (3) and 75.6 (3) °, respectively.

Related literature top

For the coordination chemistry of pyridylcarboxamides, see: Thompson (2002); Wu et al. (2008). For the architectures of complexes with pyridylcarboxamide ligands and various metal ions, see: Uemura et al. (2002); Burchell et al. (2006).

Experimental top

Synthesis of BPDA ligand. A mixture of 2,6-pyridinedicarboxylic acid (10 g, 60 mmol) and thionyl chloride (75 ml) was heated with reflux for 6 h under anhydrous condition, and then excess thionyl chloride was removed by rotary evaporation. The resulting white solid pyridine-2,6-dicarboyl dichloride was dissolved in dry CH2Cl2 (50 ml), to which a solution of 3-(aminomethyl)pyridine (13 g, 120 mmol) and triethylamine (24 ml) in dry CH2Cl2 (70 ml) was added dropwise with continuous stirring in an ice-bath. Stirred at room temperature for another hour, the mixture was washed with water (500 ml). The separated organic phase was dried with magnesium sulfate, and the solvent was removed by rotary evaporation. After recrystallization from alcohol/water (2:1), white crystals of BPDA were obtained (Yield: 70%). Selected IR (cm-1, KBr pellet): 3551(m), 3305(s), 3055(m), 2925(m), 1670(vs), 1593(m), 1542(vs), 1478(m), 1425(m), 1313(m), 1258(m), 1175(m), 1076(m), 1000(s), 864(m), 770(s), 679(m), 614(w).

The title compound (1) was prepared according to the following process. A solution of BPDA (69.4 mg, 0.2 mmol) in DMF (5 ml) was dropwise added into a solution of CoSO4.6H2O (28.1 mg, 0.1 mmol) in methanol (5 ml), and then a solution of KSCN (19.4 mg, 0.2 mmol) in methanol (5 ml) was dropwise added into the above mixture. With stirring for 30 minutes, the resulting mixture was filtered. The filtrate was allowed to evaporate at room temperature for two days, and pink crystals were obtain in 48% yield. Selected IR (cm-1, KBr pellet): 3351(m), 2072(vs), 1670(vs), 1534(vs), 1437(m), 1087(m), 750(m), 709(m).

Refinement top

Two very strong reflections, (2 1 1) and (-1 4 1), were omitted because of intensity overflow. All H atoms attached to the C and N atoms were positioned geometrically at distances 0.98 Å (CH3), 0.99 Å (CH2), 0.95 Å (CH) and 0.88 Å (NH) and refined using a riding model with Uiso(H) = 1.2Ueq(C,N) and Uiso(H) = 1.5Ueq(Cmethyl). The positional parameters of the H atom attached to oxygen were refined freely, and at the last stage of the refinement they were restrained with the H—O = 0.82 (3) Å and with Uiso(H) = 1.2Ueq(O).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Diagram of the title compound with atom numbering scheme. Thermal ellipsoids are drawn at the 30% probability level. Symmetry code: (i) -x, -y, -z + 1.
[Figure 2] Fig. 2. View of the two-dimensional network in the title compound formed by O—H···O and N—H···N hydrogen bonds.
Bis{N2,N6-bis[(pyridin-3-yl)methyl]pyridine-2,6- dicarboxamide-κN}bis(methanol- κO)bis(thiocyanato-κN)cobalt(II) top
Crystal data top
[Co(NCS)2(C19H17N5O2)2(CH4O)2]F(000) = 970
Mr = 933.93Dx = 1.417 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4895 reflections
a = 9.6728 (19) Åθ = 2.1–30.8°
b = 17.631 (4) ŵ = 0.55 mm1
c = 13.041 (3) ÅT = 293 K
β = 100.13 (3)°Block, pink
V = 2189.4 (8) Å30.22 × 0.21 × 0.18 mm
Z = 2
Data collection top
Siemens SMART CCD
diffractometer
3803 independent reflections
Radiation source: fine-focus sealed tube3435 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ω scanθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.892, Tmax = 0.914k = 2020
21676 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.15 w = 1/[σ2(Fo2) + (0.0359P)2 + 0.829P]
where P = (Fo2 + 2Fc2)/3
3803 reflections(Δ/σ)max < 0.001
291 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
[Co(NCS)2(C19H17N5O2)2(CH4O)2]V = 2189.4 (8) Å3
Mr = 933.93Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.6728 (19) ŵ = 0.55 mm1
b = 17.631 (4) ÅT = 293 K
c = 13.041 (3) Å0.22 × 0.21 × 0.18 mm
β = 100.13 (3)°
Data collection top
Siemens SMART CCD
diffractometer
3803 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3435 reflections with I > 2σ(I)
Tmin = 0.892, Tmax = 0.914Rint = 0.049
21676 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.15Δρmax = 0.18 e Å3
3803 reflectionsΔρmin = 0.18 e Å3
291 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.00000.00000.50000.03328 (16)
S10.19041 (9)0.20444 (5)0.66597 (7)0.0607 (3)
O10.3791 (3)0.10454 (13)0.85021 (19)0.0727 (7)
O20.0978 (2)0.10649 (12)1.22010 (16)0.0622 (6)
O30.0365 (2)0.08401 (12)0.38047 (17)0.0472 (5)
N10.2436 (2)0.02348 (12)1.01554 (16)0.0373 (5)
N20.3961 (2)0.02276 (14)0.86373 (18)0.0463 (6)
H2A0.36830.06350.89350.056*
N30.2057 (2)0.16022 (13)1.09943 (17)0.0443 (6)
H3A0.24680.15321.04510.053*
N40.2142 (2)0.03865 (13)0.54496 (17)0.0397 (5)
N50.3318 (3)0.30281 (16)1.4128 (2)0.0604 (7)
N60.0655 (3)0.07304 (14)0.60659 (18)0.0458 (6)
C10.3501 (3)0.04486 (18)0.8894 (2)0.0471 (7)
C20.2582 (3)0.04329 (16)0.9707 (2)0.0409 (7)
C30.1951 (3)0.10950 (17)0.9980 (2)0.0533 (8)
H30.20490.15580.96280.064*
C40.1183 (3)0.10634 (19)1.0772 (3)0.0583 (9)
H40.07530.15081.09830.070*
C50.1043 (3)0.03805 (18)1.1255 (2)0.0497 (8)
H50.05210.03461.18060.060*
C60.1676 (3)0.02553 (15)1.0922 (2)0.0386 (7)
C70.1543 (3)0.10093 (17)1.1426 (2)0.0419 (7)
C80.4895 (3)0.0323 (2)0.7894 (2)0.0536 (8)
H8A0.54570.01450.78860.064*
H8B0.55540.07420.81340.064*
C90.4171 (3)0.04924 (16)0.6792 (2)0.0405 (7)
C100.2796 (3)0.02987 (16)0.6441 (2)0.0420 (7)
H100.22750.00900.69260.050*
C110.2886 (3)0.06854 (17)0.4779 (2)0.0509 (8)
H110.24530.07450.40710.061*
C120.4252 (4)0.0909 (2)0.5080 (3)0.0633 (9)
H120.47470.11320.45880.076*
C130.4904 (3)0.08126 (19)0.6091 (3)0.0566 (9)
H130.58530.09650.63060.068*
C140.1958 (4)0.23665 (17)1.1399 (2)0.0537 (8)
H14A0.09880.24521.15190.064*
H14B0.21450.27361.08670.064*
C150.2965 (3)0.25142 (15)1.2399 (2)0.0419 (7)
C160.4374 (4)0.23449 (18)1.2524 (3)0.0594 (9)
H160.47470.21111.19750.071*
C170.5232 (4)0.2516 (2)1.3443 (3)0.0665 (10)
H170.62070.24031.35410.080*
C180.4669 (4)0.28538 (19)1.4224 (3)0.0620 (9)
H180.52730.29681.48610.074*
C190.2503 (3)0.28563 (17)1.3221 (2)0.0522 (8)
H190.15330.29801.31390.063*
C200.1081 (5)0.1531 (2)0.3779 (3)0.0936 (15)
H20A0.18990.14730.41220.140*
H20B0.13940.16860.30530.140*
H20C0.04530.19190.41430.140*
C210.1174 (3)0.12750 (16)0.6318 (2)0.0387 (6)
H10.005 (3)0.0815 (17)0.336 (2)0.045 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0331 (3)0.0375 (3)0.0294 (3)0.0044 (2)0.0059 (2)0.0039 (2)
S10.0654 (6)0.0427 (5)0.0790 (6)0.0000 (4)0.0261 (5)0.0131 (4)
O10.0898 (19)0.0547 (14)0.0772 (17)0.0137 (13)0.0244 (14)0.0174 (13)
O20.0804 (17)0.0688 (15)0.0449 (13)0.0054 (12)0.0318 (12)0.0063 (11)
O30.0517 (13)0.0519 (13)0.0415 (12)0.0129 (10)0.0179 (11)0.0156 (10)
N10.0372 (13)0.0400 (13)0.0322 (12)0.0034 (10)0.0006 (10)0.0006 (10)
N20.0466 (15)0.0544 (16)0.0378 (13)0.0025 (12)0.0067 (11)0.0090 (11)
N30.0574 (16)0.0449 (14)0.0341 (13)0.0024 (12)0.0176 (12)0.0015 (11)
N40.0358 (13)0.0479 (14)0.0352 (13)0.0013 (11)0.0063 (10)0.0022 (11)
N50.0644 (19)0.0654 (18)0.0547 (17)0.0038 (15)0.0195 (15)0.0203 (14)
N60.0497 (15)0.0484 (15)0.0415 (14)0.0059 (12)0.0143 (12)0.0012 (12)
C10.0476 (18)0.0490 (19)0.0406 (17)0.0103 (15)0.0035 (14)0.0062 (15)
C20.0404 (16)0.0441 (17)0.0344 (15)0.0043 (13)0.0043 (12)0.0014 (13)
C30.056 (2)0.0406 (18)0.057 (2)0.0008 (15)0.0057 (16)0.0021 (15)
C40.060 (2)0.051 (2)0.062 (2)0.0100 (16)0.0035 (17)0.0104 (17)
C50.0493 (18)0.057 (2)0.0419 (17)0.0049 (15)0.0047 (14)0.0100 (15)
C60.0362 (15)0.0459 (17)0.0321 (15)0.0021 (13)0.0016 (12)0.0063 (12)
C70.0413 (16)0.0553 (19)0.0288 (15)0.0063 (14)0.0057 (13)0.0040 (13)
C80.0359 (17)0.077 (2)0.0457 (18)0.0008 (16)0.0012 (14)0.0087 (16)
C90.0336 (15)0.0451 (16)0.0421 (16)0.0006 (13)0.0049 (13)0.0066 (13)
C100.0400 (16)0.0530 (18)0.0337 (15)0.0002 (14)0.0082 (13)0.0005 (13)
C110.0484 (18)0.062 (2)0.0426 (18)0.0015 (16)0.0094 (15)0.0125 (15)
C120.057 (2)0.080 (2)0.058 (2)0.0173 (18)0.0216 (17)0.0120 (18)
C130.0409 (18)0.068 (2)0.061 (2)0.0175 (16)0.0086 (16)0.0059 (17)
C140.070 (2)0.0449 (18)0.0483 (18)0.0091 (16)0.0159 (16)0.0003 (15)
C150.0495 (18)0.0343 (15)0.0444 (17)0.0026 (13)0.0153 (14)0.0027 (13)
C160.063 (2)0.061 (2)0.060 (2)0.0124 (17)0.0266 (18)0.0089 (17)
C170.053 (2)0.073 (2)0.075 (3)0.0072 (18)0.0156 (19)0.009 (2)
C180.065 (2)0.057 (2)0.063 (2)0.0105 (18)0.0105 (18)0.0089 (18)
C190.0488 (18)0.0533 (19)0.059 (2)0.0015 (15)0.0220 (16)0.0111 (16)
C200.148 (4)0.068 (2)0.072 (3)0.060 (3)0.040 (3)0.029 (2)
C210.0366 (16)0.0423 (16)0.0377 (16)0.0074 (13)0.0080 (12)0.0005 (13)
Geometric parameters (Å, º) top
Co1—N6i2.074 (2)C4—H40.9500
Co1—N62.074 (2)C5—C61.384 (4)
Co1—O32.134 (2)C5—H50.9500
Co1—O3i2.134 (2)C6—C71.499 (4)
Co1—N4i2.162 (2)C8—C91.513 (4)
Co1—N42.162 (2)C8—H8A0.9900
S1—C211.627 (3)C8—H8B0.9900
O1—C11.224 (3)C9—C101.371 (4)
O2—C71.234 (3)C9—C131.373 (4)
O3—C201.399 (4)C10—H100.9500
O3—H10.76 (3)C11—C121.369 (4)
N1—C21.333 (3)C11—H110.9500
N1—C61.341 (3)C12—C131.369 (4)
N2—C11.336 (4)C12—H120.9500
N2—C81.447 (4)C13—H130.9500
N2—H2A0.8800C14—C151.507 (4)
N3—C71.325 (3)C14—H14A0.9900
N3—C141.456 (4)C14—H14B0.9900
N3—H3A0.8800C15—C191.372 (4)
N4—C111.334 (3)C15—C161.377 (4)
N4—C101.344 (3)C16—C171.366 (5)
N5—C181.327 (4)C16—H160.9500
N5—C191.335 (4)C17—C181.372 (5)
N6—C211.158 (3)C17—H170.9500
C1—C21.498 (4)C18—H180.9500
C2—C31.393 (4)C19—H190.9500
C3—C41.375 (4)C20—H20A0.9800
C3—H30.9500C20—H20B0.9800
C4—C51.377 (4)C20—H20C0.9800
N6i—Co1—N6180.00 (9)N3—C7—C6116.4 (2)
N6i—Co1—O388.41 (9)N2—C8—C9114.9 (2)
N6—Co1—O391.59 (9)N2—C8—H8A108.6
N6i—Co1—O3i91.59 (9)C9—C8—H8A108.6
N6—Co1—O3i88.41 (9)N2—C8—H8B108.6
O3—Co1—O3i180.0C9—C8—H8B108.6
N6i—Co1—N4i90.80 (9)H8A—C8—H8B107.5
N6—Co1—N4i89.20 (9)C10—C9—C13117.6 (3)
O3—Co1—N4i89.60 (9)C10—C9—C8121.8 (3)
O3i—Co1—N4i90.40 (9)C13—C9—C8120.4 (3)
N6i—Co1—N489.20 (9)N4—C10—C9123.9 (3)
N6—Co1—N490.80 (9)N4—C10—H10118.1
O3—Co1—N490.40 (9)C9—C10—H10118.1
O3i—Co1—N489.60 (9)N4—C11—C12122.0 (3)
N4i—Co1—N4180.0N4—C11—H11119.0
C20—O3—Co1129.8 (2)C12—C11—H11119.0
C20—O3—H1111 (2)C13—C12—C11119.9 (3)
Co1—O3—H1118 (2)C13—C12—H12120.1
C2—N1—C6117.7 (2)C11—C12—H12120.1
C1—N2—C8123.2 (3)C12—C13—C9119.2 (3)
C1—N2—H2A118.4C12—C13—H13120.4
C8—N2—H2A118.4C9—C13—H13120.4
C7—N3—C14121.5 (2)N3—C14—C15113.6 (2)
C7—N3—H3A119.2N3—C14—H14A108.9
C14—N3—H3A119.2C15—C14—H14A108.9
C11—N4—C10117.3 (2)N3—C14—H14B108.9
C11—N4—Co1123.2 (2)C15—C14—H14B108.9
C10—N4—Co1119.40 (18)H14A—C14—H14B107.7
C18—N5—C19116.7 (3)C19—C15—C16117.1 (3)
C21—N6—Co1154.7 (2)C19—C15—C14120.2 (3)
O1—C1—N2123.5 (3)C16—C15—C14122.7 (3)
O1—C1—C2121.3 (3)C17—C16—C15119.4 (3)
N2—C1—C2115.2 (3)C17—C16—H16120.3
N1—C2—C3122.9 (3)C15—C16—H16120.3
N1—C2—C1116.7 (3)C16—C17—C18119.2 (3)
C3—C2—C1120.5 (3)C16—C17—H17120.4
C4—C3—C2118.5 (3)C18—C17—H17120.4
C4—C3—H3120.7N5—C18—C17122.9 (3)
C2—C3—H3120.7N5—C18—H18118.5
C3—C4—C5119.3 (3)C17—C18—H18118.5
C3—C4—H4120.4N5—C19—C15124.6 (3)
C5—C4—H4120.4N5—C19—H19117.7
C4—C5—C6118.7 (3)C15—C19—H19117.7
C4—C5—H5120.7O3—C20—H20A109.5
C6—C5—H5120.7O3—C20—H20B109.5
N1—C6—C5122.9 (3)H20A—C20—H20B109.5
N1—C6—C7116.9 (2)O3—C20—H20C109.5
C5—C6—C7120.2 (3)H20A—C20—H20C109.5
O2—C7—N3122.6 (3)H20B—C20—H20C109.5
O2—C7—C6121.0 (3)N6—C21—S1179.4 (3)
N6i—Co1—O3—C20167.7 (3)C4—C5—C6—C7179.8 (3)
N6—Co1—O3—C2012.3 (3)C14—N3—C7—O21.4 (4)
N4i—Co1—O3—C2076.9 (3)C14—N3—C7—C6178.5 (2)
N4—Co1—O3—C20103.1 (3)N1—C6—C7—O2173.0 (3)
N6i—Co1—N4—C1157.5 (2)C5—C6—C7—O26.5 (4)
N6—Co1—N4—C11122.5 (2)N1—C6—C7—N37.2 (4)
O3—Co1—N4—C1130.9 (2)C5—C6—C7—N3173.4 (3)
O3i—Co1—N4—C11149.1 (2)C1—N2—C8—C994.9 (3)
N6i—Co1—N4—C10119.7 (2)N2—C8—C9—C1022.9 (4)
N6—Co1—N4—C1060.3 (2)N2—C8—C9—C13160.6 (3)
O3—Co1—N4—C10151.9 (2)C11—N4—C10—C90.5 (4)
O3i—Co1—N4—C1028.1 (2)Co1—N4—C10—C9176.9 (2)
O3—Co1—N6—C2112.0 (5)C13—C9—C10—N41.7 (4)
O3i—Co1—N6—C21168.0 (5)C8—C9—C10—N4174.9 (3)
N4i—Co1—N6—C2177.6 (5)C10—N4—C11—C121.2 (4)
N4—Co1—N6—C21102.4 (5)Co1—N4—C11—C12178.4 (2)
C8—N2—C1—O12.3 (4)N4—C11—C12—C131.5 (5)
C8—N2—C1—C2177.9 (2)C11—C12—C13—C90.2 (5)
C6—N1—C2—C31.8 (4)C10—C9—C13—C121.4 (5)
C6—N1—C2—C1176.7 (2)C8—C9—C13—C12175.3 (3)
O1—C1—C2—N1173.9 (3)C7—N3—C14—C1574.6 (4)
N2—C1—C2—N16.3 (4)N3—C14—C15—C19133.0 (3)
O1—C1—C2—C34.7 (4)N3—C14—C15—C1649.6 (4)
N2—C1—C2—C3175.0 (3)C19—C15—C16—C170.5 (5)
N1—C2—C3—C42.2 (4)C14—C15—C16—C17178.0 (3)
C1—C2—C3—C4176.3 (3)C15—C16—C17—C180.0 (5)
C2—C3—C4—C51.0 (5)C19—N5—C18—C170.2 (5)
C3—C4—C5—C60.4 (5)C16—C17—C18—N50.3 (5)
C2—N1—C6—C50.3 (4)C18—N5—C19—C150.3 (5)
C2—N1—C6—C7179.1 (2)C16—C15—C19—N50.6 (5)
C4—C5—C6—N10.8 (4)C14—C15—C19—N5178.2 (3)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N5ii0.882.182.980 (3)151
O3—H1···O2iii0.76 (3)1.94 (3)2.679 (3)163 (3)
Symmetry codes: (ii) x, y+1/2, z1/2; (iii) x, y, z1.

Experimental details

Crystal data
Chemical formula[Co(NCS)2(C19H17N5O2)2(CH4O)2]
Mr933.93
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.6728 (19), 17.631 (4), 13.041 (3)
β (°) 100.13 (3)
V3)2189.4 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.55
Crystal size (mm)0.22 × 0.21 × 0.18
Data collection
DiffractometerSiemens SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.892, 0.914
No. of measured, independent and
observed [I > 2σ(I)] reflections
21676, 3803, 3435
Rint0.049
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.101, 1.15
No. of reflections3803
No. of parameters291
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.18

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Co1—N62.074 (2)Co1—N42.162 (2)
Co1—O32.134 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N5i0.882.182.980 (3)151.0
O3—H1···O2ii0.76 (3)1.94 (3)2.679 (3)163 (3)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y, z1.
 

Acknowledgements

This work was supported by the Natural Science Foundation of China.

References

First citationBurchell, T. J., Eisler, D. J. & Puddephatt, R. J. (2006). Cryst. Growth Des. 6, 974–982.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationThompson, L. K. (2002). Coord. Chem. Rev. 233, 193–206.  Web of Science CrossRef Google Scholar
First citationUemura, K., Kitagawa, S., Kondo, M., Fukui, K., Kitaura, R., Chang, H. C. & Mizutani, T. (2002). Chem. Eur. J. 8, 3586–3600.  CrossRef PubMed CAS Google Scholar
First citationWu, B., Liu, C., Yuan, D., Jiang, F. & Hong, M. (2008). Cryst. Growth Des. 8, 3791–3802.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds