organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(4-Methyl­phen­yl)-1,3,4-oxa­diazol-2-amine

aDepartment of Chemistry, Zhengzhou University, Zhengzhou 450052, People's Republic of China
*Correspondence e-mail: xuyan@zzu.edu.cn

(Received 9 March 2012; accepted 2 May 2012; online 12 May 2012)

In the crystal structure of the title compound, C9H9N3O, adjacent mol­ecules are linked through N—H⋯N hydrogen bonds into a three-dimensional network.

Related literature

For background to 1,3,4-oxadiazole derivatives, see: Lv et al. (2010[Lv, H.-S., Zhao, B.-X., Li, J.-K., Xia, Y., Lian, S., Liu, W.-Y. & Gong, Z.-L. (2010). Dyes Pigm. 6, 25-31.]); Bachwani & Sharma (2011[Bachwani, M. & Sharma, V. (2011). Ijrap, 4, 1738-1742.]); Padmavathi et al. (2009[Padmavathi, V., Sudhakar Reddy, G., Padmaja, A., Kondaiah, P. & Shazia, A. (2009). Eur. J. Med. Chem. 6, 2106-2112.]); Tang et al. (2007[Tang, X.-L., Dou, W., Chen, S.-W., Dang, F.-F. & Liu, W.-S. (2007). Spectrochim. Acta Part A, 4, 349-353.]); Xue et al. (2007[Xue, J.-Q., Wang, S.-R., Zhang, L.-M. & Li, X.-G. (2007). Dyes Pigm. 3, 369-372.]).

[Scheme 1]

Experimental

Crystal data
  • C9H9N3O

  • Mr = 175.19

  • Monoclinic, P 21 /n

  • a = 12.161 (2) Å

  • b = 5.9374 (3) Å

  • c = 12.8282 (15) Å

  • β = 108.012 (19)°

  • V = 880.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 291 K

  • 0.38 × 0.35 × 0.30 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]) Tmin = 0.966, Tmax = 0.973

  • 3809 measured reflections

  • 1800 independent reflections

  • 1313 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.124

  • S = 1.03

  • 1800 reflections

  • 127 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯N1i 0.88 (2) 2.11 (2) 2.979 (2) 165.7 (19)
N3—H3B⋯N2ii 0.93 (2) 2.05 (2) 2.964 (2) 167.6 (16)
Symmetry codes: (i) x, y+1, z; (ii) [-x-{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Oxadiazole is a five-membered heterocyclic aromatic chemical compound having two carbons, two nitrogen, and one oxygen atoms and two double bonds. Up to now, a large number of oxadiazole derivatives have been prepared and a series of novel substituted 1,3,4-oxadiazole derivatives were synthesized (Bachwani et al., 2011). In addition, electron transporting 1,3,4-oxadiazole moiety has been connected to many chelating ligands to obtain luminescent complexes with more new function. (Lv et al., 2010) 1,3,4-oxadiazole, which has abundant N-donor and O-donor sites is easily to form single-crystal. However, there has been limited study about their crystal properties. To further explore these types of structures, we synthesized the title compound and its crystal structure is presented herein. The molecular structure of the title compound is represented in Fig. 1. As shown in figure 1, the bond length between O1 with C8 is 1.3608 (19) Å and is nearly the bond length between O1 with C7(1.3754) Å. The angle of C8—O1—C7 is 102.79 (11) Å. Similarly, the bond length of C7 with N1 is approximate the bond length of C8 with N2. They are 1.279 (2) Å, 1.296 (2) Å. The bond length between N1 with N2 is 1.4129 (19) Å. The dihedral angle between the phenyl and the Oxadiazole ring bonded to the imino group is 26.37 °. The torsion angle between C(7)—N(1)—N(2)—C(8) is -0.3 (2) °. As depicted in figure 2 and 3, intramolecular N—H···N hydrogen bonds stabilize the molecular configuration.

Related literature top

For background to 1,3,4-oxadiazole derivatives, see: Lv et al. (2010); Bachwani & Sharma (2011); Padmavathi et al. (2009); Tang et al. (2007); Xue et al. (2007).

Experimental top

The benzaldehyde (0.01 mol) and ethanol was added to semicarbazide hydrochloride (0.011 mol) refluxed 2 h. And then the obtained semicarbazone was oxidized by bromine liquid in acetic acid. The title compound (0.02 mmol) was dissolved in alcohol (3 ml) with a little aqueous solution. The resulting solution was allowed to stand at room temperature. Evaporation of the solvent, after three weeks yellow crystals with good quality were obtained from the filtrate and dried in air.

Refinement top

All H atoms are positioned geometrically and refined as riding atoms, with C—H = 0.93-0.98 Å, N—H = 0.86 Å, O—H = 0.82 Å, and with Uiso = 1.2Ueq(C,N) or 1.5Ueq(O).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2006); cell refinement: CrystalClear (Rigaku/MSC, 2006); data reduction: CrystalClear (Rigaku/MSC, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title complex, showing the labeling of the 30% probability ellipsoids. H atoms are omitted for clarity.
[Figure 2] Fig. 2. View of the title complex, showing the packing of the structure.
[Figure 3] Fig. 3. View of the title complex, showing the hydrogen bonding in the crystal structure.
5-(4-Methylphenyl)-1,3,4-oxadiazol-2-amine top
Crystal data top
C9H9N3OF(000) = 368
Mr = 175.19Dx = 1.321 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.161 (2) ÅCell parameters from 1122 reflections
b = 5.9374 (3) Åθ = 3.3–26.3°
c = 12.8282 (15) ŵ = 0.09 mm1
β = 108.012 (19)°T = 291 K
V = 880.9 (2) Å3Prism, yellow
Z = 40.38 × 0.35 × 0.30 mm
Data collection top
Rigaku Saturn
diffractometer
1800 independent reflections
Radiation source: fine-focus sealed tube1313 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 28.5714 pixels mm-1θmax = 26.4°, θmin = 3.3°
ω scansh = 1515
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2006)
k = 76
Tmin = 0.966, Tmax = 0.973l = 1615
3809 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0612P)2 + 0.0867P]
where P = (Fo2 + 2Fc2)/3
1800 reflections(Δ/σ)max < 0.001
127 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C9H9N3OV = 880.9 (2) Å3
Mr = 175.19Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.161 (2) ŵ = 0.09 mm1
b = 5.9374 (3) ÅT = 291 K
c = 12.8282 (15) Å0.38 × 0.35 × 0.30 mm
β = 108.012 (19)°
Data collection top
Rigaku Saturn
diffractometer
1800 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2006)
1313 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.973Rint = 0.022
3809 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.20 e Å3
1800 reflectionsΔρmin = 0.15 e Å3
127 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.00011 (9)0.21279 (17)0.19008 (10)0.0417 (3)
N10.06440 (12)0.1327 (2)0.19144 (13)0.0516 (4)
N20.13933 (12)0.0146 (2)0.22353 (14)0.0497 (4)
N30.13387 (15)0.4123 (3)0.24629 (15)0.0572 (5)
C10.29096 (15)0.2138 (3)0.05483 (15)0.0515 (5)
C20.19911 (16)0.3566 (3)0.04961 (15)0.0537 (5)
H20.19750.49910.01910.064*
C30.11020 (16)0.2923 (3)0.08861 (15)0.0485 (5)
H30.05000.39170.08470.058*
C40.11017 (13)0.0803 (3)0.13353 (14)0.0395 (4)
C50.20195 (15)0.0649 (3)0.14061 (16)0.0497 (5)
H50.20360.20730.17120.060*
C60.29100 (15)0.0041 (3)0.10172 (17)0.0568 (5)
H60.35240.09330.10730.068*
C70.01433 (13)0.0122 (3)0.17222 (14)0.0388 (4)
C80.09732 (14)0.2145 (3)0.22099 (15)0.0411 (4)
C90.38709 (18)0.2859 (4)0.0109 (2)0.0749 (7)
H9A0.40750.43950.03120.112*
H9B0.45330.19100.04100.112*
H9C0.36170.27300.06760.112*
H3A0.1032 (18)0.535 (4)0.2273 (17)0.068 (6)*
H3B0.2065 (17)0.421 (3)0.2559 (16)0.062 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0408 (6)0.0300 (6)0.0602 (8)0.0006 (5)0.0243 (6)0.0001 (5)
N10.0544 (9)0.0322 (8)0.0790 (11)0.0021 (6)0.0363 (8)0.0008 (7)
N20.0521 (8)0.0319 (8)0.0768 (11)0.0014 (6)0.0372 (8)0.0020 (7)
N30.0563 (10)0.0337 (9)0.0968 (14)0.0003 (7)0.0460 (10)0.0007 (8)
C10.0468 (10)0.0584 (12)0.0530 (11)0.0107 (9)0.0209 (9)0.0035 (9)
C20.0652 (12)0.0437 (10)0.0584 (12)0.0078 (9)0.0279 (10)0.0056 (9)
C30.0538 (10)0.0393 (9)0.0573 (11)0.0033 (8)0.0244 (9)0.0043 (8)
C40.0400 (8)0.0351 (9)0.0447 (10)0.0027 (7)0.0148 (7)0.0025 (7)
C50.0478 (9)0.0390 (10)0.0654 (12)0.0004 (8)0.0222 (9)0.0041 (9)
C60.0439 (10)0.0566 (12)0.0758 (14)0.0018 (9)0.0269 (10)0.0005 (10)
C70.0431 (9)0.0279 (8)0.0472 (10)0.0011 (7)0.0165 (8)0.0016 (7)
C80.0394 (8)0.0348 (9)0.0544 (11)0.0004 (7)0.0223 (8)0.0020 (8)
C90.0596 (12)0.0929 (17)0.0811 (16)0.0168 (11)0.0350 (12)0.0082 (13)
Geometric parameters (Å, º) top
O1—C81.3608 (19)C2—H20.9300
O1—C71.3754 (18)C3—C41.385 (2)
N1—C71.279 (2)C3—H30.9300
N1—N21.4129 (19)C4—C51.391 (2)
N2—C81.296 (2)C4—C71.458 (2)
N3—C81.331 (2)C5—C61.387 (2)
N3—H3A0.88 (2)C5—H50.9300
N3—H3B0.93 (2)C6—H60.9300
C1—C61.382 (3)C9—H9A0.9600
C1—C21.388 (3)C9—H9B0.9600
C1—C91.509 (3)C9—H9C0.9600
C2—C31.378 (2)
C8—O1—C7102.79 (11)C6—C5—C4119.58 (16)
C7—N1—N2107.39 (13)C6—C5—H5120.2
C8—N2—N1105.34 (13)C4—C5—H5120.2
C8—N3—H3A117.2 (13)C1—C6—C5121.82 (17)
C8—N3—H3B119.0 (11)C1—C6—H6119.1
H3A—N3—H3B119.1 (17)C5—C6—H6119.1
C6—C1—C2117.61 (16)N1—C7—O1111.77 (14)
C6—C1—C9121.48 (18)N1—C7—C4129.48 (15)
C2—C1—C9120.92 (18)O1—C7—C4118.74 (13)
C3—C2—C1121.55 (17)N2—C8—N3129.62 (16)
C3—C2—H2119.2N2—C8—O1112.70 (14)
C1—C2—H2119.2N3—C8—O1117.65 (14)
C2—C3—C4120.28 (17)C1—C9—H9A109.5
C2—C3—H3119.9C1—C9—H9B109.5
C4—C3—H3119.9H9A—C9—H9B109.5
C3—C4—C5119.15 (16)C1—C9—H9C109.5
C3—C4—C7119.79 (15)H9A—C9—H9C109.5
C5—C4—C7121.06 (15)H9B—C9—H9C109.5
C7—N1—N2—C80.3 (2)N2—N1—C7—C4177.86 (16)
C6—C1—C2—C30.6 (3)C8—O1—C7—N10.76 (19)
C9—C1—C2—C3179.45 (18)C8—O1—C7—C4177.94 (14)
C1—C2—C3—C40.6 (3)C3—C4—C7—N114.9 (3)
C2—C3—C4—C51.2 (3)C5—C4—C7—N1165.33 (19)
C2—C3—C4—C7178.60 (16)C3—C4—C7—O1163.57 (15)
C3—C4—C5—C60.6 (3)C5—C4—C7—O116.2 (2)
C7—C4—C5—C6179.16 (17)N1—N2—C8—N3178.37 (19)
C2—C1—C6—C51.2 (3)N1—N2—C8—O10.2 (2)
C9—C1—C6—C5178.88 (19)C7—O1—C8—N20.58 (19)
C4—C5—C6—C10.6 (3)C7—O1—C8—N3178.98 (16)
N2—N1—C7—O10.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N1i0.88 (2)2.11 (2)2.979 (2)165.7 (19)
N3—H3B···N2ii0.93 (2)2.05 (2)2.964 (2)167.6 (16)
Symmetry codes: (i) x, y+1, z; (ii) x1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC9H9N3O
Mr175.19
Crystal system, space groupMonoclinic, P21/n
Temperature (K)291
a, b, c (Å)12.161 (2), 5.9374 (3), 12.8282 (15)
β (°) 108.012 (19)
V3)880.9 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.38 × 0.35 × 0.30
Data collection
DiffractometerRigaku Saturn
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2006)
Tmin, Tmax0.966, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
3809, 1800, 1313
Rint0.022
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.124, 1.03
No. of reflections1800
No. of parameters127
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.15

Computer programs: CrystalClear (Rigaku/MSC, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N1i0.88 (2)2.11 (2)2.979 (2)165.7 (19)
N3—H3B···N2ii0.93 (2)2.05 (2)2.964 (2)167.6 (16)
Symmetry codes: (i) x, y+1, z; (ii) x1/2, y+1/2, z+1/2.
 

Acknowledgements

We gratefully acknowledge financial support by the National Natural Science Foundation of China (No. 21171149).

References

First citationBachwani, M. & Sharma, V. (2011). Ijrap, 4, 1738–1742.  Google Scholar
First citationLv, H.-S., Zhao, B.-X., Li, J.-K., Xia, Y., Lian, S., Liu, W.-Y. & Gong, Z.-L. (2010). Dyes Pigm. 6, 25–31.  Web of Science CSD CrossRef Google Scholar
First citationPadmavathi, V., Sudhakar Reddy, G., Padmaja, A., Kondaiah, P. & Shazia, A. (2009). Eur. J. Med. Chem. 6, 2106–2112.  Web of Science CrossRef Google Scholar
First citationRigaku/MSC (2006). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, X.-L., Dou, W., Chen, S.-W., Dang, F.-F. & Liu, W.-S. (2007). Spectrochim. Acta Part A, 4, 349–353.  CrossRef Google Scholar
First citationXue, J.-Q., Wang, S.-R., Zhang, L.-M. & Li, X.-G. (2007). Dyes Pigm. 3, 369–372.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds