metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages m820-m821

Nickel alendronate

aChemical Faculty, Gdansk University of Technology, Narutowicza 11/12, Gdansk PL-80233, Poland, and bFaculty of Applied Physics and Mathematics, Gdansk University of Technology, Narutowicza 11/12, Gdansk PL-80233, Poland
*Correspondence e-mail: jaroslaw.chojnacki@pg.gda.pl

(Received 19 April 2012; accepted 17 May 2012; online 26 May 2012)

The title compound {sys­tematic name: bis(μ2-dihydrogen 4-aza­niumyl-1-hy­droxy­butane-1,1-di­phos­pho­n­ato)bis­[aqua­(dihydrogen 4-aza­nium­yl-1-hy­droxy­butane-1,1-diphospho­n­ato)nickel(II)] dihydrate}, [Ni2(C4H12NO7P2)4(H2O)2]·2H2O, was synthesiized under hydro­thermal conditions. Its structure is isotypic with the CoII analogue. The crystal structure is built up from centrosymmetric dinuclear complex mol­ecules and the structure is reinforced by a net of inter­molecular O—H⋯O and N—H⋯O hydrogen bonds. One water mol­ecule is bound to the NiII atom in the octahedral coordination sphere, while the second is part of the inter­molecular hydrogen-bond system.

Related literature

For the isotypic CoII compound, see: Man et al. (2006[Man, S. P., Motevalli, M., Gardiner, S., Sullivan, A. & Wilson, J. (2006). Polyhedron, 25, 1017-1032.]). For the structures and therapeutic properties of bis­phospho­nates, see: Russell (2011[Russell, R. G. G. (2011). Bone, 49, 2-19.]). For zinc alendronate, see: Dufau et al. (1995[Dufau, C., Benramdane, M., Leroux, Y., El Manouni, D., Neuman, A., Prange, T., Silvestre, J.-P. & Gillier, H. (1995). Phosphorus Sulfur Silicon Relat. Elem. 107, 145-159.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni2(C4H12NO7P2)4(H2O)2]·2H2O

  • Mr = 1181.83

  • Monoclinic, P 21 /c

  • a = 12.5042 (3) Å

  • b = 13.5214 (2) Å

  • c = 12.4538 (3) Å

  • β = 109.667 (4)°

  • V = 1982.78 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.39 mm−1

  • T = 297 K

  • 0.33 × 0.29 × 0.16 mm

Data collection
  • Oxford Diffraction KM-4-CCD Sapphire2 diffractometer

  • Absorption correction: analytical [CrysAlis PRO (Oxford Diffraction 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]), based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.747, Tmax = 0.854

  • 20727 measured reflections

  • 3522 independent reflections

  • 3237 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.124

  • S = 1.07

  • 3522 reflections

  • 298 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 2.44 e Å−3

  • Δρmin = −0.67 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1NA⋯O11i 0.89 2.27 3.000 (4) 140
N1—H1NB⋯O4ii 0.89 2.13 2.980 (5) 159
N1—H1NC⋯O5iii 0.89 1.93 2.806 (4) 168
N2—H2NA⋯O2iv 0.89 2.43 3.215 (5) 147
N2—H2NB⋯O1 0.89 2.31 3.111 (5) 149
N2—H2C⋯O8iv 0.89 2.30 3.169 (6) 167
O2—H2⋯O5ii 0.82 1.68 2.487 (4) 170
O6—H6⋯O3v 0.82 1.73 2.539 (4) 168
O9—H9⋯O12vi 0.82 1.89 2.665 (4) 157
O11—H11⋯O8iv 0.82 1.78 2.585 (4) 165
O13—H13⋯O12vi 0.82 2.08 2.898 (4) 172
O15—H15A⋯O3v 0.83 (2) 2.00 (2) 2.815 (4) 168 (5)
O15—H15B⋯O16 0.82 (2) 2.29 (5) 2.882 (8) 130 (6)
O16—H16A⋯O8vii 0.88 (2) 2.57 (5) 3.365 (9) 151 (10)
O16—H16B⋯O8iv 0.88 (2) 2.03 (3) 2.902 (8) 169 (13)
Symmetry codes: (i) x+1, y, z+1; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) -x+2, -y+1, -z+2; (iv) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) -x+2, -y+1, -z+1; (vi) -x+1, -y+1, -z+1; (vii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]), Mercury, publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Bisphosphonates are organic analogues of pyrophosphates with the P–O–P bridge replaced with a hydrolytically resistant P–C–P moiety. Their structure and therapeutic properties have been of vivid scientific interest for over 40 years (Russell, 2011). Bisphosphonates play essential role in modification of biomineralization in bones. Apart from the most important calcium salts, transition metal complexes are also being studied in respect to complex formation constants and X-ray structures e.g. to estimate and elucidate potential side effects of bisphosphonate drugs against osteoporosis. It was noticed (Man et al. 2006) that the length of side alkyl chain is crucial for determination of aggregation of metal bisphosphonates. For instance, in the case of Co bisphosphonates with six-carbon chain the mononuclear product was found, while the four-carbon hydrocarbon chain facilitated formation of the dinuclear complexes while shorter hydrocarbon side chains led to more or less complicated polymeric structures. Magnetic properties of the cobalt compounds have risen some interest and were examined in details.

Alendronic acid [CH(OH){(CH2)3NH2}{(PO(OH)2}2] in metal complexes usually occurrs as the zwitterionic monoanion with two P–OH groups deprotonated and the amino group protonated. Next two P–OH groups remain intact. Consequently divalent metals give neutral complexes (usually chelates) with metal to ligand ratio of 1:2.

The title compound was obtained from sodium salt of 4-amino-1-hydroxy-1,1-butylidenebisphosphonic acid and nickel(II) chloride in acidic aqueous solution. Both acidification and rising the temperature to ca 130 °C were necessary to obtain single crystals of X-ray quality. The product is insoluble in water and common organic solvents. The afforded crystals were investigated by single-crystal X-ray diffraction and additionally by microanalysis and powder diffraction in order to test the purity and composition of the whole batch.

The structure of the obtained compound, C16H52N4Ni2O30P8*2(H2O), turned out to be isomorphic with structure of cobalt derivative which was determined by Man et al. 2006. Structure composed of dinuclear complexes (though not isomorphic with the described above) was also found for zinc alendronate (Dufau et al. 1995). The text below recapitulates the main structural features of the determined structure.

Crystals are build up from centrosymmetric dinuclear complex molecules. Each metal atom coordination is close to octahedral, with one terminal water molecule, one terminal and two bridging bisphosphonate anions. All bisphosphonato ligands are chelating and contain one NH3+ and two —P(O)(O-)(OH) groups. The terminal ligands are bidentate, while the bridging ones are tridentate: one PO3H group is monodentate 1κ-O and the other is bridging bidentate 1κ-O',2κ-O'', using both nagatively charged O atoms and one oxygen atom from P=O group. Bond lengths allow only for general identification of P=O and P—O- (ca 1.50 Å) or P–OH groups (ca 1.57 Å).

The system of hydrogen bonds is rather complex, see the relevant table. Packing of molecules is reinforced by O—H···O and by charge assisted (+)N—H···O hydrogen bonds. However, all internal hydrogen bonds can be easily recognized by the symmetry code of the acceptor atom being [-x + 1, -y + 1, -z + 1] (intramolecular inversion) or none. The alkylammonium chain N1 extends away from the core and forms only intermolecular hydrogen bonds with ligating and non ligating phosphonate O-atoms. Interesting R22(16) centrosymmetric motif is formed by N1 ··· O5 bond around the b axis (see Figure 2.) The other alkylamonium chain is bent towards the central dinuclear core to facilitate intramolecular hydrogen bonding between the ammonium terminus and the O atoms. In fact, N2 ammonium groups form intramolecular as well as intermolecular hydrogen bonds. Hydroxyl group bound to carbon forms internal hydrogen bond O13—H ···O12[1 - x,1 - y,1 - z] and O14—H···O4[1 - x,1 - y,1 - z] and O14—H···O7. Water molecule (O15) bound to nickel atom forms hydrogen bonds with the next water molecule (O16) in the second coordination sphere. Apart from that extended intermolecular hydrogen bond network is present.

Microanalysis and powder diffraction pattern confirm the expected composition. Some discrepances between monocrystalic simulated intensities and experimental powder XRD intensities stem most likely from not uniform distribution of orientation of microcrystalites in the "powder" sample. Nevertheless, positions of all recorded peaks are correct.

Related literature top

For the isotypic CoII compound, see: Man et al. (2006). For the structures and therapeutic properties of bisphosphonates, see: Russell (2011). For zinc alendronate, see: Dufau et al. (1995).

Experimental top

Sodium alendronate (65 mg) was dissolved in 6 cm3 of water warmed to ca 70 °C. Then 4 ml of aqueous solution containing 95.2 mg of NiCl2.6H2O (0.4 mmole) and 0.5 ml of 2M HCl (1 mmole) were added. The pressure resistant container was closed and heated on an oil bath to 130 °C (inducing ca 3 bar overpressure) for 96 h. The content was let to cool slowly together with the oil bath and the obtained crystals were suitable for X-ray structural analysis. Elemental analysis (calculated for C16H52N4Ni2O30P8*2(H2O): C 16.34(16.26); H 4.71(4.77); N 4.75(4.74); S 0.0(0.0). Apparatus: Vario El Cube CHNS (Elementar), powder diffraction: X'Pert Philips diffractometer (Cu Kα radiation).

Refinement top

Structure was solved with all heavy atoms treated as anisotropic and H-atoms as isotropic. All C—H atoms were refined as riding on their bonded counterpart atoms with the usual constrains. Hydrogen atoms belonging to water molecules were refined with constrained O—H bond length to 0.84 Å. Two reflections (040) and (011) were identified as wrong and excluded from refinement.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 1999), Mercury (Macrae et al., 2008), publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of C16H52N4Ni2O30P8 showing atom labeling scheme. Solvent water molecule not shown, displacement ellipsoids 50%.
[Figure 2] Fig. 2. Packing diagram for C16H52N4Ni2O30P8 viewed along the b axis. Please note influence of different bending of the alkylammonium groups on hydrogen bonding system. Colours: central molecule - grey, molecules linked by N1—H···O5 bond - red, other neighbour molecules - blue
Bis(µ2-dihydrogen 4-azaniumyl-1-hydroxybutane-1,1-diphosphonato)bis[aqua(dihydrogen 4-azaniumyl-1-hydroxybutane-1,1-diphosphonato)nickel(II)] dihydrate top
Crystal data top
[Ni2(C4H12NO7P2)4(H2O)2]·2H2OF(000) = 1224
Mr = 1181.83Dx = 1.98 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 16141 reflections
a = 12.5042 (3) Åθ = 2.3–28.8°
b = 13.5214 (2) ŵ = 1.39 mm1
c = 12.4538 (3) ÅT = 297 K
β = 109.667 (4)°Block, green
V = 1982.78 (9) Å30.33 × 0.29 × 0.16 mm
Z = 2
Data collection top
Oxford Diffraction KM-4-CCD Sapphire2
diffractometer
3522 independent reflections
Graphite monochromator3237 reflections with I > 2σ(I)
Detector resolution: 8.1883 pixels mm-1Rint = 0.026
ω scansθmax = 25.1°, θmin = 2.3°
Absorption correction: analytical
[CrysAlis PRO (Oxford Diffraction 2010), based on expressions derived by Clark & Reid (1995)]
h = 1414
Tmin = 0.747, Tmax = 0.854k = 1616
20727 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0687P)2 + 6.2695P]
where P = (Fo2 + 2Fc2)/3
3522 reflections(Δ/σ)max = 0.001
298 parametersΔρmax = 2.44 e Å3
6 restraintsΔρmin = 0.67 e Å3
Crystal data top
[Ni2(C4H12NO7P2)4(H2O)2]·2H2OV = 1982.78 (9) Å3
Mr = 1181.83Z = 2
Monoclinic, P21/cMo Kα radiation
a = 12.5042 (3) ŵ = 1.39 mm1
b = 13.5214 (2) ÅT = 297 K
c = 12.4538 (3) Å0.33 × 0.29 × 0.16 mm
β = 109.667 (4)°
Data collection top
Oxford Diffraction KM-4-CCD Sapphire2
diffractometer
3522 independent reflections
Absorption correction: analytical
[CrysAlis PRO (Oxford Diffraction 2010), based on expressions derived by Clark & Reid (1995)]
3237 reflections with I > 2σ(I)
Tmin = 0.747, Tmax = 0.854Rint = 0.026
20727 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0466 restraints
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 2.44 e Å3
3522 reflectionsΔρmin = 0.67 e Å3
298 parameters
Special details top

Experimental. Absorption correction: CrysAlisPro, Oxford Diffraction 2010, Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by Clark & Reid 1995.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.69424 (4)0.54490 (3)0.47489 (4)0.01836 (16)
P10.90380 (8)0.39706 (7)0.61692 (8)0.0182 (2)
P20.93083 (8)0.61463 (7)0.67849 (8)0.0198 (2)
P30.48228 (9)0.27678 (8)0.55326 (9)0.0240 (2)
P40.45576 (8)0.41194 (7)0.34777 (8)0.0172 (2)
N11.1817 (3)0.2965 (3)1.0790 (3)0.0287 (8)
H1NA1.25150.29641.13000.043*
H1NB1.16980.24031.03960.043*
H1NC1.13130.30201.11490.043*
N20.7320 (3)0.3093 (4)0.2984 (4)0.0491 (11)
H2NA0.78130.30660.26100.074*
H2NB0.74700.36180.34410.074*
H2C0.66180.31400.24870.074*
O10.7949 (2)0.4259 (2)0.5266 (2)0.0250 (6)
O20.8834 (2)0.2960 (2)0.6677 (2)0.0246 (6)
H20.93900.26030.67810.037*
O31.0060 (2)0.3913 (2)0.5783 (2)0.0254 (6)
O40.8202 (2)0.6342 (2)0.5835 (2)0.0240 (6)
O50.9503 (2)0.6825 (2)0.7794 (2)0.0277 (6)
O61.0338 (2)0.6234 (2)0.6349 (2)0.0270 (6)
H61.01150.61770.56530.040*
O70.3862 (2)0.3254 (2)0.5773 (2)0.0240 (6)
O80.5022 (3)0.1702 (2)0.5902 (3)0.0340 (7)
O90.5971 (2)0.3324 (2)0.6132 (2)0.0301 (6)
H90.58960.39110.59600.045*
O100.5735 (2)0.4502 (2)0.3740 (2)0.0244 (6)
O110.3940 (2)0.4038 (2)0.2154 (2)0.0249 (6)
H110.43640.37700.18630.037*
O120.3763 (2)0.47229 (19)0.3918 (2)0.0212 (6)
O130.8408 (2)0.4841 (2)0.7805 (2)0.0244 (6)
H130.78130.50210.73240.037*
O140.3381 (2)0.2459 (2)0.3447 (3)0.0320 (7)
H140.30550.24480.39180.048*
O150.7615 (3)0.5602 (3)0.3433 (3)0.0350 (7)
C10.9316 (3)0.4880 (3)0.7328 (3)0.0203 (8)
C21.0451 (3)0.4727 (3)0.8315 (3)0.0257 (8)
H2A1.10490.46530.79870.031*
H2B1.06120.53240.87730.031*
C31.0521 (3)0.3859 (3)0.9103 (4)0.0299 (9)
H3A0.99520.39280.94690.036*
H3B1.03720.32490.86670.036*
C41.1690 (4)0.3818 (3)0.9998 (3)0.0304 (9)
H4A1.22550.37650.96240.037*
H4B1.18300.44281.04330.037*
C50.4540 (3)0.2832 (3)0.3985 (3)0.0243 (8)
C60.5333 (3)0.2156 (3)0.3597 (3)0.0271 (9)
H6A0.50720.14790.35870.033*
H6B0.52610.23310.28200.033*
C70.6591 (4)0.2194 (4)0.4324 (4)0.0369 (10)
H7A0.67230.27930.47790.044*
H7B0.67550.16380.48450.044*
C80.7420 (4)0.2174 (4)0.3681 (5)0.0463 (13)
H8A0.81870.21190.42170.056*
H8B0.72710.16010.31840.056*
H15A0.829 (2)0.577 (5)0.357 (5)0.069*
H15B0.732 (4)0.584 (5)0.280 (3)0.069*
O160.6399 (6)0.5061 (6)0.1101 (7)0.116 (2)
H16A0.584 (8)0.532 (8)0.054 (8)0.175*
H16B0.605 (9)0.448 (4)0.102 (11)0.175*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0144 (3)0.0229 (3)0.0179 (3)0.00050 (18)0.00562 (19)0.00056 (18)
P10.0149 (5)0.0217 (5)0.0171 (5)0.0014 (4)0.0041 (4)0.0012 (4)
P20.0161 (5)0.0231 (5)0.0200 (5)0.0026 (4)0.0058 (4)0.0022 (4)
P30.0248 (5)0.0255 (5)0.0238 (5)0.0026 (4)0.0110 (4)0.0032 (4)
P40.0159 (5)0.0212 (5)0.0151 (5)0.0002 (4)0.0059 (4)0.0006 (3)
N10.0223 (17)0.039 (2)0.0218 (17)0.0053 (15)0.0038 (14)0.0006 (15)
N20.033 (2)0.070 (3)0.049 (3)0.013 (2)0.0197 (19)0.004 (2)
O10.0211 (14)0.0250 (14)0.0234 (14)0.0036 (11)0.0003 (11)0.0042 (11)
O20.0201 (13)0.0247 (14)0.0289 (14)0.0018 (11)0.0079 (12)0.0019 (11)
O30.0195 (13)0.0352 (16)0.0228 (14)0.0004 (11)0.0090 (11)0.0017 (12)
O40.0188 (13)0.0249 (14)0.0265 (14)0.0006 (11)0.0052 (11)0.0003 (11)
O50.0279 (14)0.0288 (15)0.0289 (15)0.0080 (12)0.0128 (12)0.0084 (12)
O60.0199 (14)0.0383 (17)0.0236 (14)0.0073 (12)0.0084 (11)0.0020 (13)
O70.0228 (14)0.0291 (15)0.0216 (13)0.0060 (11)0.0093 (11)0.0047 (11)
O80.0457 (18)0.0267 (16)0.0394 (17)0.0087 (13)0.0271 (15)0.0096 (13)
O90.0259 (15)0.0345 (16)0.0280 (15)0.0012 (12)0.0063 (12)0.0035 (13)
O100.0162 (13)0.0342 (16)0.0228 (14)0.0026 (11)0.0067 (11)0.0059 (11)
O110.0189 (13)0.0356 (16)0.0199 (13)0.0009 (11)0.0063 (11)0.0044 (11)
O120.0197 (13)0.0259 (14)0.0203 (13)0.0014 (11)0.0096 (11)0.0012 (11)
O130.0178 (13)0.0358 (16)0.0216 (13)0.0002 (12)0.0093 (11)0.0016 (12)
O140.0263 (15)0.0354 (16)0.0338 (16)0.0070 (13)0.0092 (13)0.0078 (13)
O150.0235 (15)0.056 (2)0.0284 (16)0.0013 (14)0.0128 (13)0.0013 (14)
C10.0149 (17)0.0248 (19)0.0218 (18)0.0012 (15)0.0070 (15)0.0015 (15)
C20.0184 (19)0.035 (2)0.0205 (19)0.0012 (16)0.0025 (15)0.0009 (16)
C30.022 (2)0.034 (2)0.027 (2)0.0007 (17)0.0001 (17)0.0004 (17)
C40.027 (2)0.038 (2)0.0219 (19)0.0021 (18)0.0030 (17)0.0015 (17)
C50.024 (2)0.025 (2)0.0231 (19)0.0009 (16)0.0079 (16)0.0001 (16)
C60.029 (2)0.027 (2)0.027 (2)0.0000 (17)0.0113 (17)0.0069 (16)
C70.032 (2)0.043 (3)0.037 (2)0.004 (2)0.013 (2)0.000 (2)
C80.029 (2)0.056 (3)0.052 (3)0.011 (2)0.012 (2)0.014 (3)
O160.117 (5)0.110 (5)0.128 (6)0.028 (4)0.048 (4)0.009 (4)
Geometric parameters (Å, º) top
Ni1—O12.011 (3)O7—Ni1i2.017 (3)
Ni1—O7i2.017 (3)O9—H90.8200
Ni1—O102.054 (3)O11—H110.8200
Ni1—O42.082 (3)O12—Ni1i2.139 (3)
Ni1—O152.089 (3)O13—C11.449 (4)
Ni1—O12i2.139 (3)O13—H130.8200
P1—O11.497 (3)O14—C51.466 (5)
P1—O31.511 (3)O14—H140.8200
P1—O21.563 (3)O15—O162.882 (8)
P1—C11.838 (4)O15—H15A0.83 (2)
P2—O51.508 (3)O15—H15B0.82 (2)
P2—O41.510 (3)C1—C21.547 (5)
P2—O61.562 (3)C2—C31.513 (6)
P2—C11.839 (4)C2—H2A0.9700
P3—O71.486 (3)C2—H2B0.9700
P3—O81.507 (3)C3—C41.512 (5)
P3—O91.570 (3)C3—H3A0.9700
P3—C51.841 (4)C3—H3B0.9700
P4—O101.490 (3)C4—H4A0.9700
P4—O121.523 (3)C4—H4B0.9700
P4—O111.571 (3)C5—C61.541 (5)
P4—C51.855 (4)C6—C71.529 (6)
N1—C41.491 (6)C6—H6A0.9700
N1—H1NA0.8900C6—H6B0.9700
N1—H1NB0.8900C7—C81.508 (6)
N1—H1NC0.8900C7—H7A0.9700
N2—C81.496 (7)C7—H7B0.9700
N2—H2NA0.8900C8—H8A0.9700
N2—H2NB0.8900C8—H8B0.9700
N2—H2C0.8900O16—H16A0.88 (2)
O2—H20.8200O16—H16B0.88 (2)
O6—H60.8200
O1—Ni1—O7i171.66 (11)P4—O12—Ni1i135.27 (16)
O1—Ni1—O1087.07 (11)C1—O13—H13109.5
O7i—Ni1—O1099.26 (11)C5—O14—H14109.5
O1—Ni1—O490.06 (11)Ni1—O15—O16123.4 (2)
O7i—Ni1—O483.75 (11)Ni1—O15—H15A121 (4)
O10—Ni1—O4176.74 (11)O16—O15—H15A115 (4)
O1—Ni1—O1587.52 (13)Ni1—O15—H15B129 (4)
O7i—Ni1—O1587.12 (12)H15A—O15—H15B101 (3)
O10—Ni1—O1589.36 (12)O13—C1—C2107.8 (3)
O4—Ni1—O1592.05 (12)O13—C1—P1109.3 (2)
O1—Ni1—O12i92.37 (11)C2—C1—P1114.5 (3)
O7i—Ni1—O12i93.08 (10)O13—C1—P2106.1 (2)
O10—Ni1—O12i89.82 (10)C2—C1—P2107.9 (3)
O4—Ni1—O12i88.77 (10)P1—C1—P2110.97 (19)
O15—Ni1—O12i179.18 (12)C3—C2—C1117.2 (3)
O1—P1—O3115.32 (16)C3—C2—H2A108.0
O1—P1—O2107.48 (16)C1—C2—H2A108.0
O3—P1—O2110.75 (16)C3—C2—H2B108.0
O1—P1—C1107.43 (16)C1—C2—H2B108.0
O3—P1—C1109.11 (16)H2A—C2—H2B107.2
O2—P1—C1106.33 (17)C4—C3—C2109.7 (3)
O5—P2—O4113.25 (16)C4—C3—H3A109.7
O5—P2—O6108.80 (16)C2—C3—H3A109.7
O4—P2—O6111.05 (16)C4—C3—H3B109.7
O5—P2—C1106.31 (17)C2—C3—H3B109.7
O4—P2—C1109.97 (16)H3A—C3—H3B108.2
O6—P2—C1107.18 (17)N1—C4—C3112.2 (4)
O7—P3—O8115.04 (17)N1—C4—H4A109.2
O7—P3—O9111.41 (17)C3—C4—H4A109.2
O8—P3—O9106.36 (18)N1—C4—H4B109.2
O7—P3—C5107.87 (17)C3—C4—H4B109.2
O8—P3—C5108.56 (18)H4A—C4—H4B107.9
O9—P3—C5107.33 (17)O14—C5—C6107.1 (3)
O10—P4—O12116.83 (15)O14—C5—P3105.9 (3)
O10—P4—O11110.80 (16)C6—C5—P3112.6 (3)
O12—P4—O11105.41 (15)O14—C5—P4106.9 (3)
O10—P4—C5112.03 (17)C6—C5—P4111.6 (3)
O12—P4—C5107.24 (16)P3—C5—P4112.4 (2)
O11—P4—C5103.50 (17)C7—C6—C5115.9 (3)
C4—N1—H1NA109.5C7—C6—H6A108.3
C4—N1—H1NB109.5C5—C6—H6A108.3
H1NA—N1—H1NB109.5C7—C6—H6B108.3
C4—N1—H1NC109.5C5—C6—H6B108.3
H1NA—N1—H1NC109.5H6A—C6—H6B107.4
H1NB—N1—H1NC109.5C8—C7—C6116.0 (4)
C8—N2—H2NA109.5C8—C7—H7A108.3
C8—N2—H2NB109.5C6—C7—H7A108.3
H2NA—N2—H2NB109.5C8—C7—H7B108.3
C8—N2—H2C109.5C6—C7—H7B108.3
H2NA—N2—H2C109.5H7A—C7—H7B107.4
H2NB—N2—H2C109.5N2—C8—C7110.8 (4)
P1—O1—Ni1139.66 (17)N2—C8—H8A109.5
P1—O2—H2109.5C7—C8—H8A109.5
P2—O4—Ni1134.46 (17)N2—C8—H8B109.5
P2—O6—H6109.5C7—C8—H8B109.5
P3—O7—Ni1i131.97 (17)H8A—C8—H8B108.1
P3—O9—H9109.5O15—O16—H16A135 (9)
P4—O10—Ni1145.03 (17)O15—O16—H16B114 (8)
P4—O11—H11109.5
O3—P1—O1—Ni1101.7 (3)O1—P1—C1—P254.6 (2)
O2—P1—O1—Ni1134.3 (3)O3—P1—C1—P271.1 (2)
C1—P1—O1—Ni120.2 (3)O5—P2—C1—O1359.5 (3)
O10—Ni1—O1—P1167.7 (3)O4—P2—C1—O1363.4 (3)
O4—Ni1—O1—P110.7 (3)O6—P2—C1—O13175.8 (2)
O15—Ni1—O1—P1102.8 (3)O5—P2—C1—C255.7 (3)
O12i—Ni1—O1—P178.0 (3)O4—P2—C1—C2178.7 (2)
O5—P2—O4—Ni1138.7 (2)O6—P2—C1—C260.5 (3)
O6—P2—O4—Ni198.6 (2)O4—P2—C1—P155.1 (2)
C1—P2—O4—Ni119.9 (3)O6—P2—C1—P165.7 (2)
O1—Ni1—O4—P210.8 (2)O13—C1—C2—C349.4 (5)
O7i—Ni1—O4—P2174.8 (2)P1—C1—C2—C372.4 (4)
O15—Ni1—O4—P298.3 (2)P2—C1—C2—C3163.5 (3)
O12i—Ni1—O4—P281.6 (2)C1—C2—C3—C4179.1 (4)
O8—P3—O7—Ni1i168.3 (2)C2—C3—C4—N1179.1 (4)
O9—P3—O7—Ni1i70.6 (3)O7—P3—C5—O1450.5 (3)
C5—P3—O7—Ni1i47.0 (3)O8—P3—C5—O1474.7 (3)
O12—P4—O10—Ni116.8 (4)O9—P3—C5—O14170.7 (2)
O11—P4—O10—Ni1137.5 (3)O7—P3—C5—C6167.2 (3)
C5—P4—O10—Ni1107.5 (3)O8—P3—C5—C641.9 (3)
O1—Ni1—O10—P4121.6 (3)O9—P3—C5—C672.6 (3)
O7i—Ni1—O10—P463.8 (3)O7—P3—C5—P465.8 (2)
O15—Ni1—O10—P4150.8 (3)O8—P3—C5—P4168.9 (2)
O12i—Ni1—O10—P429.2 (3)O9—P3—C5—P454.3 (2)
O10—P4—O12—Ni1i106.8 (2)O10—P4—C5—O14166.6 (2)
O11—P4—O12—Ni1i129.6 (2)O12—P4—C5—O1463.9 (3)
C5—P4—O12—Ni1i19.8 (3)O11—P4—C5—O1447.2 (3)
O1—Ni1—O15—O16104.2 (3)O10—P4—C5—C649.9 (3)
O7i—Ni1—O15—O1682.2 (3)O12—P4—C5—C6179.3 (3)
O10—Ni1—O15—O1617.1 (3)O11—P4—C5—C669.5 (3)
O4—Ni1—O15—O16165.8 (3)O10—P4—C5—P377.6 (2)
O1—P1—C1—O1362.1 (3)O12—P4—C5—P351.8 (2)
O3—P1—C1—O13172.3 (2)O14—C5—C6—C7161.5 (4)
O2—P1—C1—O1352.8 (3)P3—C5—C6—C745.5 (4)
O1—P1—C1—C2177.0 (3)P4—C5—C6—C781.9 (4)
O3—P1—C1—C251.3 (3)C5—C6—C7—C8139.6 (4)
O2—P1—C1—C268.2 (3)C6—C7—C8—N266.2 (5)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1NA···O11ii0.892.273.000 (4)140
N1—H1NB···O4iii0.892.132.980 (5)159
N1—H1NC···O5iv0.891.932.806 (4)168
N2—H2NA···O2v0.892.433.215 (5)147
N2—H2NB···O10.892.313.111 (5)149
N2—H2C···O8v0.892.303.169 (6)167
O2—H2···O5iii0.821.682.487 (4)170
O6—H6···O3vi0.821.732.539 (4)168
O9—H9···O12i0.821.892.665 (4)157
O11—H11···O8v0.821.782.585 (4)165
O13—H13···O12i0.822.082.898 (4)172
O15—H15A···O3vi0.83 (2)2.00 (2)2.815 (4)168 (5)
O15—H15B···O160.82 (2)2.29 (5)2.882 (8)130 (6)
O16—H16A···O8vii0.88 (2)2.57 (5)3.365 (9)151 (10)
O16—H16B···O8v0.88 (2)2.03 (3)2.902 (8)169 (13)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1; (iii) x+2, y1/2, z+3/2; (iv) x+2, y+1, z+2; (v) x, y+1/2, z1/2; (vi) x+2, y+1, z+1; (vii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni2(C4H12NO7P2)4(H2O)2]·2H2O
Mr1181.83
Crystal system, space groupMonoclinic, P21/c
Temperature (K)297
a, b, c (Å)12.5042 (3), 13.5214 (2), 12.4538 (3)
β (°) 109.667 (4)
V3)1982.78 (9)
Z2
Radiation typeMo Kα
µ (mm1)1.39
Crystal size (mm)0.33 × 0.29 × 0.16
Data collection
DiffractometerOxford Diffraction KM-4-CCD Sapphire2
diffractometer
Absorption correctionAnalytical
[CrysAlis PRO (Oxford Diffraction 2010), based on expressions derived by Clark & Reid (1995)]
Tmin, Tmax0.747, 0.854
No. of measured, independent and
observed [I > 2σ(I)] reflections
20727, 3522, 3237
Rint0.026
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.124, 1.07
No. of reflections3522
No. of parameters298
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)2.44, 0.67

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia 1997) and Mercury (Macrae et al., 2008), WinGX (Farrugia, 1999), Mercury (Macrae et al., 2008), publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1NA···O11i0.892.273.000 (4)139.6
N1—H1NB···O4ii0.892.132.980 (5)158.7
N1—H1NC···O5iii0.891.932.806 (4)168.0
N2—H2NA···O2iv0.892.433.215 (5)147.3
N2—H2NB···O10.892.313.111 (5)148.9
N2—H2C···O8iv0.892.303.169 (6)166.6
O2—H2···O5ii0.821.682.487 (4)170.2
O6—H6···O3v0.821.732.539 (4)168.0
O9—H9···O12vi0.821.892.665 (4)157.3
O11—H11···O8iv0.821.782.585 (4)165.4
O13—H13···O12vi0.822.082.898 (4)172.3
O15—H15A···O3v0.83 (2)2.00 (2)2.815 (4)168 (5)
O15—H15B···O160.82 (2)2.29 (5)2.882 (8)130 (6)
O16—H16A···O8vii0.88 (2)2.57 (5)3.365 (9)151 (10)
O16—H16B···O8iv0.88 (2)2.03 (3)2.902 (8)169 (13)
Symmetry codes: (i) x+1, y, z+1; (ii) x+2, y1/2, z+3/2; (iii) x+2, y+1, z+2; (iv) x, y+1/2, z1/2; (v) x+2, y+1, z+1; (vi) x+1, y+1, z+1; (vii) x+1, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the Polpharma SA company (Starogard Gdanski, Poland) for the donation of samples of sodium 4-amino-1-hy­droxy-1,1-butyl­idenebisphospho­nate (sodium alendronate).

References

First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDufau, C., Benramdane, M., Leroux, Y., El Manouni, D., Neuman, A., Prange, T., Silvestre, J.-P. & Gillier, H. (1995). Phosphorus Sulfur Silicon Relat. Elem. 107, 145–159.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMan, S. P., Motevalli, M., Gardiner, S., Sullivan, A. & Wilson, J. (2006). Polyhedron, 25, 1017–1032.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRussell, R. G. G. (2011). Bone, 49, 2–19.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages m820-m821
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds