metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages m763-m764

catena-Poly[[di­aqua­nickel(II)]-bis­­(μ-2-{[5-(pyridin-4-yl)-1,3,4-oxa­diazol-2-yl]sulfan­yl}acetato)]

aDepartment of Environmental and Municipal Engineering, North China University of Water Conservancy and Electric Power, Zhengzhou 450011, People's Republic of China, and bHenan Vocational College of Chemical Technology, Zhengzhou 450052, People's Republic of China
*Correspondence e-mail: gaoruqin@ncwu.edu.cn

(Received 29 April 2012; accepted 5 May 2012; online 12 May 2012)

In the title compound, [Ni(C9H6N3O3S)2(H2O)2]n, the NiII atom, located on an inversion center, is ligated in an octa­hedral geometry by two carboxyl­ate O atoms from two 2-{[5-(pyridin-4-yl)-1,3,4-oxadiazol-2-yl]sulfan­yl}acetate (L) ligands and two O atoms from water mol­ecules in the equatorial plane, and two pyridine N atoms from other two L ligands at the apical sites. Two L ligands bridge pairs of metal atoms in an anti­parallel manner, forming centrosymmetric dinuclear quasi-recta­ngular units which are linked into infinite double-stranded chains parallel to [100]. O—H⋯O hydrogen bonds between the coordinating water mol­ecules and the carboxyl­ate groups of the L ligand as well as interchain S⋯N inter­actions [2.726 (2)–3.363 (2) Å] lead to the formation of a layer structure parallel to (001).

Related literature

For coordination polymers of 1,3,4-oxadiazole-2-thione, see: Wu et al. (2010[Wu, B. L., Wang, R. Y., Ye, E., Zhang, H. Y. & Hou, H. W. (2010). Inorg. Chem. Commun. 13, 157-159.]); Lundin et al. (2006[Lundin, N. J., Blackman, A. G., Gordon, K. C. & Officer, D. L. (2006). Angew. Chem. Int. Ed. 45, 2582-2584.]); Wang et al. (2007)[Wang, Y. T., Tang, G. M. & Quang, Z. W. (2007). Polyhedron, 26, 4542-4550.]. For coordination polymers of symmetric pyridyl-containing oxadiazole ligands, see: Ma et al. (2007[Ma, C., Tian, G. & Zhang, R. (2007). Inorg. Chim. Acta, 360, 1762-1766.]); Du et al. (2006)[Du, M., Zhang, Z. H., Zhao, X. J. & Xu, Q. (2006). Inorg. Chem. 45, 5785-5792.]. For unsymmetric pyridyl-containing oxadiazole ligands, see: Wang & Li (2011[Wang, H.-R. & Li, G.-T. (2011). Acta Cryst. E67, m1457.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C9H6N3O3S)2(H2O)2]

  • Mr = 567.20

  • Monoclinic, P 21 /c

  • a = 11.8862 (18) Å

  • b = 5.6431 (9) Å

  • c = 15.500 (2) Å

  • β = 95.687 (2)°

  • V = 1034.5 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.20 mm−1

  • T = 293 K

  • 0.15 × 0.13 × 0.07 mm

Data collection
  • Siemens SMART CCD diffractometer

  • 7195 measured reflections

  • 1822 independent reflections

  • 1488 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.068

  • S = 1.03

  • 1822 reflections

  • 166 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—O2 2.0702 (16)
Ni1—O4 2.0781 (18)
Ni1—N1i 2.1157 (19)
Symmetry code: (i) x+1, y, z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯O3 0.82 (1) 1.83 (1) 2.633 (3) 167 (3)
O4—H4B⋯O2ii 0.82 (1) 2.11 (2) 2.857 (3) 153 (3)
Symmetry code: (ii) x, y-1, z.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1994[Siemens (1994). SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

There have been considerable interests in the coordination polymers of 1,3,4-oxadiazole-2-thione because of their intriguing architectures (Wu, et al., 2010) and potential applications as functional materials (Lundin, et al., 2006; Wang, et al., 2007). In particular, pyridyl-containing oxadiazole ligands, such as symmetric 5-phenyl-1,3,4-oxadiazole-2-thione (Ma, et al., 2007) and 5-(4-pyridyl)-1,3,4-oxadiazole-2-thione (Du, et al., 2006), have been extensively explored in the construction of porous coordination polymers. As our continuous work in this aspect (Wang & Li, 2011), we report that the reaction of NiCl2.6H2O and sodium(I) salt of 2-(5-(pyridin-4-yl)-1,3,4-oxadiazol-2-ylthio)acetic acid (HL) leads to a new complex [Ni(L)2(H2O)2]n (1) herein.

In (1) the NiII center is located at the inversion center ligated by two carboxylato O atoms from two deprotonated L and two O atoms from water molecules in the equatorial plane, and two pyridyl N atoms from other two deprotonated L at the apical sites. Thus the NiII ion is in a six-coordinated octahedral coordination geometry (Fig. 1). The bond distances of Ni—O and Ni—N range from 2.070 (2) to 2.116 (2) Å, while O—Ni—N angles range from 85.90 (7) to 94.10 (7) °, indicating a slight distortion from an ideal octahedron.

Complex (1) displays an extended infinite double-strand chain structure constructed of dinuclear quasi-rectangle units (Fig. 2). The dinuclear quasi-rectangle units are centrosymmetric and formed by two L anions antiparallelly bridging two metal centers in monodentate modes with two nickel atoms and two methylene carbon atoms of the L at the corners and the diagonal Ni···Ni distances of 11.886 (2) Å. As for L, the pyridyl group and the acetate group deviate from the center ring of oxadiazole-2-thione group, with the dihedral angels being 36.0 (7) and 88.5 (7) °, respectively. Notably, the conformation of L is apt to the dinuclear quasi-rectangle which is further stabilized by CH···π stacking interactions between antiparallel the pyridyl-1,3,4-oxadiazol groups of the L in the same rectangle unit with the distances of Hpyridyl to centroid of oxadiazol group being 3.320 (2) Å and 3.353 (2) Å. The chains of complex (1) are connected by O—H···O hydrogen bonds between the coordinated water molecules (as donors) and the carboxylate groups of L (as acceptors), leading to the formation of a two-dimensional network structure (Fig. 2, Table 3). Additionally, the interchain weak interactions between S and N of the oxadiazole-2-thione groups of L stabilize the layer structure (the distances of S···N being in a range of 2.726 (2) to 3.363 (2) Å).

Related literature top

For coordination polymers of 1,3,4-oxadiazole-2-thione, see: Wu et al. (2010); Lundin et al. (2006); Wang et al. (2007). For coordination polymers of symmetric pyridyl-containing oxadiazole ligands, see: Ma et al. (2007); Du et al. (2006). For unsymmetric pyridyl-containing oxadiazole ligands, see: Wang & Li (2011).

Experimental top

For the synthesis of sodium(I) salt of ligand 2-(5-(pyridin-4-yl)-1,3,4-oxadiazol-2-ylthio)acetic acid (HL), see: Wang & Li, (2011). The title compound (1).n(H2O) was prepared according to the following process. A mixture of NaL (51.8 mg, 0.2 mmol), NiCl2.6H2O (23.8 mg, 0.1 mmol) and deionized water (20 ml) was stirred for 30 minutes and then filtered. The filtrate was allowed to evaporate at room temperature for three days, and then green needle crystals were obtain in 72% yield. Selected IR (cm-1, KBr pellet): 3374(m), 3091(w), 2994(w), 1621(m), 1579(s), 1463(s), 1382(s), 1224(m), 1192(m), 1065(m), 958(w), 707(s), 586(w).

Refinement top

The H atoms of water were located from difference Fourier maps and included in the final refinement by using geometrical restrains, while the other hydrogen atom positions were generated geometrically and these H atoms were allowed to ride on their parent atoms.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1994); data reduction: SAINT (Siemens, 1994); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Coordination environment of the nickel atom in (1). Displacement ellipsoids are drawn at the 30% probability level. Symmetry code: (i) -x + 1, -y, -z + 1; (ii) x + 1, y, z; (iii) -x, -y, -z + 1.
[Figure 2] Fig. 2. View of the two-dimensional network structure in (1) formed by interchain S···N interactions and multiple O—H···O hydrogen-bonding interactions
catena-Poly[[diaquanickel(II)]-bis(µ-2-{[5-(pyridin-4-yl)-1,3,4- oxadiazol-2-yl]sulfanyl}acetato)] top
Crystal data top
[Ni(C9H6N3O3S)2(H2O)2]F(000) = 580
Mr = 567.20Dx = 1.821 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -p 2ybcCell parameters from 1733 reflections
a = 11.8862 (18) Åθ = 2.6–24.8°
b = 5.6431 (9) ŵ = 1.20 mm1
c = 15.500 (2) ÅT = 293 K
β = 95.687 (2)°Needle, pale green
V = 1034.5 (3) Å30.15 × 0.13 × 0.07 mm
Z = 2
Data collection top
Siemens SMART CCD
diffractometer
1488 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.034
Graphite monochromatorθmax = 25.0°, θmin = 2.6°
ω scanh = 1413
7195 measured reflectionsk = 66
1822 independent reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0266P)2 + 0.8247P]
where P = (Fo2 + 2Fc2)/3
1822 reflections(Δ/σ)max < 0.001
166 parametersΔρmax = 0.25 e Å3
2 restraintsΔρmin = 0.28 e Å3
Crystal data top
[Ni(C9H6N3O3S)2(H2O)2]V = 1034.5 (3) Å3
Mr = 567.20Z = 2
Monoclinic, P21/cMo Kα radiation
a = 11.8862 (18) ŵ = 1.20 mm1
b = 5.6431 (9) ÅT = 293 K
c = 15.500 (2) Å0.15 × 0.13 × 0.07 mm
β = 95.687 (2)°
Data collection top
Siemens SMART CCD
diffractometer
1488 reflections with I > 2σ(I)
7195 measured reflectionsRint = 0.034
1822 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0282 restraints
wR(F2) = 0.068H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.25 e Å3
1822 reflectionsΔρmin = 0.28 e Å3
166 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.00000.50000.01764 (14)
S10.22867 (5)0.52524 (11)0.32025 (4)0.02534 (17)
O10.03642 (14)0.3493 (3)0.36616 (11)0.0251 (4)
N10.33708 (16)0.0597 (4)0.46039 (13)0.0214 (5)
C10.3094 (2)0.2565 (5)0.41861 (17)0.0267 (6)
H10.36400.37910.40990.032*
O20.42671 (14)0.2203 (3)0.40344 (10)0.0223 (4)
N20.04253 (19)0.0307 (4)0.33372 (17)0.0349 (6)
C20.2055 (2)0.2898 (5)0.38770 (18)0.0285 (6)
H20.18950.43220.35860.034*
O30.41911 (15)0.0211 (3)0.28832 (12)0.0307 (4)
N30.14163 (18)0.0782 (4)0.30919 (16)0.0329 (6)
C30.1253 (2)0.1121 (5)0.39981 (16)0.0227 (6)
O40.49432 (15)0.2945 (3)0.41919 (12)0.0258 (4)
C40.1526 (2)0.0926 (5)0.44222 (16)0.0254 (6)
H40.09960.21830.45120.030*
C50.2588 (2)0.1107 (5)0.47130 (16)0.0229 (6)
H50.27690.25150.50050.027*
C60.0151 (2)0.1322 (5)0.36561 (17)0.0241 (6)
C70.13385 (19)0.2981 (5)0.32989 (16)0.0233 (6)
C80.3334 (2)0.3561 (5)0.26933 (16)0.0241 (6)
H8A0.29530.27840.21710.029*
H8B0.38950.46840.24950.029*
C90.39724 (19)0.1663 (5)0.32486 (16)0.0210 (5)
H4B0.459 (2)0.417 (3)0.4250 (18)0.032*
H4A0.470 (2)0.229 (5)0.3738 (11)0.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0149 (2)0.0173 (2)0.0210 (2)0.00045 (18)0.00284 (17)0.00042 (19)
S10.0185 (3)0.0219 (3)0.0362 (4)0.0001 (3)0.0056 (3)0.0036 (3)
O10.0187 (9)0.0241 (10)0.0338 (10)0.0013 (8)0.0087 (8)0.0002 (8)
N10.0174 (11)0.0225 (11)0.0245 (11)0.0009 (9)0.0030 (9)0.0010 (9)
C10.0225 (14)0.0194 (13)0.0393 (16)0.0029 (11)0.0090 (12)0.0014 (12)
O20.0231 (9)0.0221 (9)0.0215 (10)0.0018 (7)0.0011 (7)0.0020 (7)
N20.0254 (12)0.0278 (13)0.0546 (16)0.0049 (11)0.0187 (11)0.0056 (12)
C20.0277 (14)0.0201 (14)0.0388 (16)0.0006 (11)0.0095 (12)0.0058 (12)
O30.0350 (11)0.0293 (11)0.0281 (10)0.0086 (9)0.0040 (8)0.0047 (9)
N30.0207 (12)0.0244 (13)0.0563 (16)0.0032 (10)0.0178 (11)0.0030 (11)
C30.0178 (12)0.0250 (14)0.0253 (14)0.0019 (11)0.0016 (10)0.0022 (11)
O40.0288 (11)0.0211 (10)0.0271 (10)0.0007 (8)0.0013 (8)0.0001 (8)
C40.0212 (13)0.0262 (14)0.0284 (14)0.0043 (11)0.0006 (11)0.0016 (12)
C50.0213 (13)0.0242 (14)0.0236 (14)0.0002 (11)0.0038 (11)0.0027 (11)
C60.0178 (13)0.0255 (14)0.0293 (14)0.0020 (11)0.0038 (11)0.0020 (12)
C70.0144 (12)0.0266 (15)0.0291 (14)0.0027 (11)0.0036 (11)0.0026 (12)
C80.0164 (13)0.0307 (15)0.0258 (14)0.0006 (11)0.0049 (11)0.0050 (12)
C90.0121 (12)0.0275 (14)0.0244 (14)0.0027 (11)0.0063 (10)0.0033 (12)
Geometric parameters (Å, º) top
Ni1—O2i2.0702 (16)N2—C61.275 (3)
Ni1—O22.0702 (16)N2—N31.414 (3)
Ni1—O42.0781 (18)C2—C31.384 (3)
Ni1—O4i2.0781 (18)C2—H20.9500
Ni1—N1ii2.1157 (19)O3—C91.239 (3)
Ni1—N1iii2.1157 (19)N3—C71.287 (3)
S1—C71.723 (3)C3—C41.383 (4)
S1—C81.811 (2)C3—C61.465 (3)
O1—C71.367 (3)O4—H4B0.816 (10)
O1—C61.369 (3)O4—H4A0.819 (10)
N1—C51.337 (3)C4—C51.385 (3)
N1—C11.343 (3)C4—H40.9500
N1—Ni1iv2.1157 (19)C5—H50.9500
C1—C21.380 (4)C8—C91.528 (3)
C1—H10.9500C8—H8A0.9900
O2—C91.271 (3)C8—H8B0.9900
O2i—Ni1—O2180.00 (6)C7—N3—N2105.6 (2)
O2i—Ni1—O486.66 (7)C4—C3—C2118.6 (2)
O2—Ni1—O493.34 (7)C4—C3—C6119.8 (2)
O2i—Ni1—O4i93.34 (7)C2—C3—C6121.6 (2)
O2—Ni1—O4i86.66 (7)Ni1—O4—H4B127 (2)
O4—Ni1—O4i180.0Ni1—O4—H4A98 (2)
O2i—Ni1—N1ii88.50 (7)H4B—O4—H4A110 (3)
O2—Ni1—N1ii91.50 (7)C3—C4—C5118.7 (2)
O4—Ni1—N1ii85.90 (7)C3—C4—H4120.6
O4i—Ni1—N1ii94.10 (7)C5—C4—H4120.6
O2i—Ni1—N1iii91.50 (7)N1—C5—C4123.4 (2)
O2—Ni1—N1iii88.50 (7)N1—C5—H5118.3
O4—Ni1—N1iii94.10 (7)C4—C5—H5118.3
O4i—Ni1—N1iii85.90 (7)N2—C6—O1113.0 (2)
N1ii—Ni1—N1iii180.0N2—C6—C3128.2 (2)
C7—S1—C897.45 (12)O1—C6—C3118.9 (2)
C7—O1—C6101.82 (19)N3—C7—O1113.0 (2)
C5—N1—C1117.0 (2)N3—C7—S1129.2 (2)
C5—N1—Ni1iv119.62 (16)O1—C7—S1117.79 (18)
C1—N1—Ni1iv123.17 (17)C9—C8—S1116.64 (17)
N1—C1—C2123.4 (2)C9—C8—H8A108.1
N1—C1—H1118.3S1—C8—H8A108.1
C2—C1—H1118.3C9—C8—H8B108.1
C9—O2—Ni1127.26 (16)S1—C8—H8B108.1
C6—N2—N3106.5 (2)H8A—C8—H8B107.3
C1—C2—C3118.8 (2)O3—C9—O2126.3 (2)
C1—C2—H2120.6O3—C9—C8117.1 (2)
C3—C2—H2120.6O2—C9—C8116.5 (2)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z; (iii) x, y, z+1; (iv) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O30.82 (1)1.83 (1)2.633 (3)167 (3)
O4—H4B···O2v0.82 (1)2.11 (2)2.857 (3)153 (3)
Symmetry code: (v) x, y1, z.

Experimental details

Crystal data
Chemical formula[Ni(C9H6N3O3S)2(H2O)2]
Mr567.20
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.8862 (18), 5.6431 (9), 15.500 (2)
β (°) 95.687 (2)
V3)1034.5 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.20
Crystal size (mm)0.15 × 0.13 × 0.07
Data collection
DiffractometerSiemens SMART CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7195, 1822, 1488
Rint0.034
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.068, 1.03
No. of reflections1822
No. of parameters166
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.28

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1994), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ni1—O22.0702 (16)Ni1—N1i2.1157 (19)
Ni1—O42.0781 (18)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O30.819 (10)1.830 (12)2.633 (3)167 (3)
O4—H4B···O2ii0.816 (10)2.105 (16)2.857 (3)153 (3)
Symmetry code: (ii) x, y1, z.
 

Acknowledgements

This work was supported by the Natural Science Foundation of China.

References

First citationDu, M., Zhang, Z. H., Zhao, X. J. & Xu, Q. (2006). Inorg. Chem. 45, 5785–5792.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLundin, N. J., Blackman, A. G., Gordon, K. C. & Officer, D. L. (2006). Angew. Chem. Int. Ed. 45, 2582–2584.  Web of Science CrossRef CAS Google Scholar
First citationMa, C., Tian, G. & Zhang, R. (2007). Inorg. Chim. Acta, 360, 1762–1766.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1994). SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSiemens (1996). SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWang, H.-R. & Li, G.-T. (2011). Acta Cryst. E67, m1457.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, Y. T., Tang, G. M. & Quang, Z. W. (2007). Polyhedron, 26, 4542–4550.  Web of Science CSD CrossRef CAS Google Scholar
First citationWu, B. L., Wang, R. Y., Ye, E., Zhang, H. Y. & Hou, H. W. (2010). Inorg. Chem. Commun. 13, 157–159.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages m763-m764
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds