organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(Quinolin-8-yl)quinoline-2-carbox­amide

aSchool of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
*Correspondence e-mail: xiaopingshen@163.com

(Received 28 April 2012; accepted 4 May 2012; online 12 May 2012)

In the title compound, C19H13N3O, the dihedral angle between the two quinoline systems is 11.54 (3)°. The mol­ecular conformation is stabilized by intra­molecular N—H⋯N and C—H⋯O hydrogen bonds, with N—H⋯N being bifurcated towards the two N atoms of the two quinoline rings. In the crystal, there are weak intermolecular ππ inter­actions present involving the quinoline rings [centroid–centroid distance 3.7351 (14) Å].

Related literature

For the synthesis of the title compound and related structures, see: Kim et al. (2009[Kim II, J., Kwak, H. Y., Yoon, J. H., Ryu, D. W., Yoo, I. Y., Yang, N., Cho, B. K., Park, J. G., Lee, H. & Hong, C. S. (2009). Inorg. Chem. 48, 2956-2966.]). For applications of the title compound and background to the synthesis, see: Wang et al. (2011[Wang, S., Ding, X. H., Zuo, J. L., You, X. Z. & Huang, W. (2011). Coord. Chem. Rev. 256, 1713-1732.]).

[Scheme 1]

Experimental

Crystal data
  • C19H13N3O

  • Mr = 299.32

  • Orthorhombic, P 21 21 21

  • a = 6.3651 (13) Å

  • b = 11.475 (2) Å

  • c = 19.861 (4) Å

  • V = 1450.6 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 173 K

  • 0.25 × 0.15 × 0.15 mm

Data collection
  • Rigaku Saturn 724 CCD diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.978, Tmax = 0.987

  • 6769 measured reflections

  • 1553 independent reflections

  • 1442 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.082

  • S = 1.06

  • 1553 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.10 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯N1 0.88 2.27 2.693 (2) 109
N2—H2A⋯N3 0.88 2.27 2.684 (2) 109
C12—H12⋯O1 0.95 2.25 2.867 (2) 122

Data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The title compound (Hqcq) can act as a tridentate ligand, and has been incorporated into the cyanometalate building block [Fe(qcq)(CN)3]- {qcq = 8-(2-quinolinecarboxamido)quinoline anion}, in which the FeIII ion is coordinated by three carbon atoms of cyanide groups and three N-donors from the qcq ligand in a mer-arrangement (Kim et al., 2009). Through replacement of the cyanide ligands the Fe(qcq) fragment can coordinate to transition metal ions to form various polynuclear and one-dimensional structures with fascinating magnetic properties such as single molecular magnets and single-chain magnets (Kim et al., 2009; Wang et al., 2011). Herein, the crystal structure of the tridentate ligand of Hqcq is presented.

The molecular structure of the title compound is shown in Fig. 1. The quinoline rings are essentially planar, with a maximum deviation of 0.046 (1) Å for atom C8 in the (N1/C1-C9) ring and 0.016 (1) Å for atom C14 in the (N3/C11-C19) ring. The dihedral angle between the two quinoline rings is 11.54 (3)°. The amide (N2/C10/O1) plane forms dihedral angles of 14.1 (1)° and 4.2 (1)° with the quinoline rings of (N1/C1-C9) and (N3/C11-C19), respectively. The bond lengths of the title molecule are slightly different from those reported for [Fe(qcq)(CN)3]- (Kim et al., 2009), probably owing to the coordination effect to the tridentate ligand. There are intramolecular hydrogen-bonding interactions between the amido N atom and the N atoms of the quinoline rings, and between the O atom of amide group and the C atom of the quinoline ring. The amido N atom (N2) forms bifurcated hydrogen bonds towards the two N atoms (N1, N3) of the two quinoline rings (Table 1).

In the crystal structure, no significant intermolecular hydrogen bonds are observed. The crystal structure features intermolecular π-π interactions between different types of quinoline rings with a distance of ca. 3.735 Å between the centroids of the respective rings (Fig. 2), and the adjacent rings tilted against each other.

Related literature top

For the synthesis of the title compound and related structures, see: Kim et al. (2009). For applications of the title compound and background to the synthesis, see: Wang et al. (2011).

Experimental top

The compound of 8-(2-quinolinecarboxamido)quinoline (Hqcq) was preparecd according to a literature method (Kim et al., 2009). Then, 0.3 mmol of Hqcq was added to MeCN (20 mL) with stirring. The resulting solution was filtered and the filtrate was left for slow evaporation in the dark at room temperature. Yellow block-shaped crystals of the title compound suitable for single-crystal X-ray diffraction were obtained after two weeks. Melting point = 429.6-430.5 K. IR (KBr, cm-1): 3314(s), 3044(m), 1678(vs), 1523(vs), 1488(s), 1427(s), 1325(s), 1126(m), 913(s), 834(s), 764(vs), 611(m), 588(m).

Refinement top

All non-H atoms were refined with anisotropic thermal parameters. The C- and N-bound H atoms were calculated in idealized positions and included in the refinement in a riding mode (C-H = 0.95 Å, N-H = 0.88 Å) with Uiso for H assigned as 1.2 times Ueq of the attached atoms. In the absence of atoms heavier than Si and with Mo Kα radiation used Friedel-pair reflections have been merged (using a MERG 3 command) during the refinement. Assignment of the absolute structure is arbitrary.

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of the title compound with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing diagram of the title compound showing the intermolecular π-π interactions.The distances shown are between the centroids of the respective rings, and the symmetry operator codes for generating adjacent aromatic rings are -1+x, y, z and 1+x, y, z.
N-(Quinolin-8-yl)quinoline-2-carboxamide top
Crystal data top
C19H13N3OF(000) = 624
Mr = 299.32Dx = 1.371 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P2ac2abCell parameters from 6054 reflections
a = 6.3651 (13) Åθ = 3.4–29.0°
b = 11.475 (2) ŵ = 0.09 mm1
c = 19.861 (4) ÅT = 173 K
V = 1450.6 (5) Å3Block, yellow
Z = 40.25 × 0.15 × 0.15 mm
Data collection top
Rigaku Saturn 724 CCD
diffractometer
1553 independent reflections
Radiation source: Rotating Anode1442 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ϕ and ω scansθmax = 25.3°, θmin = 3.4°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 76
Tmin = 0.978, Tmax = 0.987k = 1313
6769 measured reflectionsl = 2318
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0494P)2]
where P = (Fo2 + 2Fc2)/3
1553 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.10 e Å3
0 restraintsΔρmin = 0.13 e Å3
Crystal data top
C19H13N3OV = 1450.6 (5) Å3
Mr = 299.32Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.3651 (13) ŵ = 0.09 mm1
b = 11.475 (2) ÅT = 173 K
c = 19.861 (4) Å0.25 × 0.15 × 0.15 mm
Data collection top
Rigaku Saturn 724 CCD
diffractometer
1553 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1442 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.987Rint = 0.036
6769 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.082H-atom parameters constrained
S = 1.06Δρmax = 0.10 e Å3
1553 reflectionsΔρmin = 0.13 e Å3
208 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0149 (2)0.41328 (13)0.73413 (7)0.0458 (4)
N10.1752 (2)0.46907 (14)0.56729 (8)0.0328 (4)
C10.3327 (3)0.44137 (16)0.52317 (10)0.0309 (4)
N20.1160 (2)0.54135 (14)0.65635 (8)0.0336 (4)
H2A0.08980.57070.61630.040*
C20.3099 (3)0.47410 (18)0.45477 (10)0.0367 (5)
H20.18740.51460.44070.044*
N30.3570 (3)0.69181 (14)0.58750 (8)0.0385 (4)
C30.4630 (3)0.44780 (19)0.40896 (10)0.0405 (5)
H30.44530.46910.36310.049*
C40.6456 (3)0.38961 (18)0.42926 (11)0.0416 (5)
H40.75140.37240.39700.050*
C50.6737 (3)0.35718 (18)0.49498 (10)0.0390 (5)
H50.79930.31870.50820.047*
C60.5164 (3)0.38082 (16)0.54318 (10)0.0324 (5)
C70.5302 (3)0.34377 (17)0.61049 (10)0.0364 (5)
H70.65050.30240.62570.044*
C80.3693 (3)0.36763 (17)0.65394 (10)0.0358 (5)
H80.37390.34130.69930.043*
C90.1960 (3)0.43222 (16)0.62995 (10)0.0317 (5)
C100.0232 (3)0.46113 (17)0.67895 (10)0.0329 (4)
C110.2965 (3)0.58357 (17)0.68860 (10)0.0322 (5)
C120.3571 (3)0.55062 (19)0.75238 (9)0.0362 (5)
H120.27160.49940.77810.043*
C130.5465 (3)0.59343 (19)0.77909 (10)0.0409 (6)
H130.58800.56970.82290.049*
C140.6721 (3)0.66767 (18)0.74419 (10)0.0388 (5)
H140.79990.69450.76350.047*
C150.6127 (3)0.70472 (17)0.67950 (10)0.0341 (5)
C160.7326 (3)0.78261 (18)0.64020 (11)0.0404 (5)
H160.86040.81340.65720.049*
C170.6643 (4)0.81326 (18)0.57795 (11)0.0423 (5)
H170.74230.86670.55130.051*
C180.4767 (4)0.76476 (18)0.55348 (10)0.0436 (6)
H180.43300.78600.50940.052*
C190.4227 (3)0.66226 (17)0.65098 (10)0.0315 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0481 (9)0.0504 (9)0.0389 (9)0.0030 (8)0.0031 (8)0.0133 (7)
N10.0336 (9)0.0318 (9)0.0328 (9)0.0016 (8)0.0003 (8)0.0013 (7)
C10.0303 (10)0.0286 (10)0.0337 (10)0.0012 (9)0.0019 (9)0.0059 (8)
N20.0334 (9)0.0372 (9)0.0301 (8)0.0003 (8)0.0032 (8)0.0028 (7)
C20.0339 (11)0.0405 (12)0.0356 (11)0.0021 (11)0.0030 (9)0.0031 (9)
N30.0466 (10)0.0354 (9)0.0335 (9)0.0013 (9)0.0026 (9)0.0011 (7)
C30.0426 (12)0.0425 (12)0.0366 (11)0.0039 (11)0.0025 (10)0.0047 (10)
C40.0383 (12)0.0374 (12)0.0492 (14)0.0031 (11)0.0089 (11)0.0080 (10)
C50.0342 (11)0.0317 (11)0.0512 (14)0.0025 (11)0.0032 (10)0.0044 (10)
C60.0317 (11)0.0257 (10)0.0397 (11)0.0023 (9)0.0021 (9)0.0040 (8)
C70.0357 (11)0.0287 (10)0.0448 (12)0.0019 (10)0.0075 (10)0.0004 (9)
C80.0393 (11)0.0314 (10)0.0367 (11)0.0020 (10)0.0046 (10)0.0003 (9)
C90.0343 (11)0.0276 (10)0.0332 (11)0.0046 (9)0.0032 (9)0.0015 (8)
C100.0328 (11)0.0327 (10)0.0332 (10)0.0056 (10)0.0031 (9)0.0010 (9)
C110.0324 (11)0.0337 (10)0.0307 (11)0.0043 (10)0.0002 (9)0.0053 (8)
C120.0385 (11)0.0417 (12)0.0283 (10)0.0031 (11)0.0018 (10)0.0015 (9)
C130.0418 (12)0.0510 (14)0.0300 (11)0.0074 (12)0.0052 (10)0.0054 (9)
C140.0352 (11)0.0462 (13)0.0350 (12)0.0071 (11)0.0055 (10)0.0104 (10)
C150.0360 (11)0.0332 (10)0.0330 (10)0.0030 (10)0.0024 (9)0.0092 (9)
C160.0402 (12)0.0358 (11)0.0454 (13)0.0030 (11)0.0036 (10)0.0139 (10)
C170.0496 (14)0.0350 (11)0.0423 (13)0.0087 (11)0.0051 (11)0.0044 (9)
C180.0563 (14)0.0372 (12)0.0374 (11)0.0050 (12)0.0009 (11)0.0031 (9)
C190.0336 (10)0.0313 (10)0.0295 (10)0.0053 (9)0.0008 (9)0.0052 (8)
Geometric parameters (Å, º) top
O1—C101.227 (2)C7—H70.9500
N1—C91.321 (2)C8—C91.412 (3)
N1—C11.369 (2)C8—H80.9500
C1—C21.417 (3)C9—C101.505 (3)
C1—C61.417 (3)C11—C121.377 (3)
N2—C101.354 (3)C11—C191.421 (3)
N2—C111.402 (2)C12—C131.406 (3)
N2—H2A0.8800C12—H120.9500
C2—C31.367 (3)C13—C141.358 (3)
C2—H20.9500C13—H130.9500
N3—C181.318 (3)C14—C151.405 (3)
N3—C191.371 (2)C14—H140.9500
C3—C41.400 (3)C15—C161.411 (3)
C3—H30.9500C15—C191.421 (3)
C4—C51.369 (3)C16—C171.357 (3)
C4—H40.9500C16—H160.9500
C5—C61.412 (3)C17—C181.405 (3)
C5—H50.9500C17—H170.9500
C6—C71.405 (3)C18—H180.9500
C7—C81.367 (3)
C9—N1—C1117.09 (17)C8—C9—C10117.92 (17)
N1—C1—C2118.50 (18)O1—C10—N2124.89 (19)
N1—C1—C6122.59 (17)O1—C10—C9120.68 (19)
C2—C1—C6118.90 (18)N2—C10—C9114.42 (16)
C10—N2—C11128.30 (17)C12—C11—N2123.71 (19)
C10—N2—H2A115.8C12—C11—C19120.01 (19)
C11—N2—H2A115.8N2—C11—C19116.26 (17)
C3—C2—C1120.5 (2)C11—C12—C13119.4 (2)
C3—C2—H2119.8C11—C12—H12120.3
C1—C2—H2119.8C13—C12—H12120.3
C18—N3—C19116.89 (19)C14—C13—C12122.1 (2)
C2—C3—C4120.37 (19)C14—C13—H13118.9
C2—C3—H3119.8C12—C13—H13118.9
C4—C3—H3119.8C13—C14—C15119.8 (2)
C5—C4—C3120.8 (2)C13—C14—H14120.1
C5—C4—H4119.6C15—C14—H14120.1
C3—C4—H4119.6C14—C15—C16123.5 (2)
C4—C5—C6120.1 (2)C14—C15—C19119.3 (2)
C4—C5—H5119.9C16—C15—C19117.19 (18)
C6—C5—H5119.9C17—C16—C15119.7 (2)
C7—C6—C5122.86 (19)C17—C16—H16120.2
C7—C6—C1117.81 (18)C15—C16—H16120.2
C5—C6—C1119.30 (18)C16—C17—C18119.0 (2)
C8—C7—C6119.55 (19)C16—C17—H17120.5
C8—C7—H7120.2C18—C17—H17120.5
C6—C7—H7120.2N3—C18—C17124.4 (2)
C7—C8—C9118.52 (19)N3—C18—H18117.8
C7—C8—H8120.7C17—C18—H18117.8
C9—C8—H8120.7N3—C19—C11117.95 (18)
N1—C9—C8124.35 (19)N3—C19—C15122.76 (19)
N1—C9—C10117.73 (18)C11—C19—C15119.28 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N10.882.272.693 (2)109
N2—H2A···N30.882.272.684 (2)109
C12—H12···O10.952.252.867 (2)122

Experimental details

Crystal data
Chemical formulaC19H13N3O
Mr299.32
Crystal system, space groupOrthorhombic, P212121
Temperature (K)173
a, b, c (Å)6.3651 (13), 11.475 (2), 19.861 (4)
V3)1450.6 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.25 × 0.15 × 0.15
Data collection
DiffractometerRigaku Saturn 724 CCD
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.978, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
6769, 1553, 1442
Rint0.036
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.082, 1.06
No. of reflections1553
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.10, 0.13

Computer programs: CrystalClear (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N10.882.272.693 (2)109.0
N2—H2A···N30.882.272.684 (2)109.0
C12—H12···O10.952.252.867 (2)122.0
 

Acknowledgements

The authors thank the National Natural Science Foundation of China for financial support (grant No. 51072071).

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKim II, J., Kwak, H. Y., Yoon, J. H., Ryu, D. W., Yoo, I. Y., Yang, N., Cho, B. K., Park, J. G., Lee, H. & Hong, C. S. (2009). Inorg. Chem. 48, 2956–2966.  PubMed Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, S., Ding, X. H., Zuo, J. L., You, X. Z. & Huang, W. (2011). Coord. Chem. Rev. 256, 1713–1732.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds