organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4Z)-4-[(2-Chloro­anilino)(phen­yl)methyl­­idene]-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one

aSchool of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001, People's Republic of China, bSchool of Science, Harbin University, Harbin 150080, People's Republic of China, cSchool of Science, Northeast Forestry University, Harbin 150040, People's Republic of China, and dDepartment of Chemistry, East China Normal University, Shanghai 200062, People's Republic of China
*Correspondence e-mail: lining1957@126.com

(Received 18 April 2012; accepted 4 May 2012; online 23 May 2012)

The title compound, C23H18ClN3O, exists in an enamine–keto form with the amino group involved in an intra­molecular N—H⋯O hydrogen bond. The five-membered ring is nearly planar, the largest deviation being 0.0004 (7) Å, and makes dihedral angles of 16.62 (6), 41.89 (5) and 71.27 (4)° with the phenyl rings. In the crystal, weak C—H⋯O hydrogen bonds link the mol­ecules into supra­molecular chains along the b axis.

Related literature

For general background to Schiff bases derived from 1-phenyl-3-methyl-4-benzoyl-1H-pyrazol-5(4H)-one and their pharmaceutical and agrochemical applications, see: Casas et al. (2007[Casas, J. S., García-Tasende, M. S., Sánchez, A., Sordo, J. & Touceda, Á. (2007). Coord. Chem. Rev. 251, 1561-1589.]); Zhang et al. (2008[Zhang, H. Q., Li, J. Z., Zhang, Y. & Zhang, D. (2008). Chin. J. Inorg. Chem. 24, 990-993.]). For related structures, see: Zhang et al. (2007[Zhang, H.-Q., Li, J.-Z., Zhang, Y., Zhang, D. & Su, Z.-H. (2007). Acta Cryst. E63, o3536.]); Li et al. (2009[Li, J., Li, J.-Z., Li, J.-Q., Zhang, H.-Q. & Li, J.-M. (2009). Acta Cryst. E65, o1824.]); Chi et al. (2010[Chi, X., Xiao, J., Yin, Y. & Xia, M. (2010). Acta Cryst. E66, o249.]).

[Scheme 1]

Experimental

Crystal data
  • C23H18ClN3O

  • Mr = 387.85

  • Monoclinic, P 21 /n

  • a = 9.0425 (3) Å

  • b = 18.5180 (7) Å

  • c = 11.1983 (4) Å

  • β = 90.423 (1)°

  • V = 1875.09 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 296 K

  • 0.22 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.951, Tmax = 0.959

  • 17018 measured reflections

  • 4637 independent reflections

  • 4251 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.095

  • S = 1.04

  • 4613 reflections

  • 258 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O1 0.879 (18) 1.915 (18) 2.6800 (14) 144.5 (16)
C6—H6⋯O1 0.93 2.31 2.9027 (16) 121
C16—H16⋯O1i 0.93 2.56 3.4797 (17) 170
Symmetry code: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The 1-phenyl-3-methyl-4-benzoyl-1H-pyrazol-5(4H)-ones (PMBP) are a novel type of β-enaminoketone. The Schiff bases derived from PMBP have attracted much attention due to their applications in pharmaceutical and agrochemical fields (e.g. Casas et al., 2007; Zhang et al., 2008). In order to expand this field, we now report the synthesis and structure of the title compound.

The molecular structure of the title compound is shown in Fig.1. Atoms O1, C10, C9 and C11 of the PMBP moiety and atom N3 of the o-chloroaniline group are coplanar, the largest deviation being 0.038 (11) Å for atom C10. The dihedral angle between this mean plane and the pyrazole ring of PMBP is 5.76 (3)°. The C9—C11 bond length of 1.3887 (15) Å, between usual C—C and C=C bond, indicates the delocalization of the electrons because of the addition of a proton to N3 is more favorable than to O2. The atom O2 of the PMBP moiety and the N3 atom of the o-chloroaniline group are on the same side of the C9—C11 bond, which are available for coordination with metal cations. A strong intramolecular hydrogen bond N3—H3A···O1 (Table 1) is also indicative of the enamine-keto form. In the crystal structure, the intramolecular hydrogen bond C6—H6···O1 and intermolecular hydrogen bond C16—H16···O1 are observed, the latter links the molecules into supramolecular chains along the b axis. All bond lengths and angles are normal and comparable with those found in related compounds (Zhang et al., 2007; Li et al., 2009; Chi et al., 2010).

Related literature top

For general background to Schiff bases derived from 1-phenyl-3-methyl-4-benzoyl-1H-pyrazol-5(4H)-one and their pharmaceutical and agrochemical applications, see: Casas et al. (2007); Zhang et al. (2008). For related structures, see: Zhang et al. (2007); Li et al. (2009); Chi et al. (2010).

Experimental top

A mixture of a 10 ml PMBP (2 mmol, 0.5566 g) anhydrous ethanol solution, and a 0.21 ml of an o-chloroaniline (2 mmol, 0.2545 g) solution was refluxed for ca 5 h, with addition of a few drops of glacial acetic acid as a catalyst. The ethanol was removed by evaporation and the resulting green precipitate formed was filtered off, washed with cold anhydrous ethanol and dried in air. Yellow block single crystals suitable for analysis were obtained by slow evaporation of a solution in anhydrous ethanol at room temperature for a few days.

Refinement top

The H3A atom bonded to N3 was located in a difference Fourier map and refined freely. The other H atoms were placed in calculated positions, with C—H = 0.93 Å for phenyl, 0.96 Å for methyl H atoms, and refined as riding, with Uiso(H) = 1.2Ueq(C) for phenyl H, and 1.5Ueq(C) for methyl H.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound (thermal ellipsoids are shown at the 30% probability level).
(4Z)-4-[(2-Chloroanilino)(phenyl)methylidene]-3-methyl-1-phenyl- 1H-pyrazol-5(4H)-one top
Crystal data top
C23H18ClN3OF(000) = 808.0
Mr = 387.85Dx = 1.374 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P2ynCell parameters from 9949 reflections
a = 9.0425 (3) Åθ = 3.1–28.2°
b = 18.5180 (7) ŵ = 0.22 mm1
c = 11.1983 (4) ÅT = 296 K
β = 90.423 (1)°Block, yellow
V = 1875.09 (12) Å30.22 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
4637 independent reflections
Radiation source: fine-focus sealed tube4251 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
ω scansθmax = 28.2°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1112
Tmin = 0.951, Tmax = 0.959k = 2423
17018 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0482P)2 + 0.9306P]
where P = (Fo2 + 2Fc2)/3
4613 reflections(Δ/σ)max < 0.001
258 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C23H18ClN3OV = 1875.09 (12) Å3
Mr = 387.85Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.0425 (3) ŵ = 0.22 mm1
b = 18.5180 (7) ÅT = 296 K
c = 11.1983 (4) Å0.22 × 0.20 × 0.18 mm
β = 90.423 (1)°
Data collection top
Bruker SMART CCD
diffractometer
4637 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4251 reflections with I > 2σ(I)
Tmin = 0.951, Tmax = 0.959Rint = 0.013
17018 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.37 e Å3
4613 reflectionsΔρmin = 0.34 e Å3
258 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.86725 (13)0.06692 (6)0.09829 (10)0.0186 (2)
C20.87873 (15)0.07367 (7)0.22145 (11)0.0238 (2)
H20.84760.03640.27130.029*
C30.93725 (15)0.13668 (7)0.26969 (12)0.0271 (3)
H30.94540.14130.35210.033*
C40.98343 (14)0.19250 (7)0.19629 (12)0.0253 (3)
H41.01810.23540.22910.030*
C50.97757 (15)0.18398 (7)0.07385 (12)0.0284 (3)
H51.01160.22080.02420.034*
C60.92153 (15)0.12112 (7)0.02397 (11)0.0260 (3)
H60.92030.11530.05850.031*
C70.70636 (14)0.10296 (6)0.05496 (10)0.0196 (2)
C80.67068 (17)0.17489 (7)0.10804 (11)0.0269 (3)
H8A0.71550.17870.18520.040*
H8B0.70830.21240.05700.040*
H8C0.56540.17980.11610.040*
C90.68060 (13)0.07593 (6)0.06368 (10)0.0187 (2)
C100.74394 (13)0.00384 (6)0.06478 (10)0.0198 (2)
C110.62430 (12)0.10790 (6)0.16590 (10)0.0164 (2)
C120.56486 (12)0.18268 (6)0.16522 (10)0.0169 (2)
C130.43881 (14)0.20000 (7)0.09874 (11)0.0234 (2)
H130.38770.16410.05770.028*
C140.38969 (16)0.27111 (8)0.09393 (13)0.0326 (3)
H140.30460.28260.05090.039*
C150.46709 (18)0.32468 (7)0.15296 (14)0.0359 (3)
H150.43530.37230.14780.043*
C160.59174 (17)0.30782 (7)0.21975 (13)0.0318 (3)
H160.64340.34420.25940.038*
C170.63988 (14)0.23657 (7)0.22775 (11)0.0225 (2)
H170.72180.22500.27470.027*
C180.57642 (12)0.08798 (6)0.38216 (9)0.0161 (2)
C190.43971 (13)0.12143 (6)0.39789 (10)0.0189 (2)
H190.38510.13650.33170.023*
C200.38483 (13)0.13232 (6)0.51203 (11)0.0211 (2)
H200.29380.15480.52180.025*
C210.46478 (14)0.10990 (6)0.61183 (10)0.0213 (2)
H210.42700.11720.68790.026*
C220.60091 (13)0.07666 (6)0.59773 (10)0.0196 (2)
H220.65500.06160.66420.024*
C230.65570 (12)0.06605 (6)0.48371 (10)0.0166 (2)
Cl10.82565 (3)0.023579 (16)0.46642 (3)0.02280 (9)
H3A0.678 (2)0.0288 (10)0.2610 (16)0.034 (5)*
N10.79928 (12)0.00523 (5)0.04860 (8)0.0200 (2)
N20.77460 (12)0.05536 (5)0.12101 (9)0.0210 (2)
N30.63332 (12)0.07069 (6)0.26879 (8)0.0194 (2)
O10.74879 (11)0.04063 (5)0.14826 (8)0.0267 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0193 (5)0.0172 (5)0.0194 (5)0.0015 (4)0.0010 (4)0.0038 (4)
C20.0306 (6)0.0216 (6)0.0193 (5)0.0019 (5)0.0034 (5)0.0022 (4)
C30.0305 (6)0.0278 (7)0.0232 (6)0.0001 (5)0.0044 (5)0.0099 (5)
C40.0191 (5)0.0218 (6)0.0349 (7)0.0013 (4)0.0014 (5)0.0117 (5)
C50.0285 (6)0.0243 (6)0.0322 (7)0.0094 (5)0.0021 (5)0.0023 (5)
C60.0308 (6)0.0258 (6)0.0214 (6)0.0095 (5)0.0013 (5)0.0023 (5)
C70.0268 (6)0.0176 (5)0.0143 (5)0.0023 (4)0.0000 (4)0.0007 (4)
C80.0436 (7)0.0197 (6)0.0177 (5)0.0079 (5)0.0046 (5)0.0039 (4)
C90.0255 (6)0.0154 (5)0.0152 (5)0.0036 (4)0.0005 (4)0.0012 (4)
C100.0256 (6)0.0175 (5)0.0164 (5)0.0044 (4)0.0019 (4)0.0001 (4)
C110.0179 (5)0.0160 (5)0.0152 (5)0.0010 (4)0.0007 (4)0.0006 (4)
C120.0195 (5)0.0155 (5)0.0158 (5)0.0015 (4)0.0042 (4)0.0011 (4)
C130.0227 (6)0.0242 (6)0.0232 (6)0.0036 (5)0.0015 (4)0.0052 (4)
C140.0303 (7)0.0321 (7)0.0356 (7)0.0139 (6)0.0092 (5)0.0139 (6)
C150.0444 (8)0.0186 (6)0.0452 (8)0.0103 (6)0.0247 (7)0.0082 (6)
C160.0402 (8)0.0192 (6)0.0362 (7)0.0072 (5)0.0213 (6)0.0073 (5)
C170.0229 (6)0.0225 (6)0.0222 (5)0.0036 (4)0.0078 (4)0.0049 (4)
C180.0201 (5)0.0140 (5)0.0143 (5)0.0007 (4)0.0023 (4)0.0001 (4)
C190.0202 (5)0.0171 (5)0.0193 (5)0.0009 (4)0.0017 (4)0.0016 (4)
C200.0222 (5)0.0159 (5)0.0251 (6)0.0001 (4)0.0074 (4)0.0003 (4)
C210.0290 (6)0.0176 (5)0.0175 (5)0.0040 (4)0.0077 (4)0.0023 (4)
C220.0263 (6)0.0174 (5)0.0151 (5)0.0040 (4)0.0003 (4)0.0007 (4)
C230.0167 (5)0.0149 (5)0.0182 (5)0.0015 (4)0.0008 (4)0.0005 (4)
Cl10.01928 (14)0.02670 (16)0.02240 (15)0.00267 (10)0.00047 (10)0.00295 (10)
N10.0294 (5)0.0163 (5)0.0142 (4)0.0054 (4)0.0020 (4)0.0006 (3)
N20.0311 (5)0.0170 (5)0.0150 (4)0.0037 (4)0.0003 (4)0.0018 (4)
N30.0254 (5)0.0179 (5)0.0148 (4)0.0072 (4)0.0028 (4)0.0007 (3)
O10.0408 (5)0.0208 (4)0.0186 (4)0.0113 (4)0.0073 (4)0.0054 (3)
Geometric parameters (Å, º) top
C1—C21.3895 (16)C12—C131.3941 (16)
C1—C61.3910 (17)C13—C141.3906 (18)
C1—N11.4133 (14)C13—H130.9300
C2—C31.3920 (17)C14—C151.380 (2)
C2—H20.9300C14—H140.9300
C3—C41.383 (2)C15—C161.384 (2)
C3—H30.9300C15—H150.9300
C4—C51.3816 (19)C16—C171.3921 (19)
C4—H40.9300C16—H160.9300
C5—C61.3885 (18)C17—H170.9300
C5—H50.9300C18—C191.3950 (16)
C6—H60.9300C18—C231.4000 (15)
C7—N21.3084 (15)C18—N31.4102 (14)
C7—C91.4403 (15)C19—C201.3892 (16)
C7—C81.4928 (16)C19—H190.9300
C8—H8A0.9600C20—C211.3900 (18)
C8—H8B0.9600C20—H200.9300
C8—H8C0.9600C21—C221.3863 (17)
C9—C111.3887 (15)C21—H210.9300
C9—C101.4526 (16)C22—C231.3870 (15)
C10—O11.2464 (14)C22—H220.9300
C10—N11.3784 (14)C23—Cl11.7384 (11)
C11—N31.3445 (14)N1—N21.4012 (13)
C11—C121.4855 (15)N3—H3A0.877 (19)
C12—C171.3925 (16)
C2—C1—C6120.02 (11)C14—C13—H13120.1
C2—C1—N1119.96 (11)C12—C13—H13120.1
C6—C1—N1120.02 (10)C15—C14—C13120.10 (13)
C1—C2—C3119.47 (12)C15—C14—H14120.0
C1—C2—H2120.3C13—C14—H14120.0
C3—C2—H2120.3C14—C15—C16120.34 (12)
C4—C3—C2120.65 (12)C14—C15—H15119.8
C4—C3—H3119.7C16—C15—H15119.8
C2—C3—H3119.7C15—C16—C17120.11 (13)
C5—C4—C3119.39 (12)C15—C16—H16119.9
C5—C4—H4120.3C17—C16—H16119.9
C3—C4—H4120.3C16—C17—C12119.73 (12)
C4—C5—C6120.78 (12)C16—C17—H17120.1
C4—C5—H5119.6C12—C17—H17120.1
C6—C5—H5119.6C19—C18—C23118.37 (10)
C5—C6—C1119.50 (12)C19—C18—N3122.96 (10)
C5—C6—H6120.2C23—C18—N3118.51 (10)
C1—C6—H6120.2C20—C19—C18120.23 (11)
N2—C7—C9111.56 (10)C20—C19—H19119.9
N2—C7—C8118.52 (10)C18—C19—H19119.9
C9—C7—C8129.90 (10)C19—C20—C21120.61 (11)
C7—C8—H8A109.5C19—C20—H20119.7
C7—C8—H8B109.5C21—C20—H20119.7
H8A—C8—H8B109.5C22—C21—C20119.87 (11)
C7—C8—H8C109.5C22—C21—H21120.1
H8A—C8—H8C109.5C20—C21—H21120.1
H8B—C8—H8C109.5C21—C22—C23119.42 (11)
C11—C9—C7132.45 (11)C21—C22—H22120.3
C11—C9—C10122.12 (10)C23—C22—H22120.3
C7—C9—C10105.11 (10)C22—C23—C18121.49 (10)
O1—C10—N1126.82 (11)C22—C23—Cl1119.26 (9)
O1—C10—C9128.70 (11)C18—C23—Cl1119.25 (9)
N1—C10—C9104.48 (9)C10—N1—N2112.22 (9)
N3—C11—C9117.88 (10)C10—N1—C1128.54 (10)
N3—C11—C12120.12 (10)N2—N1—C1119.16 (9)
C9—C11—C12121.87 (10)C7—N2—N1106.62 (9)
C17—C12—C13119.80 (11)C11—N3—C18129.41 (10)
C17—C12—C11119.38 (10)C11—N3—H3A113.1 (12)
C13—C12—C11120.77 (10)C18—N3—H3A117.4 (12)
C14—C13—C12119.87 (13)
C6—C1—C2—C33.56 (19)C13—C12—C17—C162.44 (17)
N1—C1—C2—C3175.90 (12)C11—C12—C17—C16174.82 (11)
C1—C2—C3—C40.2 (2)C23—C18—C19—C200.05 (17)
C2—C3—C4—C53.0 (2)N3—C18—C19—C20175.29 (11)
C3—C4—C5—C62.1 (2)C18—C19—C20—C210.23 (18)
C4—C5—C6—C11.6 (2)C19—C20—C21—C220.31 (18)
C2—C1—C6—C54.49 (19)C20—C21—C22—C230.10 (17)
N1—C1—C6—C5174.98 (12)C21—C22—C23—C180.18 (17)
N2—C7—C9—C11174.02 (13)C21—C22—C23—Cl1179.40 (9)
C8—C7—C9—C114.3 (2)C19—C18—C23—C220.26 (17)
N2—C7—C9—C100.57 (14)N3—C18—C23—C22175.30 (10)
C8—C7—C9—C10177.72 (13)C19—C18—C23—Cl1179.47 (8)
C11—C9—C10—O15.5 (2)N3—C18—C23—Cl13.92 (14)
C7—C9—C10—O1179.79 (13)O1—C10—N1—N2179.70 (12)
C11—C9—C10—N1174.35 (11)C9—C10—N1—N20.45 (13)
C7—C9—C10—N10.05 (13)O1—C10—N1—C13.2 (2)
C7—C9—C11—N3170.78 (12)C9—C10—N1—C1176.98 (11)
C10—C9—C11—N31.74 (17)C2—C1—N1—C10161.96 (12)
C7—C9—C11—C125.1 (2)C6—C1—N1—C1017.50 (19)
C10—C9—C11—C12177.64 (11)C2—C1—N1—N214.36 (17)
N3—C11—C12—C1763.52 (15)C6—C1—N1—N2166.17 (11)
C9—C11—C12—C17112.29 (13)C9—C7—N2—N10.83 (14)
N3—C11—C12—C13119.24 (13)C8—C7—N2—N1177.68 (11)
C9—C11—C12—C1364.95 (15)C10—N1—N2—C70.81 (14)
C17—C12—C13—C140.82 (18)C1—N1—N2—C7177.71 (11)
C11—C12—C13—C14176.41 (11)C9—C11—N3—C18175.06 (11)
C12—C13—C14—C151.23 (19)C12—C11—N3—C188.97 (18)
C13—C14—C15—C161.7 (2)C19—C18—N3—C1137.69 (18)
C14—C15—C16—C170.0 (2)C23—C18—N3—C11146.98 (12)
C15—C16—C17—C122.03 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O10.879 (18)1.915 (18)2.6800 (14)144.5 (16)
C6—H6···O10.932.312.9027 (16)121
C16—H16···O1i0.932.563.4797 (17)170
Symmetry code: (i) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC23H18ClN3O
Mr387.85
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)9.0425 (3), 18.5180 (7), 11.1983 (4)
β (°) 90.423 (1)
V3)1875.09 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.22 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.951, 0.959
No. of measured, independent and
observed [I > 2σ(I)] reflections
17018, 4637, 4251
Rint0.013
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.095, 1.04
No. of reflections4613
No. of parameters258
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.34

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O10.879 (18)1.915 (18)2.6800 (14)144.5 (16)
C6—H6···O10.932.312.9027 (16)121
C16—H16···O1i0.932.563.4797 (17)170
Symmetry code: (i) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the Scientific Research Foundation of the Education Department of Heilongjiang Province (grant No. 12513059), the Youth Foundation of Harbin University (grant No. HXKQ200610) and the Fundamental Research Funds for the Central Universities (grant No. DL11BB28).

References

First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCasas, J. S., García-Tasende, M. S., Sánchez, A., Sordo, J. & Touceda, Á. (2007). Coord. Chem. Rev. 251, 1561–1589.  CrossRef CAS Google Scholar
First citationChi, X., Xiao, J., Yin, Y. & Xia, M. (2010). Acta Cryst. E66, o249.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, J., Li, J.-Z., Li, J.-Q., Zhang, H.-Q. & Li, J.-M. (2009). Acta Cryst. E65, o1824.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, H. Q., Li, J. Z., Zhang, Y. & Zhang, D. (2008). Chin. J. Inorg. Chem. 24, 990–993.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, H.-Q., Li, J.-Z., Zhang, Y., Zhang, D. & Su, Z.-H. (2007). Acta Cryst. E63, o3536.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds