organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1701-o1702

rac-2-(2-Chloro-6-methyl­quinolin-3-yl)-2,3-di­hydro­quinolin-4(1H)-one

aLaboratoire des Produits Naturels d'Origine Végétale et de Synthèse Organique (PHYSYNOR), Université Mentouri-Constantine, 25000 Constantine, Algeria, bUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Université Mentouri-Constantine, 25000 Algeria, cUMR 6226 CNRS Sciences Chimiques de Rennes, Université de Rennes I, France, and dCentre de Difractométrie X, UMR 6226 CNRS Unité Sciences Chimiques de Rennes, Université de Rennes I, 263 Avenue du Général Leclerc, 35042 Rennes, France
*Correspondence e-mail: bouacida_sofiane@yahoo.fr

(Received 18 April 2012; accepted 8 May 2012; online 12 May 2012)

In the title compound, C19H15ClN2O, the quinoline ring forms a dihedral angle of 43.24 (1)° with the benzene ring of the dihydroquinolinyl system. In the crystal, mol­ecules are linked through a single weak C—H⋯O hydrogen bond, forming ribbons which extend along (100), giving alternating zigzag mol­ecular layers which stack down the b-axis direction.

Related literature

For applications of similar structures see: Chandrasekhar et al. (2007[Chandrasekhar, S., Vijeender, K. & Sridhar, C. (2007). Tetrahedron Lett. 48, 4935-4937.]); Varma & Saini (1997[Varma, R. S. & Saini, R. K. (1997). Synlett, pp. 857-858.]); Donnelly & Farrell (1990[Donnelly, J. A. & Farrell, D. F. (1990). J. Org. Chem. 55, 1757-1761.]); Hemanth Kumar et al. (2004[Hemanth Kumar, K., Muralidharan, D. & Perumal, P. T. (2004). Synthesis, 1, 63-69.]). For the synthesis of the 2-amino­chalcone, see: Gao et al. (1996[Gao, F., Johnson, K. F. & Schlenoff, J. B. (1996). J. Chem. Soc. Perkin Trans. 2, pp. 269-273.]). For related structures, see: Bouraiou et al. (2008[Bouraiou, A., Debbache, A., Rhouati, S., Carboni, B. & Belfaitah, A. (2008). J. Heterocycl. Chem. 45, 329-333.], 2011[Bouraiou, A., Berrée, F., Bouacida, S., Carboni, C., Debache, A., Roisnel, T. & Belfaitah, A. (2011). Lett. Org. Chem. 8, 474-477.]); Belfaitah et al. (2006[Belfaitah, A., Ladraa, S., Bouraiou, A., Benali-Cherif, N., Debache, A. & Rhouati, S. (2006). Acta Cryst. E62, o1355-o1357.]); Benzerka et al. (2011[Benzerka, S., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2011). Acta Cryst. E67, o2084-o2085.]).

[Scheme 1]

Experimental

Crystal data
  • C19H15ClN2O

  • Mr = 322.78

  • Orthorhombic, P b c a

  • a = 13.8912 (8) Å

  • b = 12.4572 (4) Å

  • c = 17.8617 (11) Å

  • V = 3090.9 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 295 K

  • 0.15 × 0.06 × 0.05 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 6664 measured reflections

  • 3537 independent reflections

  • 1696 reflections with I > 2σ(I)

  • Rint = 0.072

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.169

  • S = 1.00

  • 3537 reflections

  • 212 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17⋯O1i 0.93 2.49 3.243 (5) 138
Symmetry code: (i) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia,1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg & Berndt, 2001[Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

2-Substituted dihydroquinolinones have important medicinal properties as new chemical entities and also serve as building blocks for creating further diversity in SAR studies in various therapeutic areas (Chandrasekhar et al., 2007). Convenient synthesis of 2-aminochalcone and its amide derivatives and the ready cyclization of these compounds to 2-aryl-2,3-dihydroquinolin-4(1H)-ones have been widely explored (Varma & Saini, 1997; Donnelly & Farrell, 1990). Silica gel supported InCl3 (20 mol %) is a new solid-support catalyst that can be used under solvent-free conditions for the facile and efficient isomerization of 2-aminochalcones to the corresponding 2-aryl-2,3-dihydroquinolin-4(1H)-ones (Hemanth Kumar et al., 2004). As a part of a program directed toward the synthesis of new suitably functionalized heterocyclic compounds of potential biological activity (Bouraiou et al., 2008, 2011; Benzerka et al., 2011), we report herein the synthesis and structure determination of the title compound, C19H15ClN2 O.

In the title compound (Fig. 1), the quinoline ring forms a dihedral angle of 43.24 (1)° with the phenyl ring of the 2,3-dihydroquinolin-4(1H)-one moiety. The geometric parameters are in agreement with those of other structures possessing a quinolyl substituent, previously reported in the literature (Belfaitah et al., 2006; Benzerka et al., 2011). The crystal structure can be described as alterning zigzag ribbons which stack down the b axis of the unit cell (Fig. 2), these ribbons comprising molecules linked through a single weak intermolecular C17—H···O1 hydrogen bond (Table 1), and extending down a (Fig. 3). The hetero N2—H2 group has no acceptor in the crystal structure.

Related literature top

For applications of similar structures see: Chandrasekhar et al. (2007); Varma & Saini (1997); Donnelly & Farrell (1990); Hemanth Kumar et al. (2004). For the synthesis of the 2-aminochalcone, see: Gao et al. (1996). For related structures, see: Bouraiou et al. (2008, 2011); Belfaitah et al. (2006); Benzerka et al. (2011).

Experimental top

2-Aminoacetophenone (1mmol) was first condensed with 2-chloro-3-formyl-6-methylquinoline (2 mmol) to give the corresponding 2-aminochalcone in 74% yield, according to the procedure described by Gao et al. (1996). In the next step, a mixture of 2-aminochalcone (100 mg) and 1 g of silica gel impregnated with indium(III) chloride (20 mol%, 13.6 mg) was irradiated in a domestic microwave oven at 360 W for 5 minutes. Under these conditions, the title compound was successfully synthesized in good yield (69%). Single crystals suitable for the X-ray diffraction analysis were obtained by dissolving the compound in a diisopropyl ether/CHCl3 solvent mixture and allowing the solution to slowly evaporate at room temperature.

Refinement top

The N-bound H-atom (H2) was located in a difference-Fourier map and its positional parameters were refined isotropically. All other H atoms were introduced in calculated positions and treated as riding on their parent C atom, with C—H = 0.93, 0.96, 0.97 or 0.98 Å, with Uiso(H) = 1.2 or 1.5 Ueq(C). No H-bond acceptor could be located for the N2—H2 group.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia,1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A diagram of the layered zigzag packing in the crystal viewed down the a axis.
[Figure 3] Fig. 3. A part of crystal packing viewed down the b axis showing hydrogen-bond interactions as dashed lines.
rac-2-(2-Chloro-6-methylquinolin-3-yl)-2,3- dihydroquinolin-4(1H)-one top
Crystal data top
C19H15ClN2OF(000) = 1344
Mr = 322.78Dx = 1.387 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3949 reflections
a = 13.8912 (8) Åθ = 2.9–27.5°
b = 12.4572 (4) ŵ = 0.25 mm1
c = 17.8617 (11) ÅT = 295 K
V = 3090.9 (3) Å3Needle, colourless
Z = 80.15 × 0.06 × 0.05 mm
Data collection top
Nonius KappaCCD
diffractometer
1696 reflections with I > 2σ(I)
Radiation source: Enraf Nonius FR590 diffractometerRint = 0.072
Graphite monochromatorθmax = 27.5°, θmin = 2.9°
Detector resolution: 9 pixels mm-1h = 1817
CCD rotation images, thick slices scansk = 1616
6664 measured reflectionsl = 2323
3537 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.169H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0676P)2 + 0.5198P]
where P = (Fo2 + 2Fc2)/3
3537 reflections(Δ/σ)max < 0.001
212 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C19H15ClN2OV = 3090.9 (3) Å3
Mr = 322.78Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 13.8912 (8) ŵ = 0.25 mm1
b = 12.4572 (4) ÅT = 295 K
c = 17.8617 (11) Å0.15 × 0.06 × 0.05 mm
Data collection top
Nonius KappaCCD
diffractometer
1696 reflections with I > 2σ(I)
6664 measured reflectionsRint = 0.072
3537 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.169H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.21 e Å3
3537 reflectionsΔρmin = 0.27 e Å3
212 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.00123 (7)0.53833 (7)0.38618 (6)0.0598 (3)
O11.00620 (19)0.1322 (2)0.36882 (17)0.0724 (9)
N10.8795 (2)0.6237 (2)0.47797 (17)0.0467 (7)
N20.7597 (2)0.3073 (2)0.34987 (16)0.0461 (7)
C10.8911 (2)0.5416 (2)0.43385 (19)0.0430 (8)
C20.8250 (2)0.4560 (2)0.42234 (18)0.0408 (7)
C30.7405 (2)0.4630 (2)0.46099 (18)0.0430 (8)
H30.69440.40960.45540.052*
C40.7221 (2)0.5504 (2)0.50953 (18)0.0411 (8)
C50.6356 (2)0.5626 (2)0.54971 (19)0.0453 (8)
H50.58790.51080.54470.054*
C60.6196 (3)0.6486 (2)0.59604 (19)0.0474 (9)
C70.6938 (3)0.7251 (3)0.60359 (19)0.0515 (9)
H70.68420.78340.63530.062*
C80.7791 (3)0.7169 (2)0.56608 (19)0.0508 (9)
H80.82690.76820.57280.061*
C90.7940 (2)0.6298 (2)0.51708 (19)0.0424 (8)
C100.5261 (3)0.6631 (3)0.6368 (2)0.0687 (12)
H10A0.48710.71460.61070.103*
H10B0.53850.68830.68670.103*
H10C0.49270.59570.63910.103*
C110.8477 (2)0.3617 (2)0.37226 (19)0.0442 (8)
H110.88030.38830.32730.053*
C120.9131 (3)0.2810 (2)0.41094 (19)0.0479 (9)
H12A0.97410.31510.42260.058*
H12B0.88380.25880.45770.058*
C130.9313 (3)0.1834 (3)0.3631 (2)0.0475 (8)
C140.8524 (2)0.1510 (2)0.31357 (18)0.0420 (8)
C150.7678 (2)0.2110 (2)0.31041 (18)0.0412 (8)
C160.6899 (3)0.1735 (3)0.2677 (2)0.0523 (9)
H160.6330.21270.2660.063*
C170.6976 (3)0.0793 (3)0.2284 (2)0.0534 (9)
H170.64530.05460.20080.064*
C180.7825 (3)0.0204 (3)0.2292 (2)0.0559 (9)
H180.78780.04230.20120.067*
C190.8584 (3)0.0556 (2)0.2717 (2)0.0505 (9)
H190.9150.01570.27280.061*
H20.717 (3)0.348 (2)0.3321 (19)0.05*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0485 (5)0.0545 (5)0.0763 (7)0.0051 (4)0.0144 (5)0.0027 (5)
O10.0539 (18)0.0643 (16)0.099 (2)0.0201 (13)0.0134 (16)0.0173 (15)
N10.0479 (18)0.0388 (14)0.0534 (17)0.0029 (13)0.0024 (14)0.0010 (13)
N20.0408 (17)0.0419 (15)0.0554 (18)0.0075 (12)0.0080 (14)0.0077 (13)
C10.0382 (19)0.0412 (17)0.050 (2)0.0007 (14)0.0014 (15)0.0067 (15)
C20.0450 (19)0.0353 (16)0.0421 (18)0.0008 (14)0.0046 (16)0.0041 (14)
C30.045 (2)0.0360 (16)0.0482 (19)0.0027 (14)0.0011 (16)0.0015 (15)
C40.047 (2)0.0352 (15)0.0412 (18)0.0007 (15)0.0025 (15)0.0043 (14)
C50.047 (2)0.0378 (16)0.051 (2)0.0021 (14)0.0016 (17)0.0033 (15)
C60.057 (2)0.0407 (17)0.045 (2)0.0054 (16)0.0057 (17)0.0048 (15)
C70.062 (2)0.0438 (18)0.049 (2)0.0108 (17)0.0084 (19)0.0058 (16)
C80.059 (2)0.0394 (17)0.053 (2)0.0029 (16)0.0091 (19)0.0063 (16)
C90.043 (2)0.0382 (16)0.0454 (19)0.0004 (14)0.0040 (16)0.0028 (14)
C100.075 (3)0.054 (2)0.078 (3)0.007 (2)0.022 (2)0.004 (2)
C110.042 (2)0.0401 (17)0.050 (2)0.0005 (14)0.0020 (16)0.0038 (15)
C120.047 (2)0.0439 (18)0.053 (2)0.0052 (15)0.0083 (17)0.0013 (15)
C130.042 (2)0.0461 (18)0.054 (2)0.0036 (16)0.0013 (17)0.0044 (16)
C140.044 (2)0.0397 (16)0.0423 (19)0.0002 (14)0.0043 (15)0.0014 (14)
C150.042 (2)0.0396 (16)0.0419 (18)0.0000 (14)0.0038 (15)0.0004 (14)
C160.047 (2)0.055 (2)0.055 (2)0.0028 (16)0.0017 (17)0.0058 (17)
C170.060 (3)0.053 (2)0.047 (2)0.0127 (17)0.0048 (19)0.0062 (16)
C180.071 (3)0.0454 (18)0.051 (2)0.0023 (18)0.005 (2)0.0066 (16)
C190.061 (2)0.0423 (17)0.048 (2)0.0054 (16)0.0067 (19)0.0001 (16)
Geometric parameters (Å, º) top
Cl1—C11.751 (3)C8—H80.93
O1—C131.224 (4)C10—H10A0.96
N1—C11.301 (4)C10—H10B0.96
N1—C91.380 (4)C10—H10C0.96
N2—C151.395 (4)C11—C121.522 (4)
N2—C111.454 (4)C11—H110.98
N2—H20.85 (3)C12—C131.507 (4)
C1—C21.423 (4)C12—H12A0.97
C2—C31.364 (5)C12—H12B0.97
C2—C111.509 (4)C13—C141.466 (5)
C3—C41.415 (4)C14—C151.395 (4)
C3—H30.93C14—C191.406 (4)
C4—C51.407 (5)C15—C161.404 (4)
C4—C91.412 (4)C16—C171.372 (4)
C5—C61.372 (4)C16—H160.93
C5—H50.93C17—C181.389 (5)
C6—C71.410 (5)C17—H170.93
C6—C101.500 (5)C18—C191.372 (5)
C7—C81.365 (5)C18—H180.93
C7—H70.93C19—H190.93
C8—C91.409 (4)
C1—N1—C9117.2 (3)H10A—C10—H10C109.5
C15—N2—C11118.2 (3)H10B—C10—H10C109.5
C15—N2—H2112 (2)N2—C11—C2110.5 (3)
C11—N2—H2115 (2)N2—C11—C12108.6 (3)
N1—C1—C2126.6 (3)C2—C11—C12111.7 (3)
N1—C1—Cl1114.9 (2)N2—C11—H11108.7
C2—C1—Cl1118.4 (2)C2—C11—H11108.7
C3—C2—C1115.7 (3)C12—C11—H11108.7
C3—C2—C11122.0 (3)C13—C12—C11112.1 (3)
C1—C2—C11122.3 (3)C13—C12—H12A109.2
C2—C3—C4121.1 (3)C11—C12—H12A109.2
C2—C3—H3119.5C13—C12—H12B109.2
C4—C3—H3119.5C11—C12—H12B109.2
C5—C4—C9118.7 (3)H12A—C12—H12B107.9
C5—C4—C3123.4 (3)O1—C13—C14122.8 (3)
C9—C4—C3118.0 (3)O1—C13—C12121.0 (3)
C6—C5—C4122.0 (3)C14—C13—C12116.1 (3)
C6—C5—H5119C15—C14—C19118.8 (3)
C4—C5—H5119C15—C14—C13120.5 (3)
C5—C6—C7117.9 (3)C19—C14—C13120.6 (3)
C5—C6—C10121.8 (3)C14—C15—N2120.5 (3)
C7—C6—C10120.3 (3)C14—C15—C16119.5 (3)
C8—C7—C6122.4 (3)N2—C15—C16119.9 (3)
C8—C7—H7118.8C17—C16—C15120.2 (3)
C6—C7—H7118.8C17—C16—H16119.9
C7—C8—C9119.4 (3)C15—C16—H16119.9
C7—C8—H8120.3C16—C17—C18120.9 (3)
C9—C8—H8120.3C16—C17—H17119.6
N1—C9—C8118.9 (3)C18—C17—H17119.6
N1—C9—C4121.5 (3)C19—C18—C17119.3 (3)
C8—C9—C4119.6 (3)C19—C18—H18120.4
C6—C10—H10A109.5C17—C18—H18120.4
C6—C10—H10B109.5C18—C19—C14121.3 (3)
H10A—C10—H10B109.5C18—C19—H19119.4
C6—C10—H10C109.5C14—C19—H19119.4
C9—N1—C1—C21.0 (5)C15—N2—C11—C1250.0 (4)
C9—N1—C1—Cl1179.8 (2)C3—C2—C11—N221.5 (4)
N1—C1—C2—C31.2 (5)C1—C2—C11—N2160.2 (3)
Cl1—C1—C2—C3180.0 (2)C3—C2—C11—C1299.5 (4)
N1—C1—C2—C11177.2 (3)C1—C2—C11—C1278.8 (4)
Cl1—C1—C2—C111.6 (4)N2—C11—C12—C1354.4 (4)
C1—C2—C3—C40.5 (5)C2—C11—C12—C13176.5 (3)
C11—C2—C3—C4177.9 (3)C11—C12—C13—O1151.2 (3)
C2—C3—C4—C5178.9 (3)C11—C12—C13—C1432.2 (4)
C2—C3—C4—C90.4 (5)O1—C13—C14—C15178.7 (3)
C9—C4—C5—C60.4 (5)C12—C13—C14—C152.1 (5)
C3—C4—C5—C6179.6 (3)O1—C13—C14—C192.3 (5)
C4—C5—C6—C71.0 (5)C12—C13—C14—C19174.2 (3)
C4—C5—C6—C10177.9 (3)C19—C14—C15—N2178.6 (3)
C5—C6—C7—C80.8 (5)C13—C14—C15—N25.0 (5)
C10—C6—C7—C8178.2 (3)C19—C14—C15—C162.0 (5)
C6—C7—C8—C90.9 (5)C13—C14—C15—C16174.4 (3)
C1—N1—C9—C8179.3 (3)C11—N2—C15—C1420.8 (4)
C1—N1—C9—C40.0 (5)C11—N2—C15—C16159.8 (3)
C7—C8—C9—N1178.4 (3)C14—C15—C16—C171.0 (5)
C7—C8—C9—C42.3 (5)N2—C15—C16—C17179.6 (3)
C5—C4—C9—N1178.6 (3)C15—C16—C17—C181.0 (5)
C3—C4—C9—N10.7 (5)C16—C17—C18—C191.9 (6)
C5—C4—C9—C82.0 (5)C17—C18—C19—C140.9 (5)
C3—C4—C9—C8178.7 (3)C15—C14—C19—C181.0 (5)
C15—N2—C11—C2172.8 (3)C13—C14—C19—C18175.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···N20.932.452.788 (4)102
C11—H11···Cl10.982.723.074 (3)102
C17—H17···O1i0.932.493.243 (5)138
Symmetry code: (i) x1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC19H15ClN2O
Mr322.78
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)295
a, b, c (Å)13.8912 (8), 12.4572 (4), 17.8617 (11)
V3)3090.9 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.15 × 0.06 × 0.05
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6664, 3537, 1696
Rint0.072
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.169, 1.00
No. of reflections3537
No. of parameters212
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.27

Computer programs: COLLECT (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR2002 (Burla et al., 2003), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia,1997) and DIAMOND (Brandenburg & Berndt, 2001), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···O1i0.932.493.243 (5)138
Symmetry code: (i) x1/2, y, z+1/2.
 

Acknowledgements

We are grateful to all personal of PHYSYNOR laboratory, Université Mentouri-Constantine, Algeria, for their assistance. Thanks are due to MESRS and ANDRU (Ministére de l'Enseignement Supérieur et de la Recherche Scientifique et l'Agence Nationale pour le Développement de la Recherche Universitaire) (Algeria) via the PNR programm for financial support.

References

First citationBelfaitah, A., Ladraa, S., Bouraiou, A., Benali-Cherif, N., Debache, A. & Rhouati, S. (2006). Acta Cryst. E62, o1355–o1357.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBenzerka, S., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2011). Acta Cryst. E67, o2084–o2085.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBouraiou, A., Berrée, F., Bouacida, S., Carboni, C., Debache, A., Roisnel, T. & Belfaitah, A. (2011). Lett. Org. Chem. 8, 474–477.  CSD CrossRef Google Scholar
First citationBouraiou, A., Debbache, A., Rhouati, S., Carboni, B. & Belfaitah, A. (2008). J. Heterocycl. Chem. 45, 329–333.  CrossRef CAS Google Scholar
First citationBrandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationChandrasekhar, S., Vijeender, K. & Sridhar, C. (2007). Tetrahedron Lett. 48, 4935–4937.  Web of Science CrossRef CAS Google Scholar
First citationDonnelly, J. A. & Farrell, D. F. (1990). J. Org. Chem. 55, 1757–1761.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGao, F., Johnson, K. F. & Schlenoff, J. B. (1996). J. Chem. Soc. Perkin Trans. 2, pp. 269–273.  CrossRef Google Scholar
First citationHemanth Kumar, K., Muralidharan, D. & Perumal, P. T. (2004). Synthesis, 1, 63–69.  Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVarma, R. S. & Saini, R. K. (1997). Synlett, pp. 857–858.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages o1701-o1702
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds