organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

9-(4-Bromo­but­yl)-9H-carbazole

aDepartamento de Química, Facultad de Ciencias, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia, bPrograma de Ingenieria Agroindustrial, Universidad San Buenaventura, AA 7154, Santiago de Cali, Colombia, cCase Western Reserve University, Department of Macromolecular Science and Engineering, 2100 Adelbert Road, Kent Hale Smith Bldg, Cleveland, Ohio 44106, USA, and dInstituto de Física de São Carlos, IFSC, Universidade de São Paulo, USP, São Carlos, SP, Brazil
*Correspondence e-mail: rodimo26@yahoo.es

(Received 18 April 2012; accepted 17 May 2012; online 23 May 2012)

In the title compound, C16H16BrN, the tricyclic carbazole system is essentially planar (r.m.s. deviation of all non-H atoms = 0.010 Å). The dihedral angle between the two outer carbazole rings is 1.1 (3)°. There are no directional inter­molecular contacts in the crystal packing.

Related literature

For synthesis and properties of carbazole derivatives, see: Bo et al. (1998[Bo, Z., Zhang, W., Zhang, X., Zhang, C. & Shen, J. (1998). Macromol. Chem. Phys. 199, 1323-1327.]). For chemical properties of carbazoles, see: Knolker & Reddy (2002[Knolker, H. J. & Reddy, K. R. (2002). Chem. Rev. 102, 4303-4427.]), for their physical properties, see: Koyuncu et al. (2011[Koyuncu, F. B., Koyuncu, S. & Ozdemir, E. (2011). Synth. Met. 161, 1005-1013.]), for their medicinal properties, see: Zhang et al. (2010[Zhang, F. F., Gan, L. L. & Cheng-He Zho, C. H. (2010). Bioorg. Med. Chem. Lett. 20, 1881-1884.]) and for their opto-electronic and electrochemical properties, see: Taranekar et al. (2007[Taranekar, P., Fulghum, T., Patton, D., Ponnapati, R., Clyde, G. & Advincula, R. (2007). J. Am. Chem. Soc. 129, 12537-12548.]); Morisaki et al. (2009[Morisaki, Y., Alves-Fernandes, J., Wada, N. & Chujo, Y. (2009). J. Polym. Sci. 47, 4279-4288.]). For related structures, see: Gerkin & Reppart (1986[Gerkin, R. E. & Reppart, W. J. (1986). Acta Cryst. C42, 480-482.]); Duan et al. (2005[Duan, X.-M., Huang, P.-M., Li, J.-S., Zheng, P.-W., Zeng, T. & Bai, G.-Y. (2005). Acta Cryst. E61, o3977-o3978.]); Zhou et al. (2008[Zhou, H. P., Lv, L. F., Wang, P. & Hu, R. T. (2008). Acta Cryst. E64, o1075.]); Panchatcharam et al. (2011[Panchatcharam, R., Dhayalan, V., Mohanakrishnan, A. K., Chakkaravarthi, G. & Manivannan, V. (2011). Acta Cryst. E67, o2797.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16BrN

  • Mr = 302.21

  • Orthorhombic, P b c a

  • a = 16.0949 (4) Å

  • b = 7.7012 (2) Å

  • c = 22.6874 (4) Å

  • V = 2812.10 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.91 mm−1

  • T = 293 K

  • 0.24 × 0.21 × 0.17 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.510, Tmax = 0.589

  • 25173 measured reflections

  • 2860 independent reflections

  • 2002 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.146

  • S = 1.03

  • 2860 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.45 e Å−3

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The carbazole ring has a highly conjugated π system with desirable optical and charge-transport properties. These characteristics make it an excellent candidate for applications in different areas of science. Indeed, carbazole and its derivatives, heterocyclic compounds with a N atom in their structure, have interesting chemical (Knolker & Reddy, 2002), physical (Koyuncu et al., 2011) and medicinal (Zhang et al., 2010) properties. Polymers based on carbazole units become promising materials because of their optical, electronic and electrochemical behaviors (Taranekar et al., 2007; Morisaki et al., 2009). One of these derivatives, 9-(4-bromobutyl)-9H-carbazole, the title compound C16H16BrN, was synthesized and its structure is reported here.

In the title compound (Fig. 1) the tricyclic carbazole system is essentially planar (r.m.s. deviation of all non-hydrogen atoms = 0.0100 Å), with a dihedral angle of 1.1 (3)° between two outer rings of the molecule. Other related systems are similar (Gerkin & Reppart, 1986; Duan et al., 2005). Bond distances and bond angles in the carbazole ring are comparable with those observed in similar structures (Zhou et al., 2008; Panchatcharam et al., 2011). The n-butylbromide chain adopts a semi-extended conformation, with torsion angles C10—N1—C14—C15, N1—C14—C15—C16, C14—C15—C16—C17 and C15—C16—C17—Br1 of -97.3 (4), -177.1 (3), -79.7 (4) and -178.8 (3)°, respectively. No Br···Br interactions or short intermolecular contacts are found in the crystal structure.

Related literature top

For synthesis and properties of carbazole derivatives, see: Bo et al. (1998). For chemical properties of carbazoles, see: Knolker & Reddy (2002), for their physical properties, see: Koyuncu et al. (2011), for their medicinal properties, see: Zhang et al. (2010) and for their opto-electronic and electrochemical properties, see: Taranekar et al. (2007); Morisaki et al. (2009). For related structures, see: Gerkin & Reppart (1986); Duan et al. (2005); Zhou et al. (2008); Panchatcharam et al. (2011).

Experimental top

The synthesis of 9-(4-bromobutyl)-9H-carbazole was accomplished by a modified method as reported by Bo et al., 1998. A mixture of 10.32 g (61.72 mmol) of carbazole in toluene (100 ml) containing 1,4-dibromobutane (118.2 g, 547.4 mmol) and tetrabutylammonium bromide (TBAB, 2.0 g) was stirred at 45 °C for 3 h. and then left overnight. After the aqueous layer was removed and washed three times with water and brine, the organic layer was dried over Na2SO4. The organic solvent was evaporated, and unreacted 1,4-dibromobutane was removed by vacuum distillation. The residue was recrystallized from ethanol to give 16.7 g (89.5% yield) of the title compound, m.p. 379 (1) K. 1H NMR (400 MHz) δ, 8.10 (d, 2H, carbazole ring), 7.11–7.47 (m, 6H, carbazole ring), 4.35 (t, 2H, NCH2), 3.37(t, CH2Br), 1.91 (m, 4H, CH2CH2). IR (KBr): 3045 (Ar—H); 2939, 2925, 2855 (CH2); 1620, 1593 (carbazole ring).

Refinement top

All H-atoms were positioned geometrically using a riding model with C—H(aromatic) = 0.93 Å and C—H(methylene) = 0.97 Å and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular conformation and atom numbering scheme for the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.
9-(4-Bromobutyl)-9H-carbazole top
Crystal data top
C16H16BrNDx = 1.428 Mg m3
Mr = 302.21Melting point: 379(1) K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 18997 reflections
a = 16.0949 (4) Åθ = 2.9–26.4°
b = 7.7012 (2) ŵ = 2.91 mm1
c = 22.6874 (4) ÅT = 293 K
V = 2812.10 (11) Å3Prism, colourless
Z = 80.24 × 0.21 × 0.17 mm
F(000) = 1232
Data collection top
Nonius KappaCCD
diffractometer
2860 independent reflections
Radiation source: fine-focus sealed tube2002 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
CCD rotation images, thick slices scansθmax = 26.4°, θmin = 3.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2020
Tmin = 0.510, Tmax = 0.589k = 99
25173 measured reflectionsl = 2819
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.064P)2 + 2.1492P]
where P = (Fo2 + 2Fc2)/3
2860 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
C16H16BrNV = 2812.10 (11) Å3
Mr = 302.21Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 16.0949 (4) ŵ = 2.91 mm1
b = 7.7012 (2) ÅT = 293 K
c = 22.6874 (4) Å0.24 × 0.21 × 0.17 mm
Data collection top
Nonius KappaCCD
diffractometer
2860 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2002 reflections with I > 2σ(I)
Tmin = 0.510, Tmax = 0.589Rint = 0.042
25173 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 1.03Δρmax = 0.38 e Å3
2860 reflectionsΔρmin = 0.45 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br0.35086 (4)1.17737 (6)0.51126 (3)0.1073 (3)
N10.43223 (16)0.4566 (3)0.63370 (11)0.0617 (6)
C10.5664 (2)0.4352 (6)0.57887 (17)0.0885 (11)
H10.55590.52720.55340.106*
C20.6389 (3)0.3424 (9)0.5758 (2)0.1156 (19)
H20.67830.37260.54760.139*
C30.6552 (3)0.2047 (9)0.6134 (3)0.118 (2)
H30.70490.14420.60980.141*
C40.5985 (3)0.1559 (6)0.6562 (2)0.0960 (14)
H40.60960.06330.68130.115*
C50.4308 (3)0.1312 (5)0.74590 (18)0.0816 (11)
H50.46680.04490.75890.098*
C60.3562 (3)0.1551 (6)0.7728 (2)0.0954 (14)
H60.34140.08460.80450.115*
C70.3019 (3)0.2824 (5)0.75390 (18)0.0859 (11)
H70.25100.29510.77280.103*
C80.3215 (2)0.3911 (5)0.70768 (16)0.0702 (9)
H80.28480.47700.69530.084*
C100.5093 (2)0.3865 (5)0.62154 (14)0.0655 (8)
C110.5247 (2)0.2484 (5)0.66088 (16)0.0681 (9)
C120.4529 (2)0.2368 (4)0.69877 (14)0.0624 (8)
C130.39748 (19)0.3677 (4)0.68040 (14)0.0578 (7)
C140.3937 (2)0.6011 (4)0.60257 (15)0.0690 (9)
H14A0.33470.57820.59850.083*
H14B0.41720.60860.56330.083*
C150.4052 (3)0.7739 (5)0.63337 (18)0.0841 (11)
H15A0.46410.80020.63560.101*
H15B0.38410.76520.67330.101*
C160.3595 (2)0.9255 (5)0.60072 (19)0.0807 (10)
H16A0.30550.88620.58720.097*
H16B0.35101.02180.62770.097*
C170.4087 (3)0.9825 (5)0.55080 (19)0.0903 (11)
H17A0.41600.88720.52330.108*
H17B0.46311.01980.56410.108*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.1314 (5)0.0737 (3)0.1168 (4)0.0018 (2)0.0395 (3)0.0214 (2)
N10.0734 (16)0.0522 (14)0.0593 (15)0.0028 (12)0.0059 (12)0.0041 (12)
C10.086 (2)0.113 (3)0.066 (2)0.008 (2)0.002 (2)0.015 (2)
C20.083 (3)0.180 (6)0.084 (3)0.001 (3)0.003 (2)0.043 (4)
C30.081 (3)0.167 (6)0.106 (4)0.039 (3)0.023 (3)0.062 (4)
C40.090 (3)0.102 (3)0.096 (3)0.032 (2)0.035 (3)0.031 (2)
C50.101 (3)0.063 (2)0.081 (2)0.009 (2)0.031 (2)0.0146 (18)
C60.115 (4)0.088 (3)0.083 (3)0.033 (3)0.014 (3)0.025 (2)
C70.081 (3)0.095 (3)0.081 (2)0.023 (2)0.000 (2)0.006 (2)
C80.0662 (19)0.069 (2)0.075 (2)0.0044 (17)0.0103 (17)0.0006 (18)
C100.072 (2)0.0667 (19)0.0577 (18)0.0047 (16)0.0081 (16)0.0118 (16)
C110.070 (2)0.0630 (19)0.071 (2)0.0079 (17)0.0221 (17)0.0164 (17)
C120.075 (2)0.0460 (15)0.0662 (19)0.0012 (15)0.0232 (16)0.0021 (14)
C130.0655 (18)0.0486 (15)0.0595 (17)0.0051 (14)0.0124 (15)0.0006 (13)
C140.086 (2)0.0568 (18)0.0639 (19)0.0002 (17)0.0141 (17)0.0060 (15)
C150.106 (3)0.066 (2)0.080 (2)0.0028 (19)0.013 (2)0.0008 (18)
C160.079 (2)0.067 (2)0.096 (3)0.0004 (17)0.0006 (19)0.0061 (19)
C170.098 (3)0.077 (2)0.095 (3)0.003 (2)0.010 (2)0.008 (2)
Geometric parameters (Å, º) top
Br—C171.981 (4)C7—C81.378 (5)
N1—C131.380 (4)C7—H70.9300
N1—C101.380 (4)C8—C131.383 (5)
N1—C141.457 (4)C8—H80.9300
C1—C21.371 (7)C10—C111.411 (5)
C1—C101.387 (5)C11—C121.442 (5)
C1—H10.9300C12—C131.409 (4)
C2—C31.385 (9)C14—C151.514 (5)
C2—H20.9300C14—H14A0.9700
C3—C41.386 (8)C14—H14B0.9700
C3—H30.9300C15—C161.567 (5)
C4—C111.389 (5)C15—H15A0.9700
C4—H40.9300C15—H15B0.9700
C5—C61.360 (6)C16—C171.450 (6)
C5—C121.389 (5)C16—H16A0.9700
C5—H50.9300C16—H16B0.9700
C6—C71.382 (6)C17—H17A0.9700
C6—H60.9300C17—H17B0.9700
C13—N1—C10108.9 (3)C10—C11—C12106.5 (3)
C13—N1—C14125.4 (3)C5—C12—C13118.9 (4)
C10—N1—C14125.8 (3)C5—C12—C11134.4 (3)
C2—C1—C10117.3 (5)C13—C12—C11106.6 (3)
C2—C1—H1121.3N1—C13—C8129.6 (3)
C10—C1—H1121.3N1—C13—C12109.0 (3)
C1—C2—C3121.9 (5)C8—C13—C12121.4 (3)
C1—C2—H2119.0N1—C14—C15113.3 (3)
C3—C2—H2119.0N1—C14—H14A108.9
C2—C3—C4121.0 (4)C15—C14—H14A108.9
C2—C3—H3119.5N1—C14—H14B108.9
C4—C3—H3119.5C15—C14—H14B108.9
C3—C4—C11118.5 (5)H14A—C14—H14B107.7
C3—C4—H4120.7C14—C15—C16112.3 (3)
C11—C4—H4120.7C14—C15—H15A109.1
C6—C5—C12119.6 (4)C16—C15—H15A109.1
C6—C5—H5120.2C14—C15—H15B109.1
C12—C5—H5120.2C16—C15—H15B109.1
C5—C6—C7120.9 (4)H15A—C15—H15B107.9
C5—C6—H6119.5C17—C16—C15109.7 (3)
C7—C6—H6119.5C17—C16—H16A109.7
C8—C7—C6121.6 (4)C15—C16—H16A109.7
C8—C7—H7119.2C17—C16—H16B109.7
C6—C7—H7119.2C15—C16—H16B109.7
C7—C8—C13117.6 (3)H16A—C16—H16B108.2
C7—C8—H8121.2C16—C17—Br109.0 (3)
C13—C8—H8121.2C16—C17—H17A109.9
N1—C10—C1129.0 (4)Br—C17—H17A109.9
N1—C10—C11109.0 (3)C16—C17—H17B109.9
C1—C10—C11122.0 (4)Br—C17—H17B109.9
C4—C11—C10119.3 (4)H17A—C17—H17B108.3
C4—C11—C12134.3 (4)
C10—C1—C2—C30.2 (7)C4—C11—C12—C51.6 (7)
C1—C2—C3—C40.5 (8)C10—C11—C12—C5179.1 (4)
C2—C3—C4—C110.1 (7)C4—C11—C12—C13179.0 (4)
C12—C5—C6—C70.2 (6)C10—C11—C12—C130.3 (3)
C5—C6—C7—C80.7 (7)C10—N1—C13—C8179.7 (3)
C6—C7—C8—C130.4 (6)C14—N1—C13—C80.4 (5)
C13—N1—C10—C1179.4 (3)C10—N1—C13—C120.2 (3)
C14—N1—C10—C10.5 (5)C14—N1—C13—C12179.9 (3)
C13—N1—C10—C110.4 (3)C7—C8—C13—N1179.9 (3)
C14—N1—C10—C11179.7 (3)C7—C8—C13—C120.5 (5)
C2—C1—C10—N1179.6 (4)C5—C12—C13—N1179.5 (3)
C2—C1—C10—C110.6 (5)C11—C12—C13—N10.0 (3)
C3—C4—C11—C100.9 (5)C5—C12—C13—C81.0 (5)
C3—C4—C11—C12179.9 (4)C11—C12—C13—C8179.5 (3)
N1—C10—C11—C4178.9 (3)C13—N1—C14—C1582.5 (4)
C1—C10—C11—C41.2 (5)C10—N1—C14—C1597.3 (4)
N1—C10—C11—C120.4 (3)N1—C14—C15—C16177.1 (3)
C1—C10—C11—C12179.4 (3)C14—C15—C16—C1779.7 (4)
C6—C5—C12—C130.6 (5)C15—C16—C17—Br178.8 (3)
C6—C5—C12—C11180.0 (4)

Experimental details

Crystal data
Chemical formulaC16H16BrN
Mr302.21
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)16.0949 (4), 7.7012 (2), 22.6874 (4)
V3)2812.10 (11)
Z8
Radiation typeMo Kα
µ (mm1)2.91
Crystal size (mm)0.24 × 0.21 × 0.17
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.510, 0.589
No. of measured, independent and
observed [I > 2σ(I)] reflections
25173, 2860, 2002
Rint0.042
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.146, 1.03
No. of reflections2860
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.45

Computer programs: COLLECT (Nonius, 2000), SCALEPACK (Otwinowski & Minor, 1997), DENZO and SCALEPACK (Otwinowski & Minor, 1997, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999).

 

Acknowledgements

RMF is grateful to the Spanish Research Council (CSIC) for the use of a free-of-charge licence to the Cambridge Structural Database. RMF also thanks the Universidad del Valle, Colombia, and CG thanks the Universidad San Buenaventura, Cali, Colombia, for partial financial support.

References

First citationBo, Z., Zhang, W., Zhang, X., Zhang, C. & Shen, J. (1998). Macromol. Chem. Phys. 199, 1323–1327.  CrossRef CAS Google Scholar
First citationDuan, X.-M., Huang, P.-M., Li, J.-S., Zheng, P.-W., Zeng, T. & Bai, G.-Y. (2005). Acta Cryst. E61, o3977–o3978.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGerkin, R. E. & Reppart, W. J. (1986). Acta Cryst. C42, 480–482.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKnolker, H. J. & Reddy, K. R. (2002). Chem. Rev. 102, 4303–4427.  Web of Science CrossRef PubMed Google Scholar
First citationKoyuncu, F. B., Koyuncu, S. & Ozdemir, E. (2011). Synth. Met. 161, 1005–1013.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMorisaki, Y., Alves-Fernandes, J., Wada, N. & Chujo, Y. (2009). J. Polym. Sci. 47, 4279–4288.  CrossRef CAS Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPanchatcharam, R., Dhayalan, V., Mohanakrishnan, A. K., Chakkaravarthi, G. & Manivannan, V. (2011). Acta Cryst. E67, o2797.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaranekar, P., Fulghum, T., Patton, D., Ponnapati, R., Clyde, G. & Advincula, R. (2007). J. Am. Chem. Soc. 129, 12537–12548.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhang, F. F., Gan, L. L. & Cheng-He Zho, C. H. (2010). Bioorg. Med. Chem. Lett. 20, 1881–1884.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZhou, H. P., Lv, L. F., Wang, P. & Hu, R. T. (2008). Acta Cryst. E64, o1075.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds