organic compounds
9-(4-Bromobutyl)-9H-carbazole
aDepartamento de Química, Facultad de Ciencias, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia, bPrograma de Ingenieria Agroindustrial, Universidad San Buenaventura, AA 7154, Santiago de Cali, Colombia, cCase Western Reserve University, Department of Macromolecular Science and Engineering, 2100 Adelbert Road, Kent Hale Smith Bldg, Cleveland, Ohio 44106, USA, and dInstituto de Física de São Carlos, IFSC, Universidade de São Paulo, USP, São Carlos, SP, Brazil
*Correspondence e-mail: rodimo26@yahoo.es
In the title compound, C16H16BrN, the tricyclic carbazole system is essentially planar (r.m.s. deviation of all non-H atoms = 0.010 Å). The dihedral angle between the two outer carbazole rings is 1.1 (3)°. There are no directional intermolecular contacts in the crystal packing.
Related literature
For synthesis and properties of carbazole derivatives, see: Bo et al. (1998). For chemical properties of carbazoles, see: Knolker & Reddy (2002), for their physical properties, see: Koyuncu et al. (2011), for their medicinal properties, see: Zhang et al. (2010) and for their opto-electronic and electrochemical properties, see: Taranekar et al. (2007); Morisaki et al. (2009). For related structures, see: Gerkin & Reppart (1986); Duan et al. (2005); Zhou et al. (2008); Panchatcharam et al. (2011).
Experimental
Crystal data
|
Data collection: COLLECT (Nonius, 2000); cell SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536812022398/zs2201sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812022398/zs2201Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812022398/zs2201Isup3.cml
The synthesis of 9-(4-bromobutyl)-9H-carbazole was accomplished by a modified method as reported by Bo et al., 1998. A mixture of 10.32 g (61.72 mmol) of carbazole in toluene (100 ml) containing 1,4-dibromobutane (118.2 g, 547.4 mmol) and tetrabutylammonium bromide (TBAB, 2.0 g) was stirred at 45 °C for 3 h. and then left overnight. After the aqueous layer was removed and washed three times with water and brine, the organic layer was dried over Na2SO4. The organic solvent was evaporated, and unreacted 1,4-dibromobutane was removed by vacuum distillation. The residue was recrystallized from ethanol to give 16.7 g (89.5% yield) of the title compound, m.p. 379 (1) K. 1H NMR (400 MHz) δ, 8.10 (d, 2H, carbazole ring), 7.11–7.47 (m, 6H, carbazole ring), 4.35 (t, 2H, NCH2), 3.37(t, CH2Br), 1.91 (m, 4H, CH2CH2). IR (KBr): 3045 (Ar—H); 2939, 2925, 2855 (CH2); 1620, 1593 (carbazole ring).
All H-atoms were positioned geometrically using a riding model with C—H(aromatic) = 0.93 Å and C—H(methylene) = 0.97 Å and with Uiso(H) = 1.2Ueq(C).
Data collection: COLLECT (Nonius, 2000); cell
SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. Molecular conformation and atom numbering scheme for the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius. |
C16H16BrN | Dx = 1.428 Mg m−3 |
Mr = 302.21 | Melting point: 379(1) K |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 18997 reflections |
a = 16.0949 (4) Å | θ = 2.9–26.4° |
b = 7.7012 (2) Å | µ = 2.91 mm−1 |
c = 22.6874 (4) Å | T = 293 K |
V = 2812.10 (11) Å3 | Prism, colourless |
Z = 8 | 0.24 × 0.21 × 0.17 mm |
F(000) = 1232 |
Nonius KappaCCD diffractometer | 2860 independent reflections |
Radiation source: fine-focus sealed tube | 2002 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.042 |
CCD rotation images, thick slices scans | θmax = 26.4°, θmin = 3.6° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −20→20 |
Tmin = 0.510, Tmax = 0.589 | k = −9→9 |
25173 measured reflections | l = −28→19 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.049 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.146 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.064P)2 + 2.1492P] where P = (Fo2 + 2Fc2)/3 |
2860 reflections | (Δ/σ)max < 0.001 |
163 parameters | Δρmax = 0.38 e Å−3 |
0 restraints | Δρmin = −0.45 e Å−3 |
C16H16BrN | V = 2812.10 (11) Å3 |
Mr = 302.21 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 16.0949 (4) Å | µ = 2.91 mm−1 |
b = 7.7012 (2) Å | T = 293 K |
c = 22.6874 (4) Å | 0.24 × 0.21 × 0.17 mm |
Nonius KappaCCD diffractometer | 2860 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2002 reflections with I > 2σ(I) |
Tmin = 0.510, Tmax = 0.589 | Rint = 0.042 |
25173 measured reflections |
R[F2 > 2σ(F2)] = 0.049 | 0 restraints |
wR(F2) = 0.146 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.38 e Å−3 |
2860 reflections | Δρmin = −0.45 e Å−3 |
163 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br | 0.35086 (4) | 1.17737 (6) | 0.51126 (3) | 0.1073 (3) | |
N1 | 0.43223 (16) | 0.4566 (3) | 0.63370 (11) | 0.0617 (6) | |
C1 | 0.5664 (2) | 0.4352 (6) | 0.57887 (17) | 0.0885 (11) | |
H1 | 0.5559 | 0.5272 | 0.5534 | 0.106* | |
C2 | 0.6389 (3) | 0.3424 (9) | 0.5758 (2) | 0.1156 (19) | |
H2 | 0.6783 | 0.3726 | 0.5476 | 0.139* | |
C3 | 0.6552 (3) | 0.2047 (9) | 0.6134 (3) | 0.118 (2) | |
H3 | 0.7049 | 0.1442 | 0.6098 | 0.141* | |
C4 | 0.5985 (3) | 0.1559 (6) | 0.6562 (2) | 0.0960 (14) | |
H4 | 0.6096 | 0.0633 | 0.6813 | 0.115* | |
C5 | 0.4308 (3) | 0.1312 (5) | 0.74590 (18) | 0.0816 (11) | |
H5 | 0.4668 | 0.0449 | 0.7589 | 0.098* | |
C6 | 0.3562 (3) | 0.1551 (6) | 0.7728 (2) | 0.0954 (14) | |
H6 | 0.3414 | 0.0846 | 0.8045 | 0.115* | |
C7 | 0.3019 (3) | 0.2824 (5) | 0.75390 (18) | 0.0859 (11) | |
H7 | 0.2510 | 0.2951 | 0.7728 | 0.103* | |
C8 | 0.3215 (2) | 0.3911 (5) | 0.70768 (16) | 0.0702 (9) | |
H8 | 0.2848 | 0.4770 | 0.6953 | 0.084* | |
C10 | 0.5093 (2) | 0.3865 (5) | 0.62154 (14) | 0.0655 (8) | |
C11 | 0.5247 (2) | 0.2484 (5) | 0.66088 (16) | 0.0681 (9) | |
C12 | 0.4529 (2) | 0.2368 (4) | 0.69877 (14) | 0.0624 (8) | |
C13 | 0.39748 (19) | 0.3677 (4) | 0.68040 (14) | 0.0578 (7) | |
C14 | 0.3937 (2) | 0.6011 (4) | 0.60257 (15) | 0.0690 (9) | |
H14A | 0.3347 | 0.5782 | 0.5985 | 0.083* | |
H14B | 0.4172 | 0.6086 | 0.5633 | 0.083* | |
C15 | 0.4052 (3) | 0.7739 (5) | 0.63337 (18) | 0.0841 (11) | |
H15A | 0.4641 | 0.8002 | 0.6356 | 0.101* | |
H15B | 0.3841 | 0.7652 | 0.6733 | 0.101* | |
C16 | 0.3595 (2) | 0.9255 (5) | 0.60072 (19) | 0.0807 (10) | |
H16A | 0.3055 | 0.8862 | 0.5872 | 0.097* | |
H16B | 0.3510 | 1.0218 | 0.6277 | 0.097* | |
C17 | 0.4087 (3) | 0.9825 (5) | 0.55080 (19) | 0.0903 (11) | |
H17A | 0.4160 | 0.8872 | 0.5233 | 0.108* | |
H17B | 0.4631 | 1.0198 | 0.5641 | 0.108* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br | 0.1314 (5) | 0.0737 (3) | 0.1168 (4) | −0.0018 (2) | −0.0395 (3) | 0.0214 (2) |
N1 | 0.0734 (16) | 0.0522 (14) | 0.0593 (15) | 0.0028 (12) | −0.0059 (12) | 0.0041 (12) |
C1 | 0.086 (2) | 0.113 (3) | 0.066 (2) | −0.008 (2) | 0.002 (2) | −0.015 (2) |
C2 | 0.083 (3) | 0.180 (6) | 0.084 (3) | 0.001 (3) | 0.003 (2) | −0.043 (4) |
C3 | 0.081 (3) | 0.167 (6) | 0.106 (4) | 0.039 (3) | −0.023 (3) | −0.062 (4) |
C4 | 0.090 (3) | 0.102 (3) | 0.096 (3) | 0.032 (2) | −0.035 (3) | −0.031 (2) |
C5 | 0.101 (3) | 0.063 (2) | 0.081 (2) | −0.009 (2) | −0.031 (2) | 0.0146 (18) |
C6 | 0.115 (4) | 0.088 (3) | 0.083 (3) | −0.033 (3) | −0.014 (3) | 0.025 (2) |
C7 | 0.081 (3) | 0.095 (3) | 0.081 (2) | −0.023 (2) | 0.000 (2) | 0.006 (2) |
C8 | 0.0662 (19) | 0.069 (2) | 0.075 (2) | −0.0044 (17) | −0.0103 (17) | 0.0006 (18) |
C10 | 0.072 (2) | 0.0667 (19) | 0.0577 (18) | −0.0047 (16) | −0.0081 (16) | −0.0118 (16) |
C11 | 0.070 (2) | 0.0630 (19) | 0.071 (2) | 0.0079 (17) | −0.0221 (17) | −0.0164 (17) |
C12 | 0.075 (2) | 0.0460 (15) | 0.0662 (19) | −0.0012 (15) | −0.0232 (16) | −0.0021 (14) |
C13 | 0.0655 (18) | 0.0486 (15) | 0.0595 (17) | −0.0051 (14) | −0.0124 (15) | −0.0006 (13) |
C14 | 0.086 (2) | 0.0568 (18) | 0.0639 (19) | −0.0002 (17) | −0.0141 (17) | 0.0060 (15) |
C15 | 0.106 (3) | 0.066 (2) | 0.080 (2) | −0.0028 (19) | −0.013 (2) | −0.0008 (18) |
C16 | 0.079 (2) | 0.067 (2) | 0.096 (3) | −0.0004 (17) | 0.0006 (19) | −0.0061 (19) |
C17 | 0.098 (3) | 0.077 (2) | 0.095 (3) | −0.003 (2) | −0.010 (2) | 0.008 (2) |
Br—C17 | 1.981 (4) | C7—C8 | 1.378 (5) |
N1—C13 | 1.380 (4) | C7—H7 | 0.9300 |
N1—C10 | 1.380 (4) | C8—C13 | 1.383 (5) |
N1—C14 | 1.457 (4) | C8—H8 | 0.9300 |
C1—C2 | 1.371 (7) | C10—C11 | 1.411 (5) |
C1—C10 | 1.387 (5) | C11—C12 | 1.442 (5) |
C1—H1 | 0.9300 | C12—C13 | 1.409 (4) |
C2—C3 | 1.385 (9) | C14—C15 | 1.514 (5) |
C2—H2 | 0.9300 | C14—H14A | 0.9700 |
C3—C4 | 1.386 (8) | C14—H14B | 0.9700 |
C3—H3 | 0.9300 | C15—C16 | 1.567 (5) |
C4—C11 | 1.389 (5) | C15—H15A | 0.9700 |
C4—H4 | 0.9300 | C15—H15B | 0.9700 |
C5—C6 | 1.360 (6) | C16—C17 | 1.450 (6) |
C5—C12 | 1.389 (5) | C16—H16A | 0.9700 |
C5—H5 | 0.9300 | C16—H16B | 0.9700 |
C6—C7 | 1.382 (6) | C17—H17A | 0.9700 |
C6—H6 | 0.9300 | C17—H17B | 0.9700 |
C13—N1—C10 | 108.9 (3) | C10—C11—C12 | 106.5 (3) |
C13—N1—C14 | 125.4 (3) | C5—C12—C13 | 118.9 (4) |
C10—N1—C14 | 125.8 (3) | C5—C12—C11 | 134.4 (3) |
C2—C1—C10 | 117.3 (5) | C13—C12—C11 | 106.6 (3) |
C2—C1—H1 | 121.3 | N1—C13—C8 | 129.6 (3) |
C10—C1—H1 | 121.3 | N1—C13—C12 | 109.0 (3) |
C1—C2—C3 | 121.9 (5) | C8—C13—C12 | 121.4 (3) |
C1—C2—H2 | 119.0 | N1—C14—C15 | 113.3 (3) |
C3—C2—H2 | 119.0 | N1—C14—H14A | 108.9 |
C2—C3—C4 | 121.0 (4) | C15—C14—H14A | 108.9 |
C2—C3—H3 | 119.5 | N1—C14—H14B | 108.9 |
C4—C3—H3 | 119.5 | C15—C14—H14B | 108.9 |
C3—C4—C11 | 118.5 (5) | H14A—C14—H14B | 107.7 |
C3—C4—H4 | 120.7 | C14—C15—C16 | 112.3 (3) |
C11—C4—H4 | 120.7 | C14—C15—H15A | 109.1 |
C6—C5—C12 | 119.6 (4) | C16—C15—H15A | 109.1 |
C6—C5—H5 | 120.2 | C14—C15—H15B | 109.1 |
C12—C5—H5 | 120.2 | C16—C15—H15B | 109.1 |
C5—C6—C7 | 120.9 (4) | H15A—C15—H15B | 107.9 |
C5—C6—H6 | 119.5 | C17—C16—C15 | 109.7 (3) |
C7—C6—H6 | 119.5 | C17—C16—H16A | 109.7 |
C8—C7—C6 | 121.6 (4) | C15—C16—H16A | 109.7 |
C8—C7—H7 | 119.2 | C17—C16—H16B | 109.7 |
C6—C7—H7 | 119.2 | C15—C16—H16B | 109.7 |
C7—C8—C13 | 117.6 (3) | H16A—C16—H16B | 108.2 |
C7—C8—H8 | 121.2 | C16—C17—Br | 109.0 (3) |
C13—C8—H8 | 121.2 | C16—C17—H17A | 109.9 |
N1—C10—C1 | 129.0 (4) | Br—C17—H17A | 109.9 |
N1—C10—C11 | 109.0 (3) | C16—C17—H17B | 109.9 |
C1—C10—C11 | 122.0 (4) | Br—C17—H17B | 109.9 |
C4—C11—C10 | 119.3 (4) | H17A—C17—H17B | 108.3 |
C4—C11—C12 | 134.3 (4) | ||
C10—C1—C2—C3 | 0.2 (7) | C4—C11—C12—C5 | 1.6 (7) |
C1—C2—C3—C4 | −0.5 (8) | C10—C11—C12—C5 | −179.1 (4) |
C2—C3—C4—C11 | −0.1 (7) | C4—C11—C12—C13 | −179.0 (4) |
C12—C5—C6—C7 | 0.2 (6) | C10—C11—C12—C13 | 0.3 (3) |
C5—C6—C7—C8 | −0.7 (7) | C10—N1—C13—C8 | −179.7 (3) |
C6—C7—C8—C13 | 0.4 (6) | C14—N1—C13—C8 | 0.4 (5) |
C13—N1—C10—C1 | −179.4 (3) | C10—N1—C13—C12 | −0.2 (3) |
C14—N1—C10—C1 | 0.5 (5) | C14—N1—C13—C12 | 179.9 (3) |
C13—N1—C10—C11 | 0.4 (3) | C7—C8—C13—N1 | 179.9 (3) |
C14—N1—C10—C11 | −179.7 (3) | C7—C8—C13—C12 | 0.5 (5) |
C2—C1—C10—N1 | −179.6 (4) | C5—C12—C13—N1 | 179.5 (3) |
C2—C1—C10—C11 | 0.6 (5) | C11—C12—C13—N1 | 0.0 (3) |
C3—C4—C11—C10 | 0.9 (5) | C5—C12—C13—C8 | −1.0 (5) |
C3—C4—C11—C12 | −179.9 (4) | C11—C12—C13—C8 | 179.5 (3) |
N1—C10—C11—C4 | 178.9 (3) | C13—N1—C14—C15 | 82.5 (4) |
C1—C10—C11—C4 | −1.2 (5) | C10—N1—C14—C15 | −97.3 (4) |
N1—C10—C11—C12 | −0.4 (3) | N1—C14—C15—C16 | −177.1 (3) |
C1—C10—C11—C12 | 179.4 (3) | C14—C15—C16—C17 | −79.7 (4) |
C6—C5—C12—C13 | 0.6 (5) | C15—C16—C17—Br | −178.8 (3) |
C6—C5—C12—C11 | 180.0 (4) |
Experimental details
Crystal data | |
Chemical formula | C16H16BrN |
Mr | 302.21 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 293 |
a, b, c (Å) | 16.0949 (4), 7.7012 (2), 22.6874 (4) |
V (Å3) | 2812.10 (11) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 2.91 |
Crystal size (mm) | 0.24 × 0.21 × 0.17 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.510, 0.589 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 25173, 2860, 2002 |
Rint | 0.042 |
(sin θ/λ)max (Å−1) | 0.625 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.049, 0.146, 1.03 |
No. of reflections | 2860 |
No. of parameters | 163 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.38, −0.45 |
Computer programs: COLLECT (Nonius, 2000), SCALEPACK (Otwinowski & Minor, 1997), DENZO and SCALEPACK (Otwinowski & Minor, 1997, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999).
Acknowledgements
RMF is grateful to the Spanish Research Council (CSIC) for the use of a free-of-charge licence to the Cambridge Structural Database. RMF also thanks the Universidad del Valle, Colombia, and CG thanks the Universidad San Buenaventura, Cali, Colombia, for partial financial support.
References
Bo, Z., Zhang, W., Zhang, X., Zhang, C. & Shen, J. (1998). Macromol. Chem. Phys. 199, 1323–1327. CrossRef CAS Google Scholar
Duan, X.-M., Huang, P.-M., Li, J.-S., Zheng, P.-W., Zeng, T. & Bai, G.-Y. (2005). Acta Cryst. E61, o3977–o3978. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Gerkin, R. E. & Reppart, W. J. (1986). Acta Cryst. C42, 480–482. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Knolker, H. J. & Reddy, K. R. (2002). Chem. Rev. 102, 4303–4427. Web of Science CrossRef PubMed Google Scholar
Koyuncu, F. B., Koyuncu, S. & Ozdemir, E. (2011). Synth. Met. 161, 1005–1013. Web of Science CrossRef CAS Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Morisaki, Y., Alves-Fernandes, J., Wada, N. & Chujo, Y. (2009). J. Polym. Sci. 47, 4279–4288. CrossRef CAS Google Scholar
Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Panchatcharam, R., Dhayalan, V., Mohanakrishnan, A. K., Chakkaravarthi, G. & Manivannan, V. (2011). Acta Cryst. E67, o2797. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Taranekar, P., Fulghum, T., Patton, D., Ponnapati, R., Clyde, G. & Advincula, R. (2007). J. Am. Chem. Soc. 129, 12537–12548. Web of Science CrossRef PubMed CAS Google Scholar
Zhang, F. F., Gan, L. L. & Cheng-He Zho, C. H. (2010). Bioorg. Med. Chem. Lett. 20, 1881–1884. Web of Science CrossRef CAS PubMed Google Scholar
Zhou, H. P., Lv, L. F., Wang, P. & Hu, R. T. (2008). Acta Cryst. E64, o1075. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The carbazole ring has a highly conjugated π system with desirable optical and charge-transport properties. These characteristics make it an excellent candidate for applications in different areas of science. Indeed, carbazole and its derivatives, heterocyclic compounds with a N atom in their structure, have interesting chemical (Knolker & Reddy, 2002), physical (Koyuncu et al., 2011) and medicinal (Zhang et al., 2010) properties. Polymers based on carbazole units become promising materials because of their optical, electronic and electrochemical behaviors (Taranekar et al., 2007; Morisaki et al., 2009). One of these derivatives, 9-(4-bromobutyl)-9H-carbazole, the title compound C16H16BrN, was synthesized and its structure is reported here.
In the title compound (Fig. 1) the tricyclic carbazole system is essentially planar (r.m.s. deviation of all non-hydrogen atoms = 0.0100 Å), with a dihedral angle of 1.1 (3)° between two outer rings of the molecule. Other related systems are similar (Gerkin & Reppart, 1986; Duan et al., 2005). Bond distances and bond angles in the carbazole ring are comparable with those observed in similar structures (Zhou et al., 2008; Panchatcharam et al., 2011). The n-butylbromide chain adopts a semi-extended conformation, with torsion angles C10—N1—C14—C15, N1—C14—C15—C16, C14—C15—C16—C17 and C15—C16—C17—Br1 of -97.3 (4), -177.1 (3), -79.7 (4) and -178.8 (3)°, respectively. No Br···Br interactions or short intermolecular contacts are found in the crystal structure.