metal-organic compounds
Bis(2-amino-5-methyl-1,3,4-thiadiazole-κN3)dichloridocobalt(II)
aCollege of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China
*Correspondence e-mail: cezlliu@imu.edu.cn
In the monomeric title complex, [CoCl2(C3H5N3S)2], the CoII atom is tetracoordinated by two chloride anions and two N atoms from two monodentate 2-amino-5-methyl-1,3,4-thiadiazole ligands, giving a slightly distorted tetrahedral stereochemistry [bond angle range about Co = 105.16 (12)–112.50 (10)°]. In the complex, the dihedral angle between the 1,3,4-thiadiazole planes in the two ligands is 72.8 (1)°. There are two intramolecular N—H⋯Cl interactions in the complex unit, while in the crystal, intermolecular N—H⋯N and N—H⋯Cl hydrogen bonds link these units into a two-dimensional layered structure parallel to (011).
Related literature
For potential applications of complexes containing 2,5-disubstituted 1,3,4-thiadiazoles, see: Katritzky et al. (2010); Seed et al. (2007). For the preparation of the 2-amino-5-methyl-1,3,4-thiadiazole ligand, see: Chubb & Nissenbaum (1959). For complexes with this ligand, see: Lynch & Ewington (2001); Neverov et al. (1986); Antolini et al. (1988).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2001); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536812020995/zs2204sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812020995/zs2204Isup2.hkl
2-Amino-5-methyl-1,3,4-thiadiazole (amtz) was prepared according to a previously reported procedure (Chubb & Nissenbaum, 1959). 1 mmol of CoCl2 . 6H2O (0.237 g) dissolved in 20 ml of ethanol–water (1:1, v/v) containing 1 mmol of 2-amino-5-methyl-1,3,4-thiadiazole (0.115 g). The resulting solution was stirred continuously for about 2 h. Upon slow partial evaporation of the solvent, dark blue crystals formed after 5 days. Yield: 35% (based on CoCl2 . 6H2O).
All H-atoms were placed in calculated positions with N—H = 0.86 Å and C—H = 0.96 Å and were allowed to ride in the
with Uiso(H) = 1.2Ueq(N) and Uiso(H) = 1.5Ueq(C).Data collection: SMART (Bruker, 2001); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).[CoCl2(C3H5N3S)2] | F(000) = 724 |
Mr = 360.15 | Dx = 1.810 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 5643 reflections |
a = 9.124 (2) Å | θ = 0.7–0.7° |
b = 20.180 (5) Å | µ = 2.01 mm−1 |
c = 7.2767 (19) Å | T = 296 K |
β = 99.479 (5)° | Block, blue |
V = 1321.5 (6) Å3 | 0.20 × 0.20 × 0.20 mm |
Z = 4 |
Bruker SMART APEX diffractometer | 3194 independent reflections |
Radiation source: fine-focus sealed tube | 2125 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.052 |
Detector resolution: 8.192 pixels mm-1 | θmax = 28.2°, θmin = 2.0° |
ω–2τ scans | h = −9→12 |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | k = −26→26 |
Tmin = 0.670, Tmax = 0.676 | l = −8→9 |
8978 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.045 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.110 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.047P)2 + 0.1324P] where P = (Fo2 + 2Fc2)/3 |
3194 reflections | (Δ/σ)max < 0.001 |
156 parameters | Δρmax = 0.47 e Å−3 |
0 restraints | Δρmin = −0.60 e Å−3 |
[CoCl2(C3H5N3S)2] | V = 1321.5 (6) Å3 |
Mr = 360.15 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 9.124 (2) Å | µ = 2.01 mm−1 |
b = 20.180 (5) Å | T = 296 K |
c = 7.2767 (19) Å | 0.20 × 0.20 × 0.20 mm |
β = 99.479 (5)° |
Bruker SMART APEX diffractometer | 3194 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2125 reflections with I > 2σ(I) |
Tmin = 0.670, Tmax = 0.676 | Rint = 0.052 |
8978 measured reflections |
R[F2 > 2σ(F2)] = 0.045 | 0 restraints |
wR(F2) = 0.110 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.47 e Å−3 |
3194 reflections | Δρmin = −0.60 e Å−3 |
156 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Co1 | 0.15275 (5) | 0.62934 (2) | 0.21631 (7) | 0.02936 (16) | |
S2 | 0.52153 (11) | 0.77737 (5) | 0.39642 (15) | 0.0386 (3) | |
S1 | 0.26820 (12) | 0.44424 (5) | −0.08418 (15) | 0.0391 (3) | |
Cl1 | 0.06975 (11) | 0.58762 (5) | 0.46557 (14) | 0.0410 (3) | |
Cl2 | −0.02720 (11) | 0.68410 (5) | 0.02491 (16) | 0.0457 (3) | |
C1 | 0.3446 (4) | 0.75138 (19) | 0.3006 (5) | 0.0320 (8) | |
N3 | 0.3324 (3) | 0.68679 (14) | 0.2864 (4) | 0.0302 (7) | |
N5 | 0.2217 (3) | 0.55309 (15) | 0.0748 (4) | 0.0303 (7) | |
N6 | 0.3037 (3) | 0.56944 (15) | −0.0648 (5) | 0.0337 (7) | |
N4 | 0.4654 (3) | 0.65406 (15) | 0.3519 (5) | 0.0352 (8) | |
C6 | 0.1944 (4) | 0.48894 (18) | 0.0809 (5) | 0.0293 (8) | |
C7 | 0.3353 (4) | 0.5187 (2) | −0.1557 (5) | 0.0336 (9) | |
C8 | 0.5721 (4) | 0.69334 (19) | 0.4114 (5) | 0.0355 (9) | |
N1 | 0.1191 (4) | 0.46049 (16) | 0.2013 (5) | 0.0434 (9) | |
H1A | 0.0845 | 0.4842 | 0.2825 | 0.052* | |
H1B | 0.1050 | 0.4183 | 0.1981 | 0.052* | |
N2 | 0.2347 (4) | 0.79357 (16) | 0.2434 (5) | 0.0460 (9) | |
H2A | 0.1488 | 0.7789 | 0.1933 | 0.055* | |
H2B | 0.2494 | 0.8355 | 0.2565 | 0.055* | |
C20 | 0.4198 (5) | 0.5212 (2) | −0.3141 (6) | 0.0453 (11) | |
H20A | 0.4970 | 0.4884 | −0.2961 | 0.068* | |
H20B | 0.4632 | 0.5643 | −0.3198 | 0.068* | |
H20C | 0.3538 | 0.5125 | −0.4285 | 0.068* | |
C21 | 0.7265 (5) | 0.6726 (2) | 0.4872 (7) | 0.0552 (13) | |
H21A | 0.7922 | 0.6872 | 0.4051 | 0.083* | |
H21B | 0.7307 | 0.6252 | 0.4976 | 0.083* | |
H21C | 0.7563 | 0.6920 | 0.6081 | 0.083* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.0291 (3) | 0.0241 (3) | 0.0352 (3) | −0.0010 (2) | 0.0060 (2) | −0.0012 (2) |
S2 | 0.0437 (6) | 0.0292 (5) | 0.0425 (6) | −0.0096 (4) | 0.0060 (5) | −0.0050 (5) |
S1 | 0.0487 (6) | 0.0273 (5) | 0.0421 (6) | 0.0026 (4) | 0.0100 (5) | −0.0051 (5) |
Cl1 | 0.0442 (5) | 0.0428 (6) | 0.0381 (6) | −0.0072 (4) | 0.0129 (4) | −0.0008 (5) |
Cl2 | 0.0433 (6) | 0.0360 (6) | 0.0541 (7) | 0.0069 (5) | −0.0029 (5) | 0.0033 (5) |
C1 | 0.039 (2) | 0.0279 (19) | 0.031 (2) | −0.0037 (17) | 0.0099 (17) | −0.0030 (17) |
N3 | 0.0303 (16) | 0.0216 (15) | 0.0387 (19) | 0.0003 (13) | 0.0054 (13) | 0.0001 (14) |
N5 | 0.0328 (16) | 0.0271 (17) | 0.0315 (18) | 0.0015 (13) | 0.0066 (13) | 0.0005 (14) |
N6 | 0.0374 (17) | 0.0279 (17) | 0.0368 (19) | −0.0001 (14) | 0.0092 (14) | 0.0041 (15) |
N4 | 0.0330 (17) | 0.0275 (16) | 0.045 (2) | −0.0003 (14) | 0.0046 (15) | 0.0001 (16) |
C6 | 0.0294 (18) | 0.0277 (19) | 0.029 (2) | 0.0011 (15) | −0.0004 (15) | 0.0013 (16) |
C7 | 0.035 (2) | 0.035 (2) | 0.031 (2) | 0.0025 (17) | 0.0041 (16) | 0.0003 (18) |
C8 | 0.038 (2) | 0.033 (2) | 0.036 (2) | −0.0038 (17) | 0.0065 (17) | 0.0000 (18) |
N1 | 0.057 (2) | 0.0255 (17) | 0.050 (2) | −0.0062 (16) | 0.0168 (18) | 0.0004 (16) |
N2 | 0.047 (2) | 0.0247 (17) | 0.065 (3) | 0.0031 (16) | 0.0032 (18) | −0.0034 (18) |
C20 | 0.044 (2) | 0.058 (3) | 0.037 (2) | 0.008 (2) | 0.0165 (19) | 0.000 (2) |
C21 | 0.041 (2) | 0.054 (3) | 0.067 (3) | 0.003 (2) | −0.003 (2) | −0.005 (3) |
Co1—N3 | 2.004 (3) | N4—C8 | 1.275 (5) |
Co1—N5 | 2.009 (3) | C6—N1 | 1.330 (5) |
Co1—Cl1 | 2.2416 (12) | C7—C20 | 1.490 (5) |
Co1—Cl2 | 2.2590 (12) | C8—C21 | 1.486 (5) |
S2—C1 | 1.731 (4) | N1—H1A | 0.8600 |
S2—C8 | 1.756 (4) | N1—H1B | 0.8600 |
S1—C6 | 1.725 (4) | N2—H2A | 0.8600 |
S1—C7 | 1.735 (4) | N2—H2B | 0.8600 |
C1—N3 | 1.311 (5) | C20—H20A | 0.9600 |
C1—N2 | 1.329 (5) | C20—H20B | 0.9600 |
N3—N4 | 1.395 (4) | C20—H20C | 0.9600 |
N5—C6 | 1.320 (4) | C21—H21A | 0.9600 |
N5—N6 | 1.397 (4) | C21—H21B | 0.9600 |
N6—C7 | 1.277 (5) | C21—H21C | 0.9600 |
N3—Co1—N5 | 105.16 (12) | N6—C7—S1 | 114.7 (3) |
N3—Co1—Cl1 | 112.50 (10) | C20—C7—S1 | 120.9 (3) |
N5—Co1—Cl1 | 107.63 (9) | N4—C8—C21 | 125.1 (4) |
N3—Co1—Cl2 | 110.78 (9) | N4—C8—S2 | 113.7 (3) |
N5—Co1—Cl2 | 108.41 (9) | C21—C8—S2 | 121.2 (3) |
Cl1—Co1—Cl2 | 111.99 (5) | C6—N1—H1A | 120.0 |
C1—S2—C8 | 87.17 (18) | C6—N1—H1B | 120.0 |
C6—S1—C7 | 87.32 (18) | H1A—N1—H1B | 120.0 |
N3—C1—N2 | 124.2 (3) | C1—N2—H2A | 120.0 |
N3—C1—S2 | 113.2 (3) | C1—N2—H2B | 120.0 |
N2—C1—S2 | 122.5 (3) | H2A—N2—H2B | 120.0 |
C1—N3—N4 | 112.7 (3) | C7—C20—H20A | 109.5 |
C1—N3—Co1 | 130.6 (3) | C7—C20—H20B | 109.5 |
N4—N3—Co1 | 116.2 (2) | H20A—C20—H20B | 109.5 |
C6—N5—N6 | 112.5 (3) | C7—C20—H20C | 109.5 |
C6—N5—Co1 | 131.1 (3) | H20A—C20—H20C | 109.5 |
N6—N5—Co1 | 116.2 (2) | H20B—C20—H20C | 109.5 |
C7—N6—N5 | 112.4 (3) | C8—C21—H21A | 109.5 |
C8—N4—N3 | 113.2 (3) | C8—C21—H21B | 109.5 |
N5—C6—N1 | 124.5 (4) | H21A—C21—H21B | 109.5 |
N5—C6—S1 | 113.1 (3) | C8—C21—H21C | 109.5 |
N1—C6—S1 | 122.4 (3) | H21A—C21—H21C | 109.5 |
N6—C7—C20 | 124.3 (4) | H21B—C21—H21C | 109.5 |
C8—S2—C1—N3 | 0.3 (3) | C6—N5—N6—C7 | −0.4 (4) |
C8—S2—C1—N2 | −178.0 (4) | Co1—N5—N6—C7 | −175.9 (3) |
N2—C1—N3—N4 | 178.2 (3) | C1—N3—N4—C8 | −0.3 (5) |
S2—C1—N3—N4 | −0.1 (4) | Co1—N3—N4—C8 | −173.4 (3) |
N2—C1—N3—Co1 | −10.0 (6) | N6—N5—C6—N1 | 179.7 (3) |
S2—C1—N3—Co1 | 171.75 (19) | Co1—N5—C6—N1 | −5.7 (6) |
N5—Co1—N3—C1 | 145.3 (3) | N6—N5—C6—S1 | 0.2 (4) |
Cl1—Co1—N3—C1 | −97.9 (3) | Co1—N5—C6—S1 | 174.85 (18) |
Cl2—Co1—N3—C1 | 28.3 (4) | C7—S1—C6—N5 | 0.0 (3) |
N5—Co1—N3—N4 | −43.2 (3) | C7—S1—C6—N1 | −179.5 (3) |
Cl1—Co1—N3—N4 | 73.7 (3) | N5—N6—C7—C20 | 179.1 (3) |
Cl2—Co1—N3—N4 | −160.1 (2) | N5—N6—C7—S1 | 0.3 (4) |
N3—Co1—N5—C6 | 137.7 (3) | C6—S1—C7—N6 | −0.2 (3) |
Cl1—Co1—N5—C6 | 17.5 (4) | C6—S1—C7—C20 | −179.0 (3) |
Cl2—Co1—N5—C6 | −103.8 (3) | N3—N4—C8—C21 | −179.3 (4) |
N3—Co1—N5—N6 | −47.8 (3) | N3—N4—C8—S2 | 0.6 (4) |
Cl1—Co1—N5—N6 | −168.0 (2) | C1—S2—C8—N4 | −0.5 (3) |
Cl2—Co1—N5—N6 | 70.7 (2) | C1—S2—C8—C21 | 179.4 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···Cl1 | 0.86 | 2.49 | 3.281 (4) | 153 |
N2—H2A···Cl2 | 0.86 | 2.66 | 3.445 (4) | 152 |
N2—H2B···Cl1i | 0.86 | 2.90 | 3.331 (4) | 113 |
N2—H2B···N6ii | 0.86 | 2.32 | 3.114 (5) | 153 |
N1—H1B···Cl2iii | 0.86 | 2.65 | 3.387 (4) | 144 |
N1—H1A···Cl1iv | 0.86 | 2.88 | 3.341 (3) | 115 |
Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) x, −y+3/2, z+1/2; (iii) −x, −y+1, −z; (iv) −x, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [CoCl2(C3H5N3S)2] |
Mr | 360.15 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 296 |
a, b, c (Å) | 9.124 (2), 20.180 (5), 7.2767 (19) |
β (°) | 99.479 (5) |
V (Å3) | 1321.5 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 2.01 |
Crystal size (mm) | 0.20 × 0.20 × 0.20 |
Data collection | |
Diffractometer | Bruker SMART APEX diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.670, 0.676 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8978, 3194, 2125 |
Rint | 0.052 |
(sin θ/λ)max (Å−1) | 0.665 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.045, 0.110, 1.04 |
No. of reflections | 3194 |
No. of parameters | 156 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.47, −0.60 |
Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009), publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···Cl1 | 0.86 | 2.49 | 3.281 (4) | 153 |
N2—H2A···Cl2 | 0.86 | 2.66 | 3.445 (4) | 152 |
N2—H2B···N6i | 0.86 | 2.32 | 3.114 (5) | 153 |
N1—H1B···Cl2ii | 0.86 | 2.65 | 3.387 (4) | 144 |
Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) −x, −y+1, −z. |
Acknowledgements
We thank the NSFC (21061009) and the Inner Mongolia Autonomous Region Fund for Natural Science (2010MS0201) for their financial support.
References
Antolini, L., Benedetti, A., Fabretti, A. C., Giusti, A. & Menziani, M. C. (1988). J. Chem. Soc. Dalton Trans. pp. 1075–1077. CSD CrossRef Web of Science Google Scholar
Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chubb, F. L. & Nissenbaum, J. (1959). Can. J. Chem. 37, 1121–1123. CrossRef CAS Web of Science Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Katritzky, A. R., El-Nachef, C., Bajaj, K., Kubik, J. & Haase, D. N. (2010). J. Org. Chem. 75, 6009–6011. Web of Science CrossRef CAS PubMed Google Scholar
Lynch, D. E. & Ewington, J. (2001). Acta Cryst. C57, 1032–1035. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Neverov, V. A., Byushkin, V. N., Nezhel'skaya, L. A., Belichuk, N. I. & Rozhdestvenskaya, I. V. (1986). Koord. Khim. 12, 830–834. CAS Google Scholar
Seed, A. (2007). Chem. Soc. Rev. 36, 2046–2069. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Recently, metal complexes with 2,5-disubstituted 1,3,4-thiadiazoles have received considerable attention, as they have a wide range of potential applications in the fields of medicine and material science (Katritzky et al., 2010; Seed et al., 2007). The 2-Amino-5-methyl-1,3,4-thiadiazole (amtz) ligand, which contains one S and three N coordination sites is recognized as a potential multidentate ligand to construct some interesting compounds (Lynch et al., 2001; Neverov et al., 1986; Antolini et al., 1988). Herein, the title complex [CoCl2(C3H5N3S)2] has been synthesized and characterized structurally.
In the title monomeric complex, [CoCl2(C3H5N3S)2], the CoII is tetracoordinated by two chlorine anions and two nitrogen atoms from two monodentate 2-amino-5-methyl-1,3,4-thiadiazole ligands, giving a slightly distorted tetrahedral stereochemistry [bond angle range, 105.16 (12)– 112.50 (10)°; bond lengths: Co—N = 2.004 (3) and 2.009 (3) Å; Co—Cl = 2.2416 (12) and 2.2590 (12) Å]. Since the intramolecular N—H···Cl interactions exist between the NH2 group and Cl anions (Table 1), the Co—Cl bonds deviate from the thiadiazole ring planes (Antolini et al., 1988). In the crystal, the complex molecules are connected by intermolecular N—H···Cl and N—H···N hydrogen-bonding interactions, forming a two-dimensional layered structure which extends along the (011) plane (Fig. 2).