metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2-amino-5-methyl-1,3,4-thia­diazole-κN3)di­chloridocobalt(II)

aCollege of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China
*Correspondence e-mail: cezlliu@imu.edu.cn

(Received 24 April 2012; accepted 9 May 2012; online 16 May 2012)

In the monomeric title complex, [CoCl2(C3H5N3S)2], the CoII atom is tetra­coordinated by two chloride anions and two N atoms from two monodentate 2-amino-5-methyl-1,3,4-thia­diazole ligands, giving a slightly distorted tetra­hedral stereochemistry [bond angle range about Co = 105.16 (12)–112.50 (10)°]. In the complex, the dihedral angle between the 1,3,4-thia­diazole planes in the two ligands is 72.8 (1)°. There are two intra­molecular N—H⋯Cl inter­actions in the complex unit, while in the crystal, inter­molecular N—H⋯N and N—H⋯Cl hydrogen bonds link these units into a two-dimensional layered structure parallel to (011).

Related literature

For potential applications of complexes containing 2,5-disubstituted 1,3,4-thia­diazo­les, see: Katritzky et al. (2010[Katritzky, A. R., El-Nachef, C., Bajaj, K., Kubik, J. & Haase, D. N. (2010). J. Org. Chem. 75, 6009-6011.]); Seed et al. (2007[Seed, A. (2007). Chem. Soc. Rev. 36, 2046-2069.]). For the preparation of the 2-amino-5-methyl-1,3,4-thia­diazole ligand, see: Chubb & Nissenbaum (1959[Chubb, F. L. & Nissenbaum, J. (1959). Can. J. Chem. 37, 1121-1123.]). For complexes with this ligand, see: Lynch & Ewington (2001[Lynch, D. E. & Ewington, J. (2001). Acta Cryst. C57, 1032-1035.]); Neverov et al. (1986[Neverov, V. A., Byushkin, V. N., Nezhel'skaya, L. A., Belichuk, N. I. & Rozhdestvenskaya, I. V. (1986). Koord. Khim. 12, 830-834.]); Antolini et al. (1988[Antolini, L., Benedetti, A., Fabretti, A. C., Giusti, A. & Menziani, M. C. (1988). J. Chem. Soc. Dalton Trans. pp. 1075-1077.]).

[Scheme 1]

Experimental

Crystal data
  • [CoCl2(C3H5N3S)2]

  • Mr = 360.15

  • Monoclinic, P 21 /c

  • a = 9.124 (2) Å

  • b = 20.180 (5) Å

  • c = 7.2767 (19) Å

  • β = 99.479 (5)°

  • V = 1321.5 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.01 mm−1

  • T = 296 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.670, Tmax = 0.676

  • 8978 measured reflections

  • 3194 independent reflections

  • 2125 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.110

  • S = 1.04

  • 3194 reflections

  • 156 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.60 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl1 0.86 2.49 3.281 (4) 153
N2—H2A⋯Cl2 0.86 2.66 3.445 (4) 152
N2—H2B⋯N6i 0.86 2.32 3.114 (5) 153
N1—H1B⋯Cl2ii 0.86 2.65 3.387 (4) 144
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) -x, -y+1, -z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Recently, metal complexes with 2,5-disubstituted 1,3,4-thiadiazoles have received considerable attention, as they have a wide range of potential applications in the fields of medicine and material science (Katritzky et al., 2010; Seed et al., 2007). The 2-Amino-5-methyl-1,3,4-thiadiazole (amtz) ligand, which contains one S and three N coordination sites is recognized as a potential multidentate ligand to construct some interesting compounds (Lynch et al., 2001; Neverov et al., 1986; Antolini et al., 1988). Herein, the title complex [CoCl2(C3H5N3S)2] has been synthesized and characterized structurally.

In the title monomeric complex, [CoCl2(C3H5N3S)2], the CoII is tetracoordinated by two chlorine anions and two nitrogen atoms from two monodentate 2-amino-5-methyl-1,3,4-thiadiazole ligands, giving a slightly distorted tetrahedral stereochemistry [bond angle range, 105.16 (12)– 112.50 (10)°; bond lengths: Co—N = 2.004 (3) and 2.009 (3) Å; Co—Cl = 2.2416 (12) and 2.2590 (12) Å]. Since the intramolecular N—H···Cl interactions exist between the NH2 group and Cl anions (Table 1), the Co—Cl bonds deviate from the thiadiazole ring planes (Antolini et al., 1988). In the crystal, the complex molecules are connected by intermolecular N—H···Cl and N—H···N hydrogen-bonding interactions, forming a two-dimensional layered structure which extends along the (011) plane (Fig. 2).

Related literature top

For potential applications of complexes containing 2,5-disubstituted 1,3,4-thiadiazoles, see: Katritzky et al. (2010); Seed et al. (2007). For the preparation of the 2-amino-5-methyl-1,3,4-thiadiazole ligand, see: Chubb & Nissenbaum (1959). For complexes with this ligand, see: Lynch & Ewington (2001); Neverov et al. (1986); Antolini et al. (1988).

Experimental top

2-Amino-5-methyl-1,3,4-thiadiazole (amtz) was prepared according to a previously reported procedure (Chubb & Nissenbaum, 1959). 1 mmol of CoCl2 . 6H2O (0.237 g) dissolved in 20 ml of ethanol–water (1:1, v/v) containing 1 mmol of 2-amino-5-methyl-1,3,4-thiadiazole (0.115 g). The resulting solution was stirred continuously for about 2 h. Upon slow partial evaporation of the solvent, dark blue crystals formed after 5 days. Yield: 35% (based on CoCl2 . 6H2O).

Refinement top

All H-atoms were placed in calculated positions with N—H = 0.86 Å and C—H = 0.96 Å and were allowed to ride in the refinement, with Uiso(H) = 1.2Ueq(N) and Uiso(H) = 1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The structure and atom-numbering scheme for the title complex, with displacement ellipsoids drawn at the 30% probability level for non-H atoms. N—H···Cl interactions are shown as dashed lines.
[Figure 2] Fig. 2. A packing diagram viewed down the a-axis of the unit cell, showing the two-dimensional layered structure.
Bis(2-amino-5-methyl-1,3,4-thiadiazole-κN3)dichloridocobalt(II) top
Crystal data top
[CoCl2(C3H5N3S)2]F(000) = 724
Mr = 360.15Dx = 1.810 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5643 reflections
a = 9.124 (2) Åθ = 0.7–0.7°
b = 20.180 (5) ŵ = 2.01 mm1
c = 7.2767 (19) ÅT = 296 K
β = 99.479 (5)°Block, blue
V = 1321.5 (6) Å30.20 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
3194 independent reflections
Radiation source: fine-focus sealed tube2125 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
Detector resolution: 8.192 pixels mm-1θmax = 28.2°, θmin = 2.0°
ω–2τ scansh = 912
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 2626
Tmin = 0.670, Tmax = 0.676l = 89
8978 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.047P)2 + 0.1324P]
where P = (Fo2 + 2Fc2)/3
3194 reflections(Δ/σ)max < 0.001
156 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.60 e Å3
Crystal data top
[CoCl2(C3H5N3S)2]V = 1321.5 (6) Å3
Mr = 360.15Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.124 (2) ŵ = 2.01 mm1
b = 20.180 (5) ÅT = 296 K
c = 7.2767 (19) Å0.20 × 0.20 × 0.20 mm
β = 99.479 (5)°
Data collection top
Bruker SMART APEX
diffractometer
3194 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2125 reflections with I > 2σ(I)
Tmin = 0.670, Tmax = 0.676Rint = 0.052
8978 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.04Δρmax = 0.47 e Å3
3194 reflectionsΔρmin = 0.60 e Å3
156 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.15275 (5)0.62934 (2)0.21631 (7)0.02936 (16)
S20.52153 (11)0.77737 (5)0.39642 (15)0.0386 (3)
S10.26820 (12)0.44424 (5)0.08418 (15)0.0391 (3)
Cl10.06975 (11)0.58762 (5)0.46557 (14)0.0410 (3)
Cl20.02720 (11)0.68410 (5)0.02491 (16)0.0457 (3)
C10.3446 (4)0.75138 (19)0.3006 (5)0.0320 (8)
N30.3324 (3)0.68679 (14)0.2864 (4)0.0302 (7)
N50.2217 (3)0.55309 (15)0.0748 (4)0.0303 (7)
N60.3037 (3)0.56944 (15)0.0648 (5)0.0337 (7)
N40.4654 (3)0.65406 (15)0.3519 (5)0.0352 (8)
C60.1944 (4)0.48894 (18)0.0809 (5)0.0293 (8)
C70.3353 (4)0.5187 (2)0.1557 (5)0.0336 (9)
C80.5721 (4)0.69334 (19)0.4114 (5)0.0355 (9)
N10.1191 (4)0.46049 (16)0.2013 (5)0.0434 (9)
H1A0.08450.48420.28250.052*
H1B0.10500.41830.19810.052*
N20.2347 (4)0.79357 (16)0.2434 (5)0.0460 (9)
H2A0.14880.77890.19330.055*
H2B0.24940.83550.25650.055*
C200.4198 (5)0.5212 (2)0.3141 (6)0.0453 (11)
H20A0.49700.48840.29610.068*
H20B0.46320.56430.31980.068*
H20C0.35380.51250.42850.068*
C210.7265 (5)0.6726 (2)0.4872 (7)0.0552 (13)
H21A0.79220.68720.40510.083*
H21B0.73070.62520.49760.083*
H21C0.75630.69200.60810.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0291 (3)0.0241 (3)0.0352 (3)0.0010 (2)0.0060 (2)0.0012 (2)
S20.0437 (6)0.0292 (5)0.0425 (6)0.0096 (4)0.0060 (5)0.0050 (5)
S10.0487 (6)0.0273 (5)0.0421 (6)0.0026 (4)0.0100 (5)0.0051 (5)
Cl10.0442 (5)0.0428 (6)0.0381 (6)0.0072 (4)0.0129 (4)0.0008 (5)
Cl20.0433 (6)0.0360 (6)0.0541 (7)0.0069 (5)0.0029 (5)0.0033 (5)
C10.039 (2)0.0279 (19)0.031 (2)0.0037 (17)0.0099 (17)0.0030 (17)
N30.0303 (16)0.0216 (15)0.0387 (19)0.0003 (13)0.0054 (13)0.0001 (14)
N50.0328 (16)0.0271 (17)0.0315 (18)0.0015 (13)0.0066 (13)0.0005 (14)
N60.0374 (17)0.0279 (17)0.0368 (19)0.0001 (14)0.0092 (14)0.0041 (15)
N40.0330 (17)0.0275 (16)0.045 (2)0.0003 (14)0.0046 (15)0.0001 (16)
C60.0294 (18)0.0277 (19)0.029 (2)0.0011 (15)0.0004 (15)0.0013 (16)
C70.035 (2)0.035 (2)0.031 (2)0.0025 (17)0.0041 (16)0.0003 (18)
C80.038 (2)0.033 (2)0.036 (2)0.0038 (17)0.0065 (17)0.0000 (18)
N10.057 (2)0.0255 (17)0.050 (2)0.0062 (16)0.0168 (18)0.0004 (16)
N20.047 (2)0.0247 (17)0.065 (3)0.0031 (16)0.0032 (18)0.0034 (18)
C200.044 (2)0.058 (3)0.037 (2)0.008 (2)0.0165 (19)0.000 (2)
C210.041 (2)0.054 (3)0.067 (3)0.003 (2)0.003 (2)0.005 (3)
Geometric parameters (Å, º) top
Co1—N32.004 (3)N4—C81.275 (5)
Co1—N52.009 (3)C6—N11.330 (5)
Co1—Cl12.2416 (12)C7—C201.490 (5)
Co1—Cl22.2590 (12)C8—C211.486 (5)
S2—C11.731 (4)N1—H1A0.8600
S2—C81.756 (4)N1—H1B0.8600
S1—C61.725 (4)N2—H2A0.8600
S1—C71.735 (4)N2—H2B0.8600
C1—N31.311 (5)C20—H20A0.9600
C1—N21.329 (5)C20—H20B0.9600
N3—N41.395 (4)C20—H20C0.9600
N5—C61.320 (4)C21—H21A0.9600
N5—N61.397 (4)C21—H21B0.9600
N6—C71.277 (5)C21—H21C0.9600
N3—Co1—N5105.16 (12)N6—C7—S1114.7 (3)
N3—Co1—Cl1112.50 (10)C20—C7—S1120.9 (3)
N5—Co1—Cl1107.63 (9)N4—C8—C21125.1 (4)
N3—Co1—Cl2110.78 (9)N4—C8—S2113.7 (3)
N5—Co1—Cl2108.41 (9)C21—C8—S2121.2 (3)
Cl1—Co1—Cl2111.99 (5)C6—N1—H1A120.0
C1—S2—C887.17 (18)C6—N1—H1B120.0
C6—S1—C787.32 (18)H1A—N1—H1B120.0
N3—C1—N2124.2 (3)C1—N2—H2A120.0
N3—C1—S2113.2 (3)C1—N2—H2B120.0
N2—C1—S2122.5 (3)H2A—N2—H2B120.0
C1—N3—N4112.7 (3)C7—C20—H20A109.5
C1—N3—Co1130.6 (3)C7—C20—H20B109.5
N4—N3—Co1116.2 (2)H20A—C20—H20B109.5
C6—N5—N6112.5 (3)C7—C20—H20C109.5
C6—N5—Co1131.1 (3)H20A—C20—H20C109.5
N6—N5—Co1116.2 (2)H20B—C20—H20C109.5
C7—N6—N5112.4 (3)C8—C21—H21A109.5
C8—N4—N3113.2 (3)C8—C21—H21B109.5
N5—C6—N1124.5 (4)H21A—C21—H21B109.5
N5—C6—S1113.1 (3)C8—C21—H21C109.5
N1—C6—S1122.4 (3)H21A—C21—H21C109.5
N6—C7—C20124.3 (4)H21B—C21—H21C109.5
C8—S2—C1—N30.3 (3)C6—N5—N6—C70.4 (4)
C8—S2—C1—N2178.0 (4)Co1—N5—N6—C7175.9 (3)
N2—C1—N3—N4178.2 (3)C1—N3—N4—C80.3 (5)
S2—C1—N3—N40.1 (4)Co1—N3—N4—C8173.4 (3)
N2—C1—N3—Co110.0 (6)N6—N5—C6—N1179.7 (3)
S2—C1—N3—Co1171.75 (19)Co1—N5—C6—N15.7 (6)
N5—Co1—N3—C1145.3 (3)N6—N5—C6—S10.2 (4)
Cl1—Co1—N3—C197.9 (3)Co1—N5—C6—S1174.85 (18)
Cl2—Co1—N3—C128.3 (4)C7—S1—C6—N50.0 (3)
N5—Co1—N3—N443.2 (3)C7—S1—C6—N1179.5 (3)
Cl1—Co1—N3—N473.7 (3)N5—N6—C7—C20179.1 (3)
Cl2—Co1—N3—N4160.1 (2)N5—N6—C7—S10.3 (4)
N3—Co1—N5—C6137.7 (3)C6—S1—C7—N60.2 (3)
Cl1—Co1—N5—C617.5 (4)C6—S1—C7—C20179.0 (3)
Cl2—Co1—N5—C6103.8 (3)N3—N4—C8—C21179.3 (4)
N3—Co1—N5—N647.8 (3)N3—N4—C8—S20.6 (4)
Cl1—Co1—N5—N6168.0 (2)C1—S2—C8—N40.5 (3)
Cl2—Co1—N5—N670.7 (2)C1—S2—C8—C21179.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl10.862.493.281 (4)153
N2—H2A···Cl20.862.663.445 (4)152
N2—H2B···Cl1i0.862.903.331 (4)113
N2—H2B···N6ii0.862.323.114 (5)153
N1—H1B···Cl2iii0.862.653.387 (4)144
N1—H1A···Cl1iv0.862.883.341 (3)115
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+3/2, z+1/2; (iii) x, y+1, z; (iv) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[CoCl2(C3H5N3S)2]
Mr360.15
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)9.124 (2), 20.180 (5), 7.2767 (19)
β (°) 99.479 (5)
V3)1321.5 (6)
Z4
Radiation typeMo Kα
µ (mm1)2.01
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.670, 0.676
No. of measured, independent and
observed [I > 2σ(I)] reflections
8978, 3194, 2125
Rint0.052
(sin θ/λ)max1)0.665
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.110, 1.04
No. of reflections3194
No. of parameters156
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.60

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl10.862.493.281 (4)153
N2—H2A···Cl20.862.663.445 (4)152
N2—H2B···N6i0.862.323.114 (5)153
N1—H1B···Cl2ii0.862.653.387 (4)144
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+1, z.
 

Acknowledgements

We thank the NSFC (21061009) and the Inner Mongolia Autonomous Region Fund for Natural Science (2010MS0201) for their financial support.

References

First citationAntolini, L., Benedetti, A., Fabretti, A. C., Giusti, A. & Menziani, M. C. (1988). J. Chem. Soc. Dalton Trans. pp. 1075–1077.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChubb, F. L. & Nissenbaum, J. (1959). Can. J. Chem. 37, 1121–1123.  CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKatritzky, A. R., El-Nachef, C., Bajaj, K., Kubik, J. & Haase, D. N. (2010). J. Org. Chem. 75, 6009–6011.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLynch, D. E. & Ewington, J. (2001). Acta Cryst. C57, 1032–1035.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNeverov, V. A., Byushkin, V. N., Nezhel'skaya, L. A., Belichuk, N. I. & Rozhdestvenskaya, I. V. (1986). Koord. Khim. 12, 830–834.  CAS Google Scholar
First citationSeed, A. (2007). Chem. Soc. Rev. 36, 2046–2069.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds