metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages m809-m810

Di­aqua­bis­­{4-[(pyridin-2-yl)methyl­­idene­amino]­benzene­sulfonato-κ2N,N′}nickel(II) tetra­hydrate

aCollege of Chemistry and Chemical Engineering, Qinzhou University, Qinzhou, Guangxi 535000, People's Republic of China
*Correspondence e-mail: 499122835@qq.com

(Received 4 May 2012; accepted 16 May 2012; online 26 May 2012)

In the title complex, [Ni(C12H9N2O3S)2(H2O)2]·4H2O, the NiII ion is coordinated by four N atoms from two bidentate chelating 4-[(pyridin-2-yl)methyl­idene­amino]­benzene­sulfonate ligands and two O atoms from cis-related water mol­ecules in a slightly distorted octa­hedral environment [Ni—N = 2.071 (3)–2.121 (3) Å and Ni—O = 2.071 (2) and 2.073 (3) Å]. In the crystal, the coordinated water mol­ecules and the four water mol­ecules of solvation are involved in inter­molecular O—H⋯O hydrogen-bonding inter­actions with water and sulfon­ate O-atom acceptors, giving a three-dimensional framework structure.

Related literature

For the synthesis of the ligand, see: Casella & Gullotti (1981[Casella, L. & Gullotti, M. (1981). J. Am. Chem. Soc. 103, 6338-6347.]). For the synthesis, structures and applications of similar complexes, see: Zhang et al. (2007[Zhang, S.-H., Li, G.-Z., Zhong, F. & Feng, X.-Z. (2007). Chin. J. Struct. Chem. 26, 1491-1494.], 2008[Zhang, S.-H., Jiang, Y.-M. & Liu, Z.-M. (2008). J. Coord. Chem. 61, 1927-1934.]). For the structures of the mainly tridentate complexes with the title ligand and similar ligands, see: Correia et al. (2003[Correia, V. R., Bortoluzzi, A. J., Neves, A., Joussef, A. C., Vieira, M. G. M. & Batista, S. C. (2003). Acta Cryst. E59, m464-m466.]); Jiang et al. (2006[Jiang, Y.-M., Li, J.-M., Xie, F.-Q. & Wang, Y.-F. (2006). Chin. J. Struct. Chem. 25, 767-770.]); Ou-Yang et al. (2008[Ou-Yang, M., Huang, X.-R., Zhang, Y.-L. & Jiang, Y.-M. (2008). Acta Cryst. E64, m1461.]); Li et al. (2006[Li, J.-X., Jiang, Y.-M. & Li, H.-Y. (2006). Acta Cryst. E62, m2984-m2986.]); Huang et al. (2009[Huang, X.-R., Ou-Yang, M., Yang, G.-G., Meng, X.-J. & Jiang, Y.-M. (2009). Acta Cryst. E65, m1465.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C12H9N2O3S)2(H2O)2]·4H2O

  • Mr = 689.35

  • Orthorhombic, P n a 21

  • a = 13.865 (2) Å

  • b = 11.5310 (18) Å

  • c = 18.860 (3) Å

  • V = 3015.3 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.85 mm−1

  • T = 296 K

  • 0.36 × 0.19 × 0.14 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.821, Tmax = 0.889

  • 16541 measured reflections

  • 5315 independent reflections

  • 4983 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.100

  • S = 0.96

  • 5315 reflections

  • 388 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.20 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2540 Friedel pairs

  • Flack parameter: 0.00 (1)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O4i 0.85 1.92 2.748 (4) 166
O1—H1A⋯O7ii 0.85 2.08 2.876 (4) 156
O2—H2A⋯O1W 0.85 1.94 2.752 (4) 159
O2—H2B⋯O3Wiii 0.85 1.82 2.659 (4) 171
O1W—H1WA⋯O4W 0.85 2.00 2.804 (5) 156
O1W—H1WB⋯O2Wiv 0.85 1.90 2.733 (5) 167
O2W—H2WA⋯O3v 0.87 2.13 2.833 (5) 137
O2W—H2WB⋯O7vi 0.86 2.29 2.874 (5) 125
O3W—H3WB⋯O6v 0.85 2.00 2.813 (6) 160
O3W—H3WA⋯O5vii 0.85 2.15 2.930 (5) 152
O4W—H4WB⋯O8vi 0.85 2.17 2.846 (5) 136
O4W—H4WA⋯O5viii 0.85 2.06 2.903 (5) 169
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{5\over 2}}, z]; (ii) [-x, -y+2, z-{\script{1\over 2}}]; (iii) x-1, y+1, z; (iv) x, y+1, z; (v) [-x+1, -y+1, z-{\script{1\over 2}}]; (vi) [-x, -y+1, z-{\script{1\over 2}}]; (vii) x, y-1, z; (viii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The design and control of supramolecular coordination complex networks in which both coordinate bonds and hydrogen bonds take part in the molecular self-assenbly, have recently attracted increasing interest. Schiff base complexes that contain both sulfur and amino acid functionalities have also received much attention due to their potential application in pharmacy (Jiang et al., 2006; Zhang et al., 2007, 2008). We report here the synthesis and the stucture of the mononuclear NiII complex with the potentially tridentate monoanionic ligand from the acid (4-pyridylmethylimine)benzenesulfonic acid (BfbaH), the title complex [Ni(C12H9N2O3S)2(H2O)2] . 4H2O. Other complexes with this ligand or similar ligands in the N,N',O-tridentate mode are known (Correia et al., 2003; Li et al., 2006; Huang et al., 2009; Ou-Yang et al., 2008).

The asymmetric unit of the title complex (Fig. 1) comprises a Ni2+ cation, coordinated by four N atoms from two bidentate Bfba ligands and two O atoms from cis-related water molecules in a slightly distorted octahedral environment [Ni—N, 2.071 (3)–2.121 (3) Å; Ni—O, 2.071 (3), 2.079 (3) Å], together with four water molecules of solvation. The two ligands are conformationally different [dihedral angles between the pyridine and benzene rings in each: 55.85 (18) and 43.2 (2)°]. In the crystal structure, the coordinated water molecules and the water molecules of solvation are involved in intermolecular O—H···O hydrogen-bonding interactions with water and sulfonate O-atom acceptors (Table 1) giving a three-dimensional framework structure (Fig. 2).

Related literature top

For the synthesis of the ligand, see: Casella & Gullotti (1981). For the synthesis, structures and applications of similar complexes, see: Zhang et al. (2007, 2008). For the structures of the mainly tridentate complexes with the title ligand and similar ligands, see: Correia et al. (2003); Jiang et al. (2006); Ou-Yang et al. (2008); Li et al. (2006); Huang et al. (2009).

Experimental top

The potassium salt of (4-pyridylmethylimine)benzenesulfonic acid (BfbaK) was synthesized according to the literature method (Casella & Gullotti, 1981). To prepare the title complex, the ligand BfbaK (1 mmol) was dissolved in methanol (10 ml) at 333 K and an aqueous solution (10 ml) containing Ni(AcO)2 . 4H2O (0.5 mmol) was added. The resulting solution was stirred at 333 K for 4 h, then cooled to room temperature and filtered. Blue crystals of the title complex suitable for X-ray diffraction were obtained by slow evaporation of this solution over a period of several days (yield 50%).

Refinement top

All H-atoms were placed in calculated positions with O—H = 0.85–0.87 Å and C—H = 0.93 Å and were allowed to ride in the refinement, with U</>iso(H) = 1.2Ueq(C) or 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, showing the atom-numbering scheme. All H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The packing of the title complex, showing the two-dimensional sheet structure in the ac plane.
Diaquabis{4-[(pyridin-2-yl)methylideneamino]benzenesulfonato- κ2N,N'}nickel(II) tetrahydrate top
Crystal data top
[Ni(C12H9N2O3S)2(H2O)2]·4H2OF(000) = 1432
Mr = 689.35Dx = 1.518 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 5315 reflections
a = 13.865 (2) Åθ = 2.1–25.1°
b = 11.5310 (18) ŵ = 0.85 mm1
c = 18.860 (3) ÅT = 296 K
V = 3015.3 (8) Å3Prism, blue
Z = 40.36 × 0.19 × 0.14 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
5315 independent reflections
Radiation source: fine-focus sealed tube4983 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 25.1°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1615
Tmin = 0.821, Tmax = 0.889k = 1213
16541 measured reflectionsl = 2122
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0792P)2 + 0.0306P]
where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max = 0.001
5315 reflectionsΔρmax = 0.44 e Å3
388 parametersΔρmin = 0.20 e Å3
1 restraintAbsolute structure: Flack (1983), 2540 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (1)
Crystal data top
[Ni(C12H9N2O3S)2(H2O)2]·4H2OV = 3015.3 (8) Å3
Mr = 689.35Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 13.865 (2) ŵ = 0.85 mm1
b = 11.5310 (18) ÅT = 296 K
c = 18.860 (3) Å0.36 × 0.19 × 0.14 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
5315 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
4983 reflections with I > 2σ(I)
Tmin = 0.821, Tmax = 0.889Rint = 0.028
16541 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.100Δρmax = 0.44 e Å3
S = 0.96Δρmin = 0.20 e Å3
5315 reflectionsAbsolute structure: Flack (1983), 2540 Friedel pairs
388 parametersAbsolute structure parameter: 0.00 (1)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.20498 (2)1.02094 (3)0.40723 (2)0.02752 (11)
S10.73596 (6)1.04204 (7)0.44399 (5)0.03481 (19)
S20.05169 (7)0.72312 (8)0.70323 (5)0.0424 (2)
C10.1419 (2)0.8284 (3)0.51959 (18)0.0344 (7)
C20.0425 (3)0.8359 (3)0.51285 (19)0.0416 (8)
H20.01540.86100.47040.050*
C30.0162 (3)0.8060 (3)0.5690 (2)0.0433 (8)
H30.08290.80990.56430.052*
C40.0244 (3)0.7701 (3)0.63258 (18)0.0367 (7)
C50.1233 (3)0.7666 (4)0.64016 (19)0.0446 (9)
H50.15050.74490.68320.053*
C60.1825 (3)0.7957 (4)0.5830 (2)0.0439 (9)
H60.24920.79300.58790.053*
C70.2621 (3)0.7887 (3)0.4372 (2)0.0383 (7)
H70.27000.71680.45880.046*
C80.3219 (2)0.8221 (3)0.37556 (19)0.0345 (7)
C90.3888 (3)0.7478 (4)0.3452 (2)0.0517 (9)
H90.39830.67400.36370.062*
C100.4408 (3)0.7847 (4)0.2875 (2)0.0613 (12)
H100.48740.73690.26730.074*
C110.4233 (3)0.8925 (4)0.2600 (2)0.0554 (11)
H110.45730.91900.22070.067*
C120.3539 (3)0.9611 (3)0.2919 (2)0.0407 (8)
H120.34171.03420.27300.049*
C130.4683 (2)1.0089 (3)0.52834 (19)0.0393 (8)
H130.43970.97770.56870.047*
C140.5673 (3)1.0014 (3)0.5188 (2)0.0399 (8)
H140.60530.96570.55300.048*
C150.6096 (2)1.0470 (3)0.45836 (18)0.0335 (7)
C160.5529 (2)1.0996 (3)0.4065 (2)0.0369 (7)
H160.58141.12920.36570.044*
C170.4550 (2)1.1077 (3)0.41573 (19)0.0356 (7)
H170.41711.14260.38110.043*
C180.4121 (2)1.0635 (3)0.47707 (18)0.0316 (6)
C190.2719 (2)1.1073 (3)0.54054 (19)0.0383 (8)
H190.31011.12200.58010.046*
C200.1660 (2)1.1226 (3)0.5437 (2)0.0390 (8)
C210.1207 (3)1.1581 (6)0.6040 (3)0.0727 (16)
H210.15521.17110.64550.087*
C220.0210 (3)1.1745 (6)0.6016 (3)0.0765 (16)
H220.01211.19900.64180.092*
C230.0268 (3)1.1544 (4)0.5405 (2)0.0517 (10)
H230.09321.16460.53820.062*
C240.0239 (2)1.1186 (3)0.4818 (2)0.0399 (8)
H240.00931.10600.43970.048*
N10.20060 (18)0.8593 (2)0.45990 (15)0.0318 (6)
N20.30403 (16)0.9275 (2)0.34813 (15)0.0292 (6)
N30.30951 (17)1.0737 (2)0.48275 (15)0.0297 (6)
N40.11907 (18)1.1011 (2)0.48314 (14)0.0318 (6)
O10.22444 (18)1.1677 (2)0.34556 (13)0.0394 (5)
H1A0.20961.18760.30360.059*
H10.23641.22850.36940.059*
O20.09435 (18)0.9625 (2)0.34255 (14)0.0463 (6)
H2B0.04491.00050.32950.069*
H2A0.12040.93240.30610.069*
O30.77809 (19)0.9764 (2)0.50163 (16)0.0438 (6)
O40.76778 (18)1.1617 (2)0.44222 (19)0.0562 (7)
O50.7506 (2)0.9857 (3)0.37643 (17)0.0624 (8)
O60.0109 (2)0.7141 (3)0.76410 (16)0.0728 (9)
O70.1269 (2)0.8077 (3)0.71181 (17)0.0644 (8)
O80.0890 (3)0.6119 (3)0.68130 (19)0.0814 (12)
O1W0.1482 (2)0.8187 (3)0.23302 (17)0.0613 (8)
H1WA0.17880.75480.23390.092*
H1WB0.17660.86470.20470.092*
O2W0.2203 (3)0.0066 (3)0.1507 (2)0.0764 (10)
H2WA0.24990.01640.11260.115*
H2WB0.16420.02600.15170.115*
O4W0.1939 (3)0.5819 (3)0.2341 (2)0.0784 (10)
H4WB0.19510.51640.21340.118*
H4WA0.20940.57180.27750.118*
O3W0.9288 (2)0.0644 (4)0.3082 (2)0.0940 (13)
H3WB0.93860.12760.28600.141*
H3WA0.86950.05990.31870.141*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.02597 (19)0.0301 (2)0.0265 (2)0.00072 (14)0.00129 (17)0.00007 (19)
S10.0260 (4)0.0403 (4)0.0381 (4)0.0023 (3)0.0034 (4)0.0044 (4)
S20.0496 (5)0.0457 (5)0.0319 (4)0.0013 (4)0.0112 (4)0.0058 (4)
C10.0388 (17)0.0286 (16)0.0359 (18)0.0041 (13)0.0049 (14)0.0026 (13)
C20.0422 (18)0.053 (2)0.0296 (18)0.0063 (16)0.0020 (14)0.0095 (15)
C30.0361 (17)0.057 (2)0.0371 (19)0.0087 (16)0.0010 (15)0.0071 (16)
C40.0438 (18)0.0354 (17)0.0308 (17)0.0037 (15)0.0077 (14)0.0043 (13)
C50.044 (2)0.056 (2)0.0336 (19)0.0032 (17)0.0003 (15)0.0141 (16)
C60.0357 (17)0.055 (2)0.041 (2)0.0057 (16)0.0024 (15)0.0056 (17)
C70.0445 (17)0.0305 (16)0.0398 (18)0.0017 (14)0.0043 (15)0.0059 (15)
C80.0350 (16)0.0336 (18)0.0348 (16)0.0045 (14)0.0023 (14)0.0009 (14)
C90.051 (2)0.050 (2)0.054 (2)0.0147 (18)0.0089 (18)0.0039 (19)
C100.057 (2)0.070 (3)0.057 (3)0.026 (2)0.021 (2)0.000 (2)
C110.047 (2)0.076 (3)0.043 (2)0.002 (2)0.0176 (17)0.003 (2)
C120.0419 (19)0.042 (2)0.038 (2)0.0046 (15)0.0028 (15)0.0034 (15)
C130.0344 (19)0.048 (2)0.0360 (19)0.0017 (14)0.0031 (15)0.0152 (15)
C140.0326 (18)0.051 (2)0.036 (2)0.0058 (15)0.0025 (15)0.0153 (15)
C150.0310 (16)0.0329 (16)0.0366 (19)0.0008 (13)0.0035 (13)0.0025 (14)
C160.0287 (14)0.0475 (18)0.0345 (16)0.0057 (12)0.0021 (15)0.0108 (17)
C170.0296 (14)0.0442 (18)0.0330 (17)0.0031 (12)0.0049 (14)0.0097 (15)
C180.0263 (14)0.0344 (16)0.0340 (17)0.0036 (13)0.0017 (13)0.0031 (13)
C190.0304 (16)0.056 (2)0.0288 (18)0.0049 (15)0.0009 (13)0.0048 (15)
C200.0333 (17)0.048 (2)0.0353 (18)0.0010 (15)0.0001 (14)0.0068 (15)
C210.038 (2)0.137 (5)0.043 (2)0.002 (2)0.0019 (18)0.031 (3)
C220.041 (2)0.130 (5)0.059 (3)0.001 (3)0.014 (2)0.039 (3)
C230.0325 (18)0.068 (3)0.055 (2)0.0020 (16)0.0051 (17)0.014 (2)
C240.0313 (16)0.0436 (18)0.045 (2)0.0031 (14)0.0040 (15)0.0055 (15)
N10.0340 (14)0.0281 (13)0.0332 (15)0.0024 (10)0.0056 (10)0.0037 (11)
N20.0262 (12)0.0304 (15)0.0309 (15)0.0020 (10)0.0041 (10)0.0031 (11)
N30.0272 (12)0.0332 (14)0.0287 (14)0.0021 (10)0.0006 (11)0.0004 (11)
N40.0301 (13)0.0322 (14)0.0331 (15)0.0001 (10)0.0037 (11)0.0023 (11)
O10.0539 (13)0.0300 (12)0.0342 (13)0.0023 (10)0.0040 (11)0.0049 (10)
O20.0380 (13)0.0588 (16)0.0421 (15)0.0019 (11)0.0068 (11)0.0094 (12)
O30.0369 (13)0.0453 (15)0.0491 (17)0.0051 (10)0.0089 (11)0.0065 (12)
O40.0345 (12)0.0447 (15)0.089 (2)0.0049 (11)0.0096 (14)0.0229 (16)
O50.0443 (17)0.097 (2)0.0458 (17)0.0119 (15)0.0030 (14)0.0110 (17)
O60.075 (2)0.107 (3)0.0359 (16)0.002 (2)0.0060 (14)0.0233 (17)
O70.0660 (18)0.077 (2)0.0499 (18)0.0180 (15)0.0253 (15)0.0135 (16)
O80.110 (3)0.061 (2)0.073 (2)0.0346 (18)0.047 (2)0.0115 (16)
O1W0.0578 (17)0.0614 (18)0.065 (2)0.0034 (14)0.0028 (14)0.0054 (15)
O2W0.096 (3)0.081 (2)0.052 (2)0.0126 (19)0.0092 (17)0.0085 (18)
O4W0.100 (3)0.062 (2)0.073 (2)0.0125 (18)0.0150 (19)0.0097 (18)
O3W0.0498 (19)0.129 (3)0.103 (3)0.015 (2)0.0142 (19)0.046 (3)
Geometric parameters (Å, º) top
Ni1—N22.071 (3)C12—H120.9300
Ni1—O12.071 (2)C13—C141.387 (5)
Ni1—O22.073 (3)C13—C181.392 (5)
Ni1—N42.079 (3)C13—H130.9300
Ni1—N12.113 (3)C14—C151.385 (5)
Ni1—N32.121 (3)C14—H140.9300
S1—O51.444 (3)C15—C161.393 (5)
S1—O31.448 (3)C16—C171.371 (4)
S1—O41.449 (3)C16—H160.9300
S1—C151.774 (3)C17—C181.397 (5)
S2—O71.437 (3)C17—H170.9300
S2—O81.443 (3)C18—N31.431 (4)
S2—O61.443 (3)C19—N31.269 (5)
S2—C41.784 (3)C19—C201.480 (5)
C1—C61.375 (5)C19—H190.9300
C1—C21.387 (5)C20—N41.338 (5)
C1—N11.434 (4)C20—C211.362 (6)
C2—C31.380 (5)C21—C221.396 (6)
C2—H20.9300C21—H210.9300
C3—C41.387 (5)C22—C231.349 (6)
C3—H30.9300C22—H220.9300
C4—C51.379 (5)C23—C241.375 (5)
C5—C61.395 (5)C23—H230.9300
C5—H50.9300C24—N41.335 (4)
C6—H60.9300C24—H240.9300
C7—N11.254 (4)O1—H1A0.8499
C7—C81.479 (5)O1—H10.8500
C7—H70.9300O2—H2B0.8500
C8—N21.344 (4)O2—H2A0.8500
C8—C91.386 (5)O1W—H1WA0.8506
C9—C101.374 (6)O1W—H1WB0.8501
C9—H90.9300O2W—H2WA0.8684
C10—C111.369 (6)O2W—H2WB0.8637
C10—H100.9300O4W—H4WB0.8501
C11—C121.384 (6)O4W—H4WA0.8538
C11—H110.9300O3W—H3WB0.8511
C12—N21.324 (4)O3W—H3WA0.8476
N2—Ni1—O192.09 (10)N2—C12—H12118.5
N2—Ni1—O290.27 (10)C11—C12—H12118.5
O1—Ni1—O291.81 (10)C14—C13—C18119.4 (3)
N2—Ni1—N4169.04 (11)C14—C13—H13120.3
O1—Ni1—N495.63 (10)C18—C13—H13120.3
O2—Ni1—N497.23 (11)C15—C14—C13120.1 (3)
N2—Ni1—N179.24 (11)C15—C14—H14119.9
O1—Ni1—N1171.32 (10)C13—C14—H14119.9
O2—Ni1—N188.20 (10)C14—C15—C16120.2 (3)
N4—Ni1—N192.98 (11)C14—C15—S1122.1 (3)
N2—Ni1—N393.30 (10)C16—C15—S1117.6 (3)
O1—Ni1—N393.09 (10)C17—C16—C15119.9 (3)
O2—Ni1—N3173.83 (11)C17—C16—H16120.0
N4—Ni1—N378.55 (10)C15—C16—H16120.0
N1—Ni1—N387.53 (11)C16—C17—C18120.1 (3)
O5—S1—O3111.75 (17)C16—C17—H17120.0
O5—S1—O4111.4 (2)C18—C17—H17120.0
O3—S1—O4113.12 (18)C13—C18—C17120.1 (3)
O5—S1—C15106.73 (18)C13—C18—N3122.8 (3)
O3—S1—C15107.49 (16)C17—C18—N3117.1 (3)
O4—S1—C15105.88 (15)N3—C19—C20118.6 (3)
O7—S2—O8112.0 (2)N3—C19—H19120.7
O7—S2—O6113.3 (2)C20—C19—H19120.7
O8—S2—O6112.3 (2)N4—C20—C21123.0 (3)
O7—S2—C4107.90 (17)N4—C20—C19115.2 (3)
O8—S2—C4105.55 (18)C21—C20—C19121.8 (3)
O6—S2—C4105.09 (17)C20—C21—C22118.1 (4)
C6—C1—C2120.2 (3)C20—C21—H21120.9
C6—C1—N1121.3 (3)C22—C21—H21120.9
C2—C1—N1118.5 (3)C23—C22—C21119.3 (4)
C3—C2—C1120.0 (3)C23—C22—H22120.3
C3—C2—H2120.0C21—C22—H22120.3
C1—C2—H2120.0C22—C23—C24119.2 (3)
C2—C3—C4119.9 (3)C22—C23—H23120.4
C2—C3—H3120.1C24—C23—H23120.4
C4—C3—H3120.1N4—C24—C23122.3 (3)
C5—C4—C3120.2 (3)N4—C24—H24118.8
C5—C4—S2120.1 (3)C23—C24—H24118.8
C3—C4—S2119.7 (3)C7—N1—C1119.5 (3)
C4—C5—C6119.8 (3)C7—N1—Ni1113.1 (2)
C4—C5—H5120.1C1—N1—Ni1127.2 (2)
C6—C5—H5120.1C12—N2—C8118.5 (3)
C1—C6—C5119.8 (3)C12—N2—Ni1128.7 (2)
C1—C6—H6120.1C8—N2—Ni1112.7 (2)
C5—C6—H6120.1C19—N3—C18119.9 (3)
N1—C7—C8118.7 (3)C19—N3—Ni1112.6 (2)
N1—C7—H7120.7C18—N3—Ni1127.2 (2)
C8—C7—H7120.7C20—N4—C24118.0 (3)
N2—C8—C9121.5 (3)C20—N4—Ni1113.0 (2)
N2—C8—C7115.8 (3)C24—N4—Ni1128.3 (2)
C9—C8—C7122.6 (3)Ni1—O1—H1A135.5
C10—C9—C8119.2 (4)Ni1—O1—H1113.7
C10—C9—H9120.4H1A—O1—H1108.5
C8—C9—H9120.4Ni1—O2—H2B126.8
C9—C10—C11119.2 (4)Ni1—O2—H2A107.1
C9—C10—H10120.4H2B—O2—H2A108.6
C11—C10—H10120.4H1WA—O1W—H1WB108.8
C10—C11—C12118.6 (4)H2WA—O2W—H2WB108.2
C10—C11—H11120.7H4WB—O4W—H4WA108.3
C12—C11—H11120.7H3WB—O3W—H3WA108.7
N2—C12—C11123.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O4i0.851.922.748 (4)166
O1—H1A···O7ii0.852.082.876 (4)156
O2—H2A···O1W0.851.942.752 (4)159
O2—H2B···O3Wiii0.851.822.659 (4)171
O1W—H1WA···O4W0.852.002.804 (5)156
O1W—H1WB···O2Wiv0.851.902.733 (5)167
O2W—H2WA···O3v0.872.132.833 (5)137
O2W—H2WB···O7vi0.862.292.874 (5)125
O3W—H3WB···O6v0.852.002.813 (6)160
O3W—H3WA···O5vii0.852.152.930 (5)152
O4W—H4WB···O8vi0.852.172.846 (5)136
O4W—H4WA···O5viii0.852.062.903 (5)169
Symmetry codes: (i) x1/2, y+5/2, z; (ii) x, y+2, z1/2; (iii) x1, y+1, z; (iv) x, y+1, z; (v) x+1, y+1, z1/2; (vi) x, y+1, z1/2; (vii) x, y1, z; (viii) x1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formula[Ni(C12H9N2O3S)2(H2O)2]·4H2O
Mr689.35
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)296
a, b, c (Å)13.865 (2), 11.5310 (18), 18.860 (3)
V3)3015.3 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.85
Crystal size (mm)0.36 × 0.19 × 0.14
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.821, 0.889
No. of measured, independent and
observed [I > 2σ(I)] reflections
16541, 5315, 4983
Rint0.028
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.100, 0.96
No. of reflections5315
No. of parameters388
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.20
Absolute structureFlack (1983), 2540 Friedel pairs
Absolute structure parameter0.00 (1)

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O4i0.851.922.748 (4)166
O1—H1A···O7ii0.852.082.876 (4)156
O2—H2A···O1W0.851.942.752 (4)159
O2—H2B···O3Wiii0.851.822.659 (4)171
O1W—H1WA···O4W0.852.002.804 (5)156
O1W—H1WB···O2Wiv0.851.902.733 (5)167
O2W—H2WA···O3v0.872.132.833 (5)137
O2W—H2WB···O7vi0.862.292.874 (5)125
O3W—H3WB···O6v0.852.002.813 (6)160
O3W—H3WA···O5vii0.852.152.930 (5)152
O4W—H4WB···O8vi0.852.172.846 (5)136
O4W—H4WA···O5viii0.852.062.903 (5)169
Symmetry codes: (i) x1/2, y+5/2, z; (ii) x, y+2, z1/2; (iii) x1, y+1, z; (iv) x, y+1, z; (v) x+1, y+1, z1/2; (vi) x, y+1, z1/2; (vii) x, y1, z; (viii) x1/2, y+3/2, z.
 

Acknowledgements

This work was funded by the Guangxi Science Foundation and Qinzhou University Science Foundation and the Guangxi Zhuang Autonomous Region of the People's Republic of China (grant Nos. 2010GXNSFA013017, 2010GXNSFA013062 and 2011XJKY-14B).

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCasella, L. & Gullotti, M. (1981). J. Am. Chem. Soc. 103, 6338–6347.  CrossRef CAS Web of Science Google Scholar
First citationCorreia, V. R., Bortoluzzi, A. J., Neves, A., Joussef, A. C., Vieira, M. G. M. & Batista, S. C. (2003). Acta Cryst. E59, m464–m466.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHuang, X.-R., Ou-Yang, M., Yang, G.-G., Meng, X.-J. & Jiang, Y.-M. (2009). Acta Cryst. E65, m1465.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJiang, Y.-M., Li, J.-M., Xie, F.-Q. & Wang, Y.-F. (2006). Chin. J. Struct. Chem. 25, 767–770.  CAS Google Scholar
First citationLi, J.-X., Jiang, Y.-M. & Li, H.-Y. (2006). Acta Cryst. E62, m2984–m2986.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOu-Yang, M., Huang, X.-R., Zhang, Y.-L. & Jiang, Y.-M. (2008). Acta Cryst. E64, m1461.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, S.-H., Jiang, Y.-M. & Liu, Z.-M. (2008). J. Coord. Chem. 61, 1927–1934.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, S.-H., Li, G.-Z., Zhong, F. & Feng, X.-Z. (2007). Chin. J. Struct. Chem. 26, 1491–1494.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages m809-m810
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds