organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1H-Pyrazol-2-ium hydrogen oxalate

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: zhurunqiang@163.com

(Received 6 May 2012; accepted 21 May 2012; online 26 May 2012)

In the title compound, C3H5N2+·C2HO4, the anions form centrosymmetric dimers through cyclic O—H⋯O hydrogen-bonding associations [graph set R22(10)]. These dimers are then linked through a cyclic R42(10) N—H⋯O hydrogen-bonding association involving two cations and the carboxyl O-atom acceptors of separate anions, giving chain structures extending across the (111) plane.

Related literature

For general background to ferroelectric organic frameworks, see: Fu et al. (2009[Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994-997.]); Ye et al. (2006[Ye, Q., Song, Y.-M., Wang, G.-X., Chen, K. & Fu, D.-W. (2006). J. Am. Chem. Soc. 128, 6554-6555.]); Zhang et al. (2008[Zhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468-10469.], 2010[Zhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z. & Xiong, R.-G. (2010). J. Am. Chem. Soc. 132, 7300-7302.]). For graph-set analysis, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • C3H5N2+·C2HO4

  • Mr = 158.12

  • Triclinic, [P \overline 1]

  • a = 3.7286 (7) Å

  • b = 9.836 (2) Å

  • c = 10.487 (2) Å

  • α = 117.35 (3)°

  • β = 97.01 (3)°

  • γ = 93.65 (3)°

  • V = 335.92 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 293 K

  • 0.26 × 0.22 × 0.14 mm

Data collection
  • Rigaku SCXmini CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.965, Tmax = 0.993

  • 3484 measured reflections

  • 1527 independent reflections

  • 702 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.095

  • wR(F2) = 0.285

  • S = 1.07

  • 1527 reflections

  • 101 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.86 1.86 2.709 (5) 170
N2—H2A⋯O1ii 0.86 1.92 2.715 (5) 153
O4—H4⋯O3iii 0.82 1.95 2.679 (5) 147
Symmetry codes: (i) x+1, y-1, z; (ii) -x+2, -y+1, -z+1; (iii) -x, -y+1, -z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a contribution to a search for new ferroelectric materials (Fu et al., 2009; Ye et al., 2006; Zhang et al., 2008, 2010), we have synthesized the title salt, C3H5N2+. C2HO4- from a 1:1 stoichiometric reaction of pyrazole with oxalic acid and the structure is reported here.

In the structure of the title compound (Fig.1) the molecules are organized in a one-dimensional chain structure involving both inter-anionic and cation–anion hydrogen-bonding associations (Table 1). The anions form centrosymmetric dimers through cyclic O—H···O hydrogen-bonding associations [graph set R22(10) (Etter et al., 1990)]. These dimers are then linked through a cyclic R24(10) N—H···O hydrogen-bonding association involving two cations and the carboxyl O-atom acceptors of separate anions, giving one-dimensional chain structures extending across the (111) plane (Fig. 2).

Related literature top

For general background to ferroelectric organic frameworks, see: Fu et al. (2009); Ye et al. (2006); Zhang et al. (2008, 2010). For graph-set analysis, see: Etter et al. (1990).

Experimental top

A mixture of pyrazole (0.68 g, 10 mmol) and oxalic acid (0.95 g, 10 mmol) in water was stirred for several days at ambient temperature. Colourless crystal plates of the title compound suitable for X-ray analysis were obtained.

Refinement top

Hydrogen atom positions were calculated and allowed to ride on their parent atoms with aromatic C—H = 0.93 Å, N—H = 0.86 Å and O—H = 0.82 Å, and with Uiso(H) = 1.2Ueq(C or N) and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure and atom-numbering scheme for the title compound, with the displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The packing of the title compound in the unit cell viewed down the a axis. Hydrogen bonds are shown as dashed lines.
1H-Pyrazol-2-ium hydrogen oxalate top
Crystal data top
C3H5N2+·C2HO4Z = 2
Mr = 158.12F(000) = 164
Triclinic, P1Dx = 1.563 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 3.7286 (7) ÅCell parameters from 1527 reflections
b = 9.836 (2) Åθ = 2.4–27.5°
c = 10.487 (2) ŵ = 0.14 mm1
α = 117.35 (3)°T = 293 K
β = 97.01 (3)°Sheet, colourless
γ = 93.65 (3)°0.26 × 0.22 × 0.14 mm
V = 335.92 (14) Å3
Data collection top
Rigaku SCXmini CCD
diffractometer
1527 independent reflections
Radiation source: fine-focus sealed tube702 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
CCD_Profile_fitting scansθmax = 27.5°, θmin = 3.9°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
h = 44
Tmin = 0.965, Tmax = 0.993k = 1212
3484 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.095Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.285H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.1349P)2 + 0.0952P]
where P = (Fo2 + 2Fc2)/3
1527 reflections(Δ/σ)max < 0.001
101 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C3H5N2+·C2HO4γ = 93.65 (3)°
Mr = 158.12V = 335.92 (14) Å3
Triclinic, P1Z = 2
a = 3.7286 (7) ÅMo Kα radiation
b = 9.836 (2) ŵ = 0.14 mm1
c = 10.487 (2) ÅT = 293 K
α = 117.35 (3)°0.26 × 0.22 × 0.14 mm
β = 97.01 (3)°
Data collection top
Rigaku SCXmini CCD
diffractometer
1527 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
702 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.993Rint = 0.063
3484 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0950 restraints
wR(F2) = 0.285H-atom parameters constrained
S = 1.07Δρmax = 0.48 e Å3
1527 reflectionsΔρmin = 0.29 e Å3
101 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N11.0872 (11)0.0136 (5)0.3057 (4)0.0416 (11)
H1A1.15950.05850.32300.050*
N21.1523 (11)0.1643 (5)0.3992 (4)0.0412 (11)
H2A1.27290.20540.48650.049*
C10.9992 (15)0.2395 (6)0.3352 (6)0.0493 (15)
H11.00470.34610.37730.059*
C20.8307 (15)0.1355 (7)0.1967 (6)0.0505 (15)
H20.70200.15670.12770.061*
C30.8931 (15)0.0076 (7)0.1818 (6)0.0477 (14)
H30.81310.10210.09930.057*
O10.3997 (10)0.8001 (4)0.3600 (3)0.0475 (10)
O20.6353 (11)0.5351 (4)0.3418 (4)0.0577 (12)
O30.0807 (11)0.6588 (4)0.1355 (4)0.0581 (11)
O40.3270 (11)0.4012 (4)0.1179 (4)0.0554 (11)
H40.19050.41870.06120.083*
C40.2907 (14)0.6762 (6)0.2446 (5)0.0402 (13)
C50.4374 (14)0.5304 (6)0.2400 (5)0.0425 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.049 (3)0.033 (2)0.041 (2)0.0045 (19)0.0029 (19)0.019 (2)
N20.048 (3)0.034 (2)0.031 (2)0.005 (2)0.0023 (19)0.0087 (19)
C10.053 (3)0.045 (3)0.056 (4)0.011 (3)0.006 (3)0.029 (3)
C20.053 (4)0.052 (4)0.048 (3)0.010 (3)0.002 (3)0.027 (3)
C30.047 (3)0.042 (3)0.041 (3)0.004 (2)0.006 (2)0.011 (3)
O10.062 (2)0.033 (2)0.037 (2)0.0087 (17)0.0074 (17)0.0110 (18)
O20.076 (3)0.043 (2)0.045 (2)0.0122 (19)0.0127 (19)0.018 (2)
O30.077 (3)0.042 (2)0.044 (2)0.0123 (19)0.0126 (19)0.0155 (19)
O40.075 (3)0.032 (2)0.045 (2)0.0098 (19)0.0082 (19)0.0113 (19)
C40.047 (3)0.032 (3)0.035 (3)0.005 (2)0.005 (2)0.011 (2)
C50.050 (3)0.033 (3)0.039 (3)0.003 (2)0.004 (3)0.013 (3)
Geometric parameters (Å, º) top
N1—C31.325 (6)C2—H20.9300
N1—N21.333 (5)C3—H30.9300
N1—H1A0.8601O1—C41.256 (6)
N2—C11.319 (6)O2—C51.202 (6)
N2—H2A0.8600O3—C41.239 (6)
C1—C21.372 (7)O4—C51.317 (6)
C1—H10.9300O4—H40.8200
C2—C31.380 (8)C4—C51.549 (7)
C3—N1—N2109.3 (4)C3—C2—H2127.4
C3—N1—H1A125.3N1—C3—C2108.0 (5)
N2—N1—H1A125.4N1—C3—H3126.0
C1—N2—N1108.4 (4)C2—C3—H3126.0
C1—N2—H2A125.8C5—O4—H4109.5
N1—N2—H2A125.8O3—C4—O1127.0 (5)
N2—C1—C2109.1 (5)O3—C4—C5117.3 (4)
N2—C1—H1125.4O1—C4—C5115.7 (4)
C2—C1—H1125.4O2—C5—O4122.4 (5)
C1—C2—C3105.2 (5)O2—C5—C4122.1 (5)
C1—C2—H2127.4O4—C5—C4115.4 (4)
C3—N1—N2—C10.1 (6)O3—C4—C5—O2178.2 (5)
N1—N2—C1—C20.0 (6)O1—C4—C5—O21.9 (8)
N2—C1—C2—C30.0 (6)O3—C4—C5—O41.0 (7)
N2—N1—C3—C20.1 (6)O1—C4—C5—O4178.9 (4)
C1—C2—C3—N10.1 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.861.862.709 (5)170
N2—H2A···O1ii0.861.922.715 (5)153
O4—H4···O3iii0.821.952.679 (5)147
Symmetry codes: (i) x+1, y1, z; (ii) x+2, y+1, z+1; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC3H5N2+·C2HO4
Mr158.12
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)3.7286 (7), 9.836 (2), 10.487 (2)
α, β, γ (°)117.35 (3), 97.01 (3), 93.65 (3)
V3)335.92 (14)
Z2
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.26 × 0.22 × 0.14
Data collection
DiffractometerRigaku SCXmini CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.965, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
3484, 1527, 702
Rint0.063
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.095, 0.285, 1.07
No. of reflections1527
No. of parameters101
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.29

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.861.862.709 (5)169.6
N2—H2A···O1ii0.861.922.715 (5)152.7
O4—H4···O3iii0.821.952.679 (5)147.4
Symmetry codes: (i) x+1, y1, z; (ii) x+2, y+1, z+1; (iii) x, y+1, z.
 

Acknowledgements

This work was supported by Southeast University.

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994–997.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYe, Q., Song, Y.-M., Wang, G.-X., Chen, K. & Fu, D.-W. (2006). J. Am. Chem. Soc. 128, 6554–6555.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468–10469.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z. & Xiong, R.-G. (2010). J. Am. Chem. Soc. 132, 7300–7302.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds