metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­­(L-lactato)magnesium

aCrystal Engineering Division, Center of Applied Solid State Chemistry Research, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
*Correspondence e-mail: Zhuhonglin1@nbu.edu.cn

(Received 27 April 2012; accepted 25 June 2012; online 30 June 2012)

In the title compound, [Mg(C3H4O3)2(H2O)2], the Mg2+ cation is six-coordinated by four O atoms from two lactate anions and two aqua ligands, completing an MgO6 distorted octa­hedral geometry. The complex mol­ecules are bridged by O—H⋯O hydrogen-bonding inter­actions into helical chains parallel to the a axis, which are linked by further O—H⋯O inter­actions, forming a three-dimensional supra­molecular architecture.

Related literature

For related compounds, see: Carballo et al. (2007[Carballo, R., Castiñeiras, A., Covelo, B., Lago, A. B. & Vázquez López, E. M. (2007). Z. Anorg. Allg. Chem. 633, 687-689.]); Chen et al. (2000[Chen, Z.-F., Zhang, J., Xiong, R.-G. & You, X.-Z. (2000). Inorg. Chem. Commun. 3, 493-496.]); Qiu et al. (2010[Qiu, Y., Liu, Z., Mou, J., Deng, H. & Zeller, M. (2010). CrystEngComm, 12, 277-290.]); Zeng et al. (2010[Zeng, M.-H., Wang, Q.-X., Tan, Y.-X., Hu, S., Zhao, H.-X., Long, L.-S. & Kurmoo, M. (2010). J. Am. Chem. Soc. 132, 2561-2563. ]).

[Scheme 1]

Experimental

Crystal data
  • [Mg(C3H4O3)2(H2O)2]

  • Mr = 238.48

  • Orthorhombic, P 21 21 21

  • a = 6.0525 (12) Å

  • b = 11.919 (2) Å

  • c = 14.526 (3) Å

  • V = 1047.9 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 293 K

  • 0.28 × 0.20 × 0.16 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.955, Tmax = 0.970

  • 10148 measured reflections

  • 1401 independent reflections

  • 1208 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.074

  • S = 1.14

  • 1401 reflections

  • 154 parameters

  • 8 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3D⋯O5i 0.84 1.83 2.668 (2) 178
O6—H6D⋯O2ii 0.82 1.85 2.666 (2) 174
O7—H7A⋯O2iii 0.83 1.94 2.768 (2) 171
O7—H7B⋯O5iv 0.83 1.85 2.678 (2) 177
O8—H8A⋯O1iii 0.83 2.12 2.933 (2) 167
O8—H8B⋯O4i 0.83 1.94 2.765 (2) 168
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) x-1, y, z; (iv) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the past decades, more attention have been paid to design and rational synthesis of coordination polymers based on self-assemblies of metal ions with lactic acid. The crystal structures of a number of metal lactates and their complexes have been reported (Carballo et al., 2007; Chen et al., 2000; Qiu et al., 2010; Zeng et al., 2010).

In the asymmetric unit of the the title compound, Mg(H2O)2(C3H4O3)2, the Mg2+ cation is chelated by two lactate anions bound through the carboxylate and hydroxyl groups. The other two sites are occupied by water molecules forming MgO6 distorted octahedral geometry (Fig. 1). The complexes greatly favor strong hydrogen bonding in the crystalline state. The hydroxyl group O3—H3D of the lactate ligand forms a hydrogen bond with the carboxylate atom O5i of a symmetry-related lactate anion (Table 1). This hydrogen bonding interaction leads to assemble the complexes into one-dimensional helical chain parallel to the a axis (Fig. 2). Other H-bonds link chains forming the three-dimensional architecture (Fig. 3).

Related literature top

For related compounds, see: Carballo et al. (2007); Chen et al. (2000); Qiu et al. (2010); Zeng et al. (2010).

Experimental top

Boric acid (1 mmol) and L-lactic acid (1 mmol) were dissolved in 10 ml distilled water. Magnesium hydroxide (0.5 mmol) was then added. The resulting suspension was stirred for 30 min and subsequently the white insoluble solid was filtered out. The colourless filtrate was finally kept at room temperature. After slow evaporation for two months colourless block-like crystals of the title complex were obtained. According to X-ray structure determination, boric acid did not participate in the complex formation.

Refinement top

H atoms bonded to C atoms were placed in geometrically calculated position and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C). H atoms attached to O atoms were found in a difference Fourier synthesis and were refined with the O—H distance restrained to 0.83 (2) Å and Uiso(H) = 1.2 Ueq(O).

Structure description top

In the past decades, more attention have been paid to design and rational synthesis of coordination polymers based on self-assemblies of metal ions with lactic acid. The crystal structures of a number of metal lactates and their complexes have been reported (Carballo et al., 2007; Chen et al., 2000; Qiu et al., 2010; Zeng et al., 2010).

In the asymmetric unit of the the title compound, Mg(H2O)2(C3H4O3)2, the Mg2+ cation is chelated by two lactate anions bound through the carboxylate and hydroxyl groups. The other two sites are occupied by water molecules forming MgO6 distorted octahedral geometry (Fig. 1). The complexes greatly favor strong hydrogen bonding in the crystalline state. The hydroxyl group O3—H3D of the lactate ligand forms a hydrogen bond with the carboxylate atom O5i of a symmetry-related lactate anion (Table 1). This hydrogen bonding interaction leads to assemble the complexes into one-dimensional helical chain parallel to the a axis (Fig. 2). Other H-bonds link chains forming the three-dimensional architecture (Fig. 3).

For related compounds, see: Carballo et al. (2007); Chen et al. (2000); Qiu et al. (2010); Zeng et al. (2010).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The content of asymmetric unit showing the atomic numbering and 45% probability dispalcement ellipsoids.
[Figure 2] Fig. 2. The one-dimensional helical chain.
[Figure 3] Fig. 3. The three-dimensional supramolcular architecture in the title compound.
Diaquabis(L-lactato)magnesium top
Crystal data top
[Mg(C3H4O3)2(H2O)2]F(000) = 504
Mr = 238.48Dx = 1.512 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 8276 reflections
a = 6.0525 (12) Åθ = 3.3–27.4°
b = 11.919 (2) ŵ = 0.19 mm1
c = 14.526 (3) ÅT = 293 K
V = 1047.9 (4) Å3Block, colourless
Z = 40.28 × 0.20 × 0.16 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1401 independent reflections
Radiation source: fine-focus sealed tube1208 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 0 pixels mm-1θmax = 27.4°, θmin = 3.3°
ω scansh = 77
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1515
Tmin = 0.955, Tmax = 0.970l = 1818
10148 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H atoms treated by a mixture of independent and constrained refinement
S = 1.14 w = 1/[σ2(Fo2) + (0.0268P)2 + 0.4768P]
where P = (Fo2 + 2Fc2)/3
1401 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.25 e Å3
8 restraintsΔρmin = 0.27 e Å3
Crystal data top
[Mg(C3H4O3)2(H2O)2]V = 1047.9 (4) Å3
Mr = 238.48Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.0525 (12) ŵ = 0.19 mm1
b = 11.919 (2) ÅT = 293 K
c = 14.526 (3) Å0.28 × 0.20 × 0.16 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1401 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1208 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 0.970Rint = 0.033
10148 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0298 restraints
wR(F2) = 0.074H atoms treated by a mixture of independent and constrained refinement
S = 1.14Δρmax = 0.25 e Å3
1401 reflectionsΔρmin = 0.27 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mg0.21037 (13)0.35509 (7)0.85604 (5)0.02010 (19)
O10.5170 (3)0.33271 (14)0.79415 (13)0.0267 (4)
O20.7174 (3)0.21637 (14)0.70818 (13)0.0317 (4)
C10.5540 (4)0.2377 (2)0.75825 (17)0.0236 (5)
C20.3907 (4)0.1430 (2)0.77760 (17)0.0252 (5)
H2A0.47120.07860.80280.030*
O30.2403 (3)0.18383 (14)0.84555 (13)0.0295 (4)
H3D0.146 (4)0.1355 (19)0.860 (2)0.035*
C30.2705 (5)0.1069 (2)0.6913 (2)0.0358 (7)
H3A0.16940.04740.70590.054*
H3B0.37560.08090.64660.054*
H3C0.19010.16950.66650.054*
O40.3478 (3)0.36013 (14)0.98528 (11)0.0269 (4)
O50.4302 (4)0.46441 (16)1.10705 (14)0.0414 (6)
C40.3553 (4)0.4525 (2)1.02739 (18)0.0244 (5)
C50.2663 (5)0.5563 (2)0.97857 (17)0.0274 (6)
H5A0.37960.61500.98000.033*
O60.2256 (3)0.52574 (13)0.88475 (12)0.0253 (4)
H6D0.236 (5)0.5821 (15)0.8526 (16)0.030*
C60.0595 (6)0.6001 (3)1.0249 (2)0.0517 (9)
H6A0.00800.66550.99290.078*
H6B0.09220.61921.08760.078*
H6C0.05280.54321.02350.078*
O70.0543 (3)0.37074 (16)0.73217 (12)0.0292 (4)
H7A0.052 (3)0.3289 (19)0.7204 (19)0.035*
H7B0.062 (5)0.4195 (17)0.6915 (15)0.035*
O80.0981 (3)0.33681 (17)0.91682 (12)0.0295 (4)
H8A0.210 (3)0.346 (2)0.8848 (17)0.035*
H8B0.124 (5)0.2826 (17)0.9512 (16)0.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mg0.0207 (4)0.0195 (4)0.0200 (4)0.0006 (4)0.0010 (3)0.0003 (3)
O10.0226 (8)0.0243 (9)0.0332 (9)0.0025 (8)0.0032 (8)0.0066 (8)
O20.0251 (9)0.0316 (9)0.0384 (10)0.0039 (9)0.0074 (9)0.0109 (8)
C10.0212 (12)0.0265 (12)0.0233 (12)0.0003 (11)0.0038 (10)0.0031 (10)
C20.0240 (12)0.0205 (11)0.0309 (13)0.0014 (11)0.0016 (10)0.0019 (11)
O30.0334 (10)0.0215 (8)0.0335 (10)0.0048 (8)0.0100 (9)0.0012 (7)
C30.0281 (14)0.0378 (14)0.0414 (16)0.0077 (13)0.0019 (13)0.0149 (13)
O40.0388 (10)0.0197 (8)0.0222 (8)0.0045 (9)0.0099 (8)0.0029 (7)
O50.0630 (14)0.0323 (10)0.0288 (10)0.0164 (11)0.0218 (11)0.0107 (9)
C40.0255 (12)0.0252 (12)0.0225 (12)0.0035 (11)0.0037 (10)0.0014 (10)
C50.0384 (14)0.0197 (11)0.0242 (12)0.0004 (12)0.0060 (12)0.0035 (9)
O60.0352 (10)0.0178 (8)0.0231 (9)0.0014 (9)0.0034 (8)0.0035 (7)
C60.063 (2)0.057 (2)0.0353 (16)0.0379 (19)0.0036 (17)0.0096 (15)
O70.0322 (10)0.0312 (10)0.0240 (9)0.0088 (9)0.0071 (8)0.0086 (8)
O80.0257 (9)0.0354 (10)0.0275 (10)0.0033 (9)0.0014 (8)0.0076 (8)
Geometric parameters (Å, º) top
Mg—O72.0407 (19)C3—H3C0.9600
Mg—O42.0544 (18)O4—C41.261 (3)
Mg—O32.0549 (19)O5—C41.251 (3)
Mg—O82.077 (2)C4—C51.524 (3)
Mg—O62.0784 (18)C5—O61.432 (3)
Mg—O12.079 (2)C5—C61.514 (4)
O1—C11.267 (3)C5—H5A0.9800
O2—C11.254 (3)O6—H6D0.821 (10)
C1—C21.526 (4)C6—H6A0.9600
C2—O31.428 (3)C6—H6B0.9600
C2—C31.512 (4)C6—H6C0.9600
C2—H2A0.9800O7—H7A0.832 (10)
O3—H3D0.836 (10)O7—H7B0.830 (10)
C3—H3A0.9600O8—H8A0.828 (10)
C3—H3B0.9600O8—H8B0.832 (10)
O7—Mg—O4172.11 (8)H3A—C3—H3B109.5
O7—Mg—O393.80 (8)C2—C3—H3C109.5
O4—Mg—O393.50 (8)H3A—C3—H3C109.5
O7—Mg—O888.18 (8)H3B—C3—H3C109.5
O4—Mg—O888.77 (8)C4—O4—Mg118.91 (16)
O3—Mg—O890.37 (8)O5—C4—O4124.1 (2)
O7—Mg—O696.20 (8)O5—C4—C5117.8 (2)
O4—Mg—O676.70 (7)O4—C4—C5118.1 (2)
O3—Mg—O6169.46 (9)O6—C5—C6111.6 (2)
O8—Mg—O693.28 (9)O6—C5—C4107.29 (19)
O7—Mg—O192.51 (8)C6—C5—C4111.4 (2)
O4—Mg—O192.14 (8)O6—C5—H5A108.8
O3—Mg—O176.23 (7)C6—C5—H5A108.8
O8—Mg—O1166.60 (8)C4—C5—H5A108.8
O6—Mg—O199.95 (8)C5—O6—Mg116.59 (13)
C1—O1—Mg116.77 (16)C5—O6—H6D109 (2)
O2—C1—O1124.0 (2)Mg—O6—H6D134 (2)
O2—C1—C2117.9 (2)C5—C6—H6A109.5
O1—C1—C2118.1 (2)C5—C6—H6B109.5
O3—C2—C3111.3 (2)H6A—C6—H6B109.5
O3—C2—C1106.8 (2)C5—C6—H6C109.5
C3—C2—C1111.7 (2)H6A—C6—H6C109.5
O3—C2—H2A109.0H6B—C6—H6C109.5
C3—C2—H2A109.0Mg—O7—H7A119.0 (19)
C1—C2—H2A109.0Mg—O7—H7B131.6 (19)
C2—O3—Mg116.46 (15)H7A—O7—H7B109 (2)
C2—O3—H3D112 (2)Mg—O8—H8A118.8 (19)
Mg—O3—H3D127 (2)Mg—O8—H8B121 (2)
C2—C3—H3A109.5H8A—O8—H8B106 (2)
C2—C3—H3B109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3D···O5i0.841.832.668 (2)178
O6—H6D···O2ii0.821.852.666 (2)174
O7—H7A···O2iii0.831.942.768 (2)171
O7—H7B···O5iv0.831.852.678 (2)177
O8—H8A···O1iii0.832.122.933 (2)167
O8—H8B···O4i0.831.942.765 (2)168
Symmetry codes: (i) x1/2, y+1/2, z+2; (ii) x+1, y+1/2, z+3/2; (iii) x1, y, z; (iv) x+1/2, y+1, z1/2.

Experimental details

Crystal data
Chemical formula[Mg(C3H4O3)2(H2O)2]
Mr238.48
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)6.0525 (12), 11.919 (2), 14.526 (3)
V3)1047.9 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.28 × 0.20 × 0.16
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.955, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
10148, 1401, 1208
Rint0.033
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.074, 1.14
No. of reflections1401
No. of parameters154
No. of restraints8
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.27

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3D···O5i0.841.832.668 (2)178
O6—H6D···O2ii0.821.852.666 (2)174
O7—H7A···O2iii0.831.942.768 (2)171
O7—H7B···O5iv0.831.852.678 (2)177
O8—H8A···O1iii0.832.122.933 (2)167
O8—H8B···O4i0.831.942.765 (2)168
Symmetry codes: (i) x1/2, y+1/2, z+2; (ii) x+1, y+1/2, z+3/2; (iii) x1, y, z; (iv) x+1/2, y+1, z1/2.
 

Acknowledgements

This project was supported by the Scientific Research Fund of Ningbo University (grant Nos. XKL11058 and XYL11005). Sincere thanks are also extended to the K. C. Wong Magna Fund in Ningbo University.

References

First citationCarballo, R., Castiñeiras, A., Covelo, B., Lago, A. B. & Vázquez López, E. M. (2007). Z. Anorg. Allg. Chem. 633, 687–689.  Web of Science CSD CrossRef CAS Google Scholar
First citationChen, Z.-F., Zhang, J., Xiong, R.-G. & You, X.-Z. (2000). Inorg. Chem. Commun. 3, 493–496.  Web of Science CSD CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationQiu, Y., Liu, Z., Mou, J., Deng, H. & Zeller, M. (2010). CrystEngComm, 12, 277–290.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZeng, M.-H., Wang, Q.-X., Tan, Y.-X., Hu, S., Zhao, H.-X., Long, L.-S. & Kurmoo, M. (2010). J. Am. Chem. Soc. 132, 2561–2563.   Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds