organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Chloro­anilinium bromide

aCollege of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: chenxinyuanseu@yahoo.com.cn

(Received 29 May 2012; accepted 1 June 2012; online 13 June 2012)

In the title compound, C6H7ClN+·Br, the amino N atom is protonated. All non-H atoms of the cation are essentially coplanar [r.m.s. deviation = 0.004 (3) Å]. In the crystal, N—H⋯Br hydrogen bonds connect the ions, forming a ribbon-like structure propagating along [010].

Related literature

For the structures and properties of related compounds, see: Fu et al. (2011a[Fu, D.-W., Zhang, W., Cai, H.-L., Zhang, Y., Ge, J.-Z., Xiong, R.-G. & Huang, S. P. D. (2011a). J. Am. Chem. Soc. 133, 12780-12786.],b[Fu, D.-W., Zhang, W., Cai, H.-L., Zhang, Y., Ge, J.-Z., Xiong, R.-G., Huang, S. P. D. & Nakamura, T. (2011b). Angew. Chem. Int. Ed. 50, 11947-11951.],c[Fu, D.-W., Zhao, M.-M. & Ge, J.-Z. (2011c). J. Mol. Struct. 1006, 227-233.]); Wang et al. (2002[Wang, L.-Z., Wang, X.-S., Li, Y.-H., Bai, Z.-P., Xiong, R.-G., Xiong, M. & Li, G.-W. (2002). Chinese J. Inorg. Chem. 18, 1191-1194.]); Xue et al. (2002[Xue, X., Abrahams, B. F., Xiong, R.-G. & You, X.-Z. (2002). Aust. J. Chem. 55, 495-497.]); Ye et al. (2008[Ye, Q., Fu, D.-W., Hang, T., Xiong, R.-G., Chan, P. W. H. & Huang, S. P. D. (2008). Inorg. Chem. 47, 772-774.]).

[Scheme 1]

Experimental

Crystal data
  • C6H7ClN+·Br

  • Mr = 208.49

  • Triclinic, [P \overline 1]

  • a = 4.3989 (2) Å

  • b = 6.2553 (2) Å

  • c = 13.8907 (8) Å

  • α = 91.4000 (8)°

  • β = 93.580 (1)°

  • γ = 101.967 (1)°

  • V = 372.91 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 5.78 mm−1

  • T = 153 K

  • 0.10 × 0.05 × 0.05 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.910, Tmax = 1.000

  • 3843 measured reflections

  • 1647 independent reflections

  • 1435 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.103

  • S = 1.11

  • 1647 reflections

  • 83 parameters

  • H-atom parameters constrained

  • Δρmax = 0.84 e Å−3

  • Δρmin = −1.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Br1i 0.89 2.59 3.467 (4) 167
N1—H1B⋯Br1ii 0.89 2.52 3.370 (4) 161
N1—H1C⋯Br1iii 0.89 2.46 3.312 (4) 161
Symmetry codes: (i) x+1, y-1, z; (ii) x+1, y, z; (iii) -x+1, -y+1, -z+1.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Simple organic salts containing strong intrermolecular H–bonds have attracted an attention as materials which display ferroelectric–paraelectric phase transitions (Fu et al., 2011a, b, c). With the purpose of obtaining phase transition crystals of organic salts, various organic molecules have been studied and a series of new crystal materials have been elaborated (Wang et al., 2002; Xue et al., 2002; Ye et al., 2008).

In the title compound (Fig. 1), the bond lengths and angles have normal values. The asymmetric unit is composed of one 4-chloroanilinium cation and one Br- anion. The protonated N atom is involved in strong intermolecular N—H···Br hydrogen bonds (Table 1) which connect the ions into a 2D network parallel to the ab–plane (Fig. 2). The crystal packing is further stabilized by aromatic ππ interactions between the benzene rings of the neighbouring cations with the Cg···Cg distances of 4.399 (1)Å (Cg is the centroid of the benzene ring).

Related literature top

For the structures and properties of related compounds, see: Fu et al. (2011a,b,c); Wang et al. (2002); Xue et al. (2002); Ye et al. (2008).

Experimental top

The HBr (1 mL, 2 mol/L), 4-chloroaniline (10 mmol) and ethanol (50 mL) were added into a 100 mL flask. The mixture was stirred at 333 K for 2 h, and then the precipitate was filtered out. Colourless crystals suitable for X–ray diffraction were obtained by slow evaporation of the solution.

Refinement top

All the H atoms attached to C atoms were placed into the idealized positions and treated as riding with C—H = 0.93Å (aromatic) and Uiso(H) = 1.2Ueq(C). The H atoms based on N were placed into the calculated positions with the N—H = 0.89Å and refined with Uiso(H) = 1.5Ueq(N).

Structure description top

Simple organic salts containing strong intrermolecular H–bonds have attracted an attention as materials which display ferroelectric–paraelectric phase transitions (Fu et al., 2011a, b, c). With the purpose of obtaining phase transition crystals of organic salts, various organic molecules have been studied and a series of new crystal materials have been elaborated (Wang et al., 2002; Xue et al., 2002; Ye et al., 2008).

In the title compound (Fig. 1), the bond lengths and angles have normal values. The asymmetric unit is composed of one 4-chloroanilinium cation and one Br- anion. The protonated N atom is involved in strong intermolecular N—H···Br hydrogen bonds (Table 1) which connect the ions into a 2D network parallel to the ab–plane (Fig. 2). The crystal packing is further stabilized by aromatic ππ interactions between the benzene rings of the neighbouring cations with the Cg···Cg distances of 4.399 (1)Å (Cg is the centroid of the benzene ring).

For the structures and properties of related compounds, see: Fu et al. (2011a,b,c); Wang et al. (2002); Xue et al. (2002); Ye et al. (2008).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the asymmetric unit with the atomic numbering scheme. The displacement ellipsoids were drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the a axis showing the H–bonding and ππ interactions (dashed line), Cg is the centroid of the benzene ring.
4-Chloroanilinium bromide top
Crystal data top
C6H7ClN+·BrZ = 2
Mr = 208.49F(000) = 204
Triclinic, P1Dx = 1.857 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.3989 (2) ÅCell parameters from 1674 reflections
b = 6.2553 (2) Åθ = 3.0–27.5°
c = 13.8907 (8) ŵ = 5.78 mm1
α = 91.4000 (8)°T = 153 K
β = 93.580 (1)°Block, colourless
γ = 101.967 (1)°0.10 × 0.05 × 0.05 mm
V = 372.91 (3) Å3
Data collection top
Rigaku Mercury CCD
diffractometer
1647 independent reflections
Radiation source: fine-focus sealed tube1435 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 2.9°
CCD profile fitting scansh = 55
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 88
Tmin = 0.910, Tmax = 1.000l = 1818
3843 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.044P)2]
where P = (Fo2 + 2Fc2)/3
1647 reflections(Δ/σ)max < 0.001
83 parametersΔρmax = 0.84 e Å3
0 restraintsΔρmin = 1.47 e Å3
Crystal data top
C6H7ClN+·Brγ = 101.967 (1)°
Mr = 208.49V = 372.91 (3) Å3
Triclinic, P1Z = 2
a = 4.3989 (2) ÅMo Kα radiation
b = 6.2553 (2) ŵ = 5.78 mm1
c = 13.8907 (8) ÅT = 153 K
α = 91.4000 (8)°0.10 × 0.05 × 0.05 mm
β = 93.580 (1)°
Data collection top
Rigaku Mercury CCD
diffractometer
1647 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1435 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 1.000Rint = 0.056
3843 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.11Δρmax = 0.84 e Å3
1647 reflectionsΔρmin = 1.47 e Å3
83 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.6759 (3)0.27570 (19)0.99710 (9)0.0205 (3)
N11.1049 (9)0.2261 (6)0.6017 (3)0.0136 (8)
H1A1.21420.12170.59800.020*
H1B1.22580.35450.59040.020*
H1C0.94370.19730.55800.020*
C10.7915 (11)0.2566 (8)0.8806 (4)0.0154 (10)
Br10.41356 (10)0.76145 (7)0.58041 (3)0.01335 (18)
C20.7543 (11)0.4182 (7)0.8164 (3)0.0155 (10)
H2A0.66370.53290.83520.019*
C30.8537 (11)0.4061 (7)0.7241 (4)0.0151 (10)
H3A0.82890.51130.67980.018*
C40.9907 (10)0.2340 (7)0.6991 (3)0.0113 (9)
C51.0258 (11)0.0722 (7)0.7620 (3)0.0151 (10)
H5A1.11560.04280.74300.018*
C60.9254 (11)0.0842 (7)0.8533 (4)0.0159 (10)
H6A0.94710.02330.89680.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0316 (7)0.0169 (6)0.0146 (6)0.0075 (5)0.0080 (5)0.0018 (5)
N10.018 (2)0.011 (2)0.012 (2)0.0037 (16)0.0009 (17)0.0014 (16)
C10.017 (2)0.014 (2)0.015 (3)0.0028 (19)0.002 (2)0.0045 (19)
Br10.0165 (3)0.0087 (3)0.0154 (3)0.00395 (18)0.00213 (18)0.00161 (17)
C20.020 (2)0.011 (2)0.018 (3)0.0072 (19)0.004 (2)0.0033 (19)
C30.018 (2)0.009 (2)0.019 (3)0.0018 (19)0.001 (2)0.0029 (19)
C40.013 (2)0.009 (2)0.010 (2)0.0007 (17)0.0002 (18)0.0041 (18)
C50.019 (2)0.011 (2)0.017 (3)0.0065 (19)0.003 (2)0.0043 (19)
C60.023 (3)0.008 (2)0.016 (3)0.0023 (19)0.001 (2)0.0000 (19)
Geometric parameters (Å, º) top
Cl1—C11.735 (5)C2—H2A0.9300
N1—C41.476 (6)C3—C41.385 (6)
N1—H1A0.8900C3—H3A0.9300
N1—H1B0.8900C4—C51.379 (6)
N1—H1C0.8900C5—C61.375 (7)
C1—C61.388 (6)C5—H5A0.9300
C1—C21.392 (6)C6—H6A0.9300
C2—C31.385 (7)
C4—N1—H1A109.5C4—C3—C2118.6 (4)
C4—N1—H1B109.5C4—C3—H3A120.7
H1A—N1—H1B109.5C2—C3—H3A120.7
C4—N1—H1C109.5C5—C4—C3122.5 (4)
H1A—N1—H1C109.5C5—C4—N1119.2 (4)
H1B—N1—H1C109.5C3—C4—N1118.3 (4)
C6—C1—C2120.9 (5)C6—C5—C4118.7 (4)
C6—C1—Cl1119.8 (4)C6—C5—H5A120.6
C2—C1—Cl1119.2 (4)C4—C5—H5A120.6
C3—C2—C1119.3 (4)C5—C6—C1120.0 (4)
C3—C2—H2A120.4C5—C6—H6A120.0
C1—C2—H2A120.4C1—C6—H6A120.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Br1i0.892.593.467 (4)167
N1—H1B···Br1ii0.892.523.370 (4)161
N1—H1C···Br1iii0.892.463.312 (4)161
Symmetry codes: (i) x+1, y1, z; (ii) x+1, y, z; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC6H7ClN+·Br
Mr208.49
Crystal system, space groupTriclinic, P1
Temperature (K)153
a, b, c (Å)4.3989 (2), 6.2553 (2), 13.8907 (8)
α, β, γ (°)91.4000 (8), 93.580 (1), 101.967 (1)
V3)372.91 (3)
Z2
Radiation typeMo Kα
µ (mm1)5.78
Crystal size (mm)0.10 × 0.05 × 0.05
Data collection
DiffractometerRigaku Mercury CCD
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.910, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
3843, 1647, 1435
Rint0.056
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.103, 1.11
No. of reflections1647
No. of parameters83
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.84, 1.47

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Br1i0.892.593.467 (4)167.4
N1—H1B···Br1ii0.892.523.370 (4)160.5
N1—H1C···Br1iii0.892.463.312 (4)160.7
Symmetry codes: (i) x+1, y1, z; (ii) x+1, y, z; (iii) x+1, y+1, z+1.
 

Acknowledgements

This work was supported by a start–up grant from Southeast University, China.

References

First citationFu, D.-W., Zhang, W., Cai, H.-L., Zhang, Y., Ge, J.-Z., Xiong, R.-G. & Huang, S. P. D. (2011a). J. Am. Chem. Soc. 133, 12780–12786.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationFu, D.-W., Zhang, W., Cai, H.-L., Zhang, Y., Ge, J.-Z., Xiong, R.-G., Huang, S. P. D. & Nakamura, T. (2011b). Angew. Chem. Int. Ed. 50, 11947–11951.  Web of Science CSD CrossRef CAS Google Scholar
First citationFu, D.-W., Zhao, M.-M. & Ge, J.-Z. (2011c). J. Mol. Struct. 1006, 227–233.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, L.-Z., Wang, X.-S., Li, Y.-H., Bai, Z.-P., Xiong, R.-G., Xiong, M. & Li, G.-W. (2002). Chinese J. Inorg. Chem. 18, 1191–1194.  CAS Google Scholar
First citationXue, X., Abrahams, B. F., Xiong, R.-G. & You, X.-Z. (2002). Aust. J. Chem. 55, 495–497.  CSD CrossRef CAS Google Scholar
First citationYe, Q., Fu, D.-W., Hang, T., Xiong, R.-G., Chan, P. W. H. & Huang, S. P. D. (2008). Inorg. Chem. 47, 772–774.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds