organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

24-Acetyl-8,11,14-trioxa-24,27-di­aza­penta­cyclo­[19.5.1.122,26.02,7.015,20]octa­cosa-2,4,6,15(20),16,18-hexaen-28-one

aDepartment of Chemistry, Vietnam National University, 144 Xuan Thuy, Cau Giay, Hanoi, Vietnam, bOrganic Chemistry Department, Russian Peoples Friendship University, Miklukho-Maklaya St 6, Moscow, 117198, Russia, and cX-Ray Structural Centre, A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St, B-334, Moscow 119991, Russian Federation
*Correspondence e-mail: vkh@xray.ineos.ac.ru

(Received 13 June 2012; accepted 15 June 2012; online 23 June 2012)

The title compound, C25H28N2O5, is a product of the Petrenko–Kritchenko condensation of N-acetyl­piperidone with 1,5-bis­(2-formyl­phen­oxy)-3-oxapentane and ammonium acetate. The mol­ecule comprises a fused penta­cyclic system containing an aza-14-crown-3-ether macrocycle, two piperidone and two benzene rings. The aza-14-crown-3-ether ring adopts a bowl conformation. The dihedral angle between the benzene rings fused to the aza-14-crown-4-ether unit is 70.18 (4)°. The central piperidone ring has a boat conformation, whereas the terminal piperidone ring adopts a chair conformation. The conformation of the central piperidone ring is determined by two intra­molecular N—H⋯O hydrogen bonds. In the crystal, mol­ecules are linked by weak C—H⋯O inter­actions into chains along [010].

Related literature

For general background to the design, synthesis and applications of macrocyclic ligands for coordination and supra­molecular chemistry, see: Hiraoka (1978[Hiraoka, M. (1978). In Crown Compounds. Their Characteristic and Application. Tokyo: Kodansha.]); Pedersen (1988[Pedersen, C. J. (1988). Angew. Chem. Int. Ed. Engl. 27, 1053-1083.]); Gokel & Murillo (1996[Gokel, G. W. & Murillo, O. (1996). Acc. Chem. Res. 29, 425-432.]); Bradshaw & Izatt (1997[Bradshaw, J. S. & Izatt, R. M. (1997). Acc. Chem. Res. 30, 338-345.]). For related compounds, see: Levov et al. (2006[Levov, A. N., Strokina, V. M., Komarova, A. I., Anh, L. T., Soldatenkov, A. T. & Khrustalev, V. N. (2006). Mendeleev Commun. 16, 35-37.], 2008[Levov, A. N., Komarova, A. I., Soldatenkov, A. T., Avramenko, G. V., Soldatova, S. A. & Khrustalev, V. N. (2008). Russ. J. Org. Chem. 44, 1665-1670.]); Komarova et al. (2008[Komarova, A. I., Levov, A. N., Soldatenkov, A. T. & Soldatova, S. A. (2008). Chem. Heterocycl. Compd, 44, 624-625.]); Anh et al. (2008[Anh, L. T., Levov, A. N., Soldatenkov, A. T., Gruzdev, R. D. & Hieu, T. H. (2008). Russ. J. Org. Chem. 44, 463-465.], 2012a[Anh, L. T., Hieu, T. H., Soldatenkov, A. T., Soldatova, S. A. & Khrustalev, V. N. (2012a). Acta Cryst. E68, o1386-o1387.],b[Anh, L. T., Hieu, T. H., Soldatenkov, A. T., Kolyadina, N. M. & Khrustalev, V. N. (2012b). Acta Cryst. E68, o1588-o1589.]); Hieu et al. (2011[Hieu, T. H., Anh, L. T., Soldatenkov, A. T., Golovtsov, N. I. & Soldatova, S. A. (2011). Chem. Heterocycl. Compd, 47, 1307-1308.]); Khieu et al. (2011[Khieu, T. H., Soldatenkov, A. T., Anh, L. T., Levov, A. N., Smol'yakov, A. F., Khrustalev, V. N. & Antipin, M. Yu. (2011). Russ. J. Org. Chem. 47, 766-770.]); Sokol et al. (2011[Sokol, V. I., Kolyadina, N. M., Kvartalov, V. B., Sergienko, V. S., Soldatenkov, A. T. & Davydov, V. V. (2011). Russ. Chem. Bull. 60, 2086-2088.]).

[Scheme 1]

Experimental

Crystal data
  • C25H28N2O5

  • Mr = 436.49

  • Orthorhombic, P b c a

  • a = 17.1756 (6) Å

  • b = 11.1724 (4) Å

  • c = 22.6546 (8) Å

  • V = 4347.3 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.30 × 0.25 × 0.25 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.973, Tmax = 0.977

  • 54466 measured reflections

  • 6326 independent reflections

  • 4682 reflections with I > 2σ(I)

  • Rint = 0.069

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.106

  • S = 1.00

  • 6326 reflections

  • 293 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N27—H27⋯O8 0.90 (2) 2.49 (2) 3.0337 (13) 119 (1)
N27—H27⋯O14 0.90 (2) 2.44 (1) 3.0193 (13) 122 (1)
C21—H21⋯O28i 1.00 2.48 3.4683 (14) 168
C30—H30B⋯O28i 0.98 2.51 3.0556 (16) 115
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Design, synthesis and applications of macrocyclic ligands for coordination and supramolecular chemistry draw very great attention of investigators during the last several decades (Hiraoka, 1978; Pedersen, 1988; Gokel & Murillo, 1996; Bradshaw & Izatt, 1997). Recently we have developed the effective methods of synthesis of azacrown ethers containing piperidine (Levov et al., 2006, 2008; Anh et al., 2008, 2012a, 2012b), perhydropyrimidine (Hieu et al., 2011), perhydrotriazine (Khieu et al., 2011) and bispidine (Komarova et al., 2008; Sokol et al., 2011) subunits.

In attempts to apply this chemistry for obtaining of a macrocyclic ligand containing N-acylsubstituted bispidine moiety, we studied the Petrenko-Kritchenko condensation of the N-acetylpiperidone with 1,5-bis(2-formylphenoxy)-3-oxapentane and ammonium acetate. The reaction have proceeded smoothly to give the expected azacrown system with a good yield (Fig. 1).

The molecule of the title compound, C25H28 N2O5, comprises a fused pentacyclic system containing the aza-14-crown-3-ether macrocycle, two piperidone and two benzene rings (Fig. 2). The aza-14-crown-3-ether ring adopts a bowl conformation. The configuration of the C7—O8—C9—C10—O11—C12—C13—O14—C15 polyether chain is t–g(-)–t–t–g(+)–t (t = trans, 180°; g = gauche, ±60°). The dihedral angle between the planes of the benzene rings fused to the aza-14-crown-4-ether moiety is 70.18 (4)°. The central piperidone ring has a boat conformation, whereas the terminal piperidone ring adopts a chair conformation. Apparently, the conformation of the central piperidone ring is determined by the two intramolecular N–H···O hydrogen bonds (Table 1). The nitrogen N24 atom has a trigonal-planar geometry (sum of the bond angles is 359.8°), while the nitrogen N27 atom adopts a trigonal-pyramidal geometry (sum of the bond angles is 326.7°).

The molecule of the title compound possesses four asymmetric centers at the C1, C21, C22 and C26 carbon atoms and can have potentially numerous diastereomers. The crystal of the title compound is racemic and consists of enantiomeric pairs with the following relative configuration of the centers: rac-1R*, 21S*,22R*,26S*.

In the crystal, the molecules are bound by the weak intermolecular C–H···O hydrogen bonding interactions into the chains along [010] (Fig. 3, Table 1). The crystal packing of the chains is stacking along the a axis (Fig. 3).

Related literature top

For general background to the design, synthesis and applications of macrocyclic ligands for coordination and supramolecular chemistry, see: Hiraoka (1978); Pedersen (1988); Gokel & Murillo (1996); Bradshaw & Izatt (1997). For related compounds, see: Levov et al. (2006, 2008); Komarova et al. (2008); Anh et al. (2008, 2012a,b); Hieu et al. (2011); Khieu et al. (2011); Sokol et al. (2011).

Experimental top

Ammonium acetate (3.0 g, 39.0 mmol) was added to a solution of 1,5-bis(2-formylphenoxy)-3-oxapentane (3.14 g, 10.0 mmol) and N-acetylpiperidone (1.41 g, 10.0 mmol) in ethanol-acetic acid mixture (30 ml 1 ml). The reaction mixture was stirred at 293 K for 3 days (monitoring by TLC until disappearance of the starting heterocyclic ketone spot). At the end of the reaction, the formed precipitate was filtered off, washed with ethanol and re-crystallized from ethanol to give 2.54 g of white crystals of the title compound. Yield is 58%. M.p.= 500–502 K. IR (KBr), ν/cm-1: 1603, 1649, 1713, 3405, 3460. 1H NMR (CDCl3, 400 MHz, 300 K): δ = 2.37 (s, 3H, CH3C=O), 2.91 (m, 3H, H22, H26 and H27), 3.47 and 4.98 (both dd, 1H each, H1 and H21, J = 7.3 and 1.1), 3.92–4.10 (m, 12H, OCH2CH2OCH2CH2O, 2H23 and 2H25), 6.75–6.95 (m, 3H, Harom), 7.21–7.36 (m, 5H, Harom). Anal. Calcd. for C25H28N2O5: C, 68.79; H, 6.47; N, 6.42. Found: C, 69.03; H, 6.52; N, 6.43.

Refinement top

The hydrogen atom of the amino group was localized in the difference-Fourier map and refined isotropically with fixed isotropic displacement parameters [Uiso(H) = 1.2Ueq(N)]. The other hydrogen atoms were placed in calculated positions with C–H = 0.95–1.00 Å and refined in the riding model with fixed isotropic displacement parameters [Uiso(H) = 1.5Ueq(C) for the methyl group and 1.2Ueq(C) for the other groups].

Structure description top

Design, synthesis and applications of macrocyclic ligands for coordination and supramolecular chemistry draw very great attention of investigators during the last several decades (Hiraoka, 1978; Pedersen, 1988; Gokel & Murillo, 1996; Bradshaw & Izatt, 1997). Recently we have developed the effective methods of synthesis of azacrown ethers containing piperidine (Levov et al., 2006, 2008; Anh et al., 2008, 2012a, 2012b), perhydropyrimidine (Hieu et al., 2011), perhydrotriazine (Khieu et al., 2011) and bispidine (Komarova et al., 2008; Sokol et al., 2011) subunits.

In attempts to apply this chemistry for obtaining of a macrocyclic ligand containing N-acylsubstituted bispidine moiety, we studied the Petrenko-Kritchenko condensation of the N-acetylpiperidone with 1,5-bis(2-formylphenoxy)-3-oxapentane and ammonium acetate. The reaction have proceeded smoothly to give the expected azacrown system with a good yield (Fig. 1).

The molecule of the title compound, C25H28 N2O5, comprises a fused pentacyclic system containing the aza-14-crown-3-ether macrocycle, two piperidone and two benzene rings (Fig. 2). The aza-14-crown-3-ether ring adopts a bowl conformation. The configuration of the C7—O8—C9—C10—O11—C12—C13—O14—C15 polyether chain is t–g(-)–t–t–g(+)–t (t = trans, 180°; g = gauche, ±60°). The dihedral angle between the planes of the benzene rings fused to the aza-14-crown-4-ether moiety is 70.18 (4)°. The central piperidone ring has a boat conformation, whereas the terminal piperidone ring adopts a chair conformation. Apparently, the conformation of the central piperidone ring is determined by the two intramolecular N–H···O hydrogen bonds (Table 1). The nitrogen N24 atom has a trigonal-planar geometry (sum of the bond angles is 359.8°), while the nitrogen N27 atom adopts a trigonal-pyramidal geometry (sum of the bond angles is 326.7°).

The molecule of the title compound possesses four asymmetric centers at the C1, C21, C22 and C26 carbon atoms and can have potentially numerous diastereomers. The crystal of the title compound is racemic and consists of enantiomeric pairs with the following relative configuration of the centers: rac-1R*, 21S*,22R*,26S*.

In the crystal, the molecules are bound by the weak intermolecular C–H···O hydrogen bonding interactions into the chains along [010] (Fig. 3, Table 1). The crystal packing of the chains is stacking along the a axis (Fig. 3).

For general background to the design, synthesis and applications of macrocyclic ligands for coordination and supramolecular chemistry, see: Hiraoka (1978); Pedersen (1988); Gokel & Murillo (1996); Bradshaw & Izatt (1997). For related compounds, see: Levov et al. (2006, 2008); Komarova et al. (2008); Anh et al. (2008, 2012a,b); Hieu et al. (2011); Khieu et al. (2011); Sokol et al. (2011).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Petrenko-Kritchenko condensation of the N-acetylpiperidone with 1,5-bis(2-formylphenoxy)-3-oxapentane and ammonium acetate.
[Figure 2] Fig. 2. Molecular structure of I. Displacement ellipsoids are shown at the 50% probability level. H atoms are presented as small spheres of arbitrary radius. Dashed lines indicate the intramolecular N–H···O hydrogen bonds.
[Figure 3] Fig. 3. The H-bonded chains of I along the b axis. Dashed lines indicate the intramolecular N–H···O and intermolecular C–H···O hydrogen bonds.
24-Acetyl-8,11,14-trioxa-24,27- diazapentacyclo[19.5.1.122,26.02,7.015,20]octacosa- 2,4,6,15(20),16,18-hexaen-28-one top
Crystal data top
C25H28N2O5F(000) = 1856
Mr = 436.49Dx = 1.334 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 6757 reflections
a = 17.1756 (6) Åθ = 2.4–27.6°
b = 11.1724 (4) ŵ = 0.09 mm1
c = 22.6546 (8) ÅT = 100 K
V = 4347.3 (3) Å3Prism, colourless
Z = 80.30 × 0.25 × 0.25 mm
Data collection top
Bruker APEXII CCD
diffractometer
6326 independent reflections
Radiation source: fine-focus sealed tube4682 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.069
φ and ω scansθmax = 30.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 2424
Tmin = 0.973, Tmax = 0.977k = 1515
54466 measured reflectionsl = 3131
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: mixed
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0483P)2 + 1.18P]
where P = (Fo2 + 2Fc2)/3
6326 reflections(Δ/σ)max < 0.001
293 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C25H28N2O5V = 4347.3 (3) Å3
Mr = 436.49Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 17.1756 (6) ŵ = 0.09 mm1
b = 11.1724 (4) ÅT = 100 K
c = 22.6546 (8) Å0.30 × 0.25 × 0.25 mm
Data collection top
Bruker APEXII CCD
diffractometer
6326 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
4682 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.977Rint = 0.069
54466 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.34 e Å3
6326 reflectionsΔρmin = 0.24 e Å3
293 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.14643 (7)0.45850 (10)0.11628 (5)0.0150 (2)
H10.19270.41360.10120.018*
C20.07641 (7)0.40656 (10)0.08499 (5)0.0176 (2)
C30.08519 (8)0.30961 (11)0.04720 (6)0.0242 (3)
H30.13590.27930.03980.029*
C40.02150 (9)0.25559 (12)0.01993 (6)0.0302 (3)
H40.02880.18860.00530.036*
C50.05235 (8)0.30019 (12)0.02980 (6)0.0276 (3)
H50.09600.26270.01200.033*
C60.06308 (8)0.39996 (12)0.06580 (6)0.0238 (3)
H60.11370.43210.07150.029*
C70.00101 (7)0.45237 (11)0.09343 (5)0.0194 (2)
O80.00310 (5)0.54876 (8)0.13029 (4)0.0238 (2)
C90.07793 (7)0.59780 (13)0.14482 (6)0.0262 (3)
H9A0.11150.53610.16320.031*
H9B0.10420.62850.10900.031*
C100.06217 (8)0.69751 (13)0.18737 (6)0.0273 (3)
H10A0.02580.75610.16960.033*
H10B0.11120.73940.19730.033*
O110.02887 (5)0.64651 (8)0.23893 (4)0.0245 (2)
C120.01097 (7)0.73098 (12)0.27487 (6)0.0244 (3)
H12A0.02680.78080.29680.029*
H12B0.04350.78420.25010.029*
C130.06106 (7)0.66211 (12)0.31701 (6)0.0235 (3)
H13A0.08380.71670.34680.028*
H13B0.02960.60100.33780.028*
O140.12189 (5)0.60544 (8)0.28352 (4)0.01997 (18)
C150.16485 (7)0.51843 (11)0.31095 (5)0.0174 (2)
C160.16080 (7)0.49369 (12)0.37114 (5)0.0222 (3)
H160.12780.53960.39600.027*
C170.20549 (8)0.40101 (12)0.39451 (6)0.0241 (3)
H170.20170.38250.43530.029*
C180.25533 (7)0.33568 (12)0.35910 (6)0.0220 (3)
H180.28560.27250.37530.026*
C190.26073 (7)0.36366 (11)0.29901 (5)0.0178 (2)
H190.29620.32050.27490.021*
C200.21530 (6)0.45337 (10)0.27385 (5)0.0149 (2)
C210.21819 (6)0.47517 (10)0.20788 (5)0.0139 (2)
H210.25960.42150.19170.017*
C220.24208 (6)0.60694 (10)0.19154 (5)0.0144 (2)
H220.25050.65390.22860.017*
C230.31604 (7)0.61447 (11)0.15252 (5)0.0174 (2)
H23A0.33150.69930.14800.021*
H23B0.35930.57170.17230.021*
N240.30278 (6)0.56178 (9)0.09399 (4)0.0182 (2)
C250.23402 (7)0.60548 (11)0.06232 (5)0.0194 (2)
H25A0.22720.55900.02550.023*
H25B0.24170.69050.05150.023*
C260.16073 (7)0.59325 (10)0.10078 (5)0.0160 (2)
H260.11450.62730.07980.019*
N270.14364 (6)0.43716 (9)0.18055 (4)0.01508 (19)
H270.1049 (9)0.4816 (13)0.1957 (6)0.018*
C280.17742 (7)0.66361 (10)0.15626 (5)0.0159 (2)
O280.14686 (5)0.75881 (8)0.16807 (4)0.02178 (19)
C290.35168 (7)0.48363 (12)0.06601 (6)0.0224 (3)
O290.33441 (7)0.43974 (10)0.01789 (4)0.0370 (3)
C300.42915 (7)0.45517 (12)0.09395 (6)0.0250 (3)
H30A0.44940.38030.07740.037*
H30B0.42250.44640.13670.037*
H30C0.46590.52030.08590.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0160 (5)0.0145 (5)0.0144 (5)0.0005 (4)0.0013 (4)0.0007 (4)
C20.0214 (6)0.0161 (5)0.0153 (5)0.0028 (4)0.0044 (4)0.0024 (4)
C30.0305 (7)0.0199 (6)0.0223 (6)0.0040 (5)0.0115 (5)0.0018 (5)
C40.0432 (8)0.0197 (6)0.0276 (7)0.0000 (6)0.0188 (6)0.0032 (5)
C50.0351 (7)0.0251 (7)0.0225 (6)0.0113 (6)0.0147 (6)0.0067 (5)
C60.0200 (6)0.0304 (7)0.0212 (6)0.0071 (5)0.0041 (5)0.0069 (5)
C70.0207 (6)0.0207 (6)0.0167 (5)0.0047 (5)0.0024 (4)0.0033 (4)
O80.0147 (4)0.0290 (5)0.0278 (5)0.0003 (3)0.0011 (3)0.0074 (4)
C90.0138 (5)0.0349 (7)0.0298 (7)0.0033 (5)0.0000 (5)0.0000 (6)
C100.0203 (6)0.0303 (7)0.0312 (7)0.0083 (5)0.0001 (5)0.0006 (6)
O110.0229 (4)0.0251 (5)0.0254 (5)0.0009 (4)0.0005 (4)0.0010 (4)
C120.0203 (6)0.0234 (6)0.0296 (7)0.0037 (5)0.0038 (5)0.0072 (5)
C130.0199 (6)0.0281 (7)0.0225 (6)0.0034 (5)0.0066 (5)0.0068 (5)
O140.0195 (4)0.0211 (4)0.0193 (4)0.0053 (3)0.0051 (3)0.0004 (3)
C150.0157 (5)0.0191 (5)0.0174 (5)0.0020 (4)0.0000 (4)0.0015 (4)
C160.0217 (6)0.0274 (6)0.0173 (6)0.0020 (5)0.0013 (5)0.0024 (5)
C170.0249 (6)0.0326 (7)0.0148 (5)0.0066 (5)0.0036 (5)0.0025 (5)
C180.0214 (6)0.0239 (6)0.0206 (6)0.0034 (5)0.0072 (5)0.0030 (5)
C190.0169 (5)0.0180 (5)0.0187 (5)0.0025 (4)0.0029 (4)0.0023 (4)
C200.0147 (5)0.0153 (5)0.0146 (5)0.0034 (4)0.0014 (4)0.0018 (4)
C210.0137 (5)0.0138 (5)0.0142 (5)0.0004 (4)0.0005 (4)0.0015 (4)
C220.0145 (5)0.0132 (5)0.0156 (5)0.0009 (4)0.0018 (4)0.0028 (4)
C230.0153 (5)0.0187 (5)0.0182 (5)0.0020 (4)0.0027 (4)0.0024 (4)
N240.0160 (5)0.0218 (5)0.0167 (5)0.0009 (4)0.0027 (4)0.0018 (4)
C250.0184 (5)0.0232 (6)0.0166 (5)0.0019 (5)0.0017 (4)0.0027 (5)
C260.0162 (5)0.0152 (5)0.0165 (5)0.0007 (4)0.0006 (4)0.0024 (4)
N270.0154 (4)0.0157 (5)0.0141 (4)0.0021 (4)0.0012 (4)0.0002 (3)
C280.0143 (5)0.0145 (5)0.0190 (5)0.0026 (4)0.0037 (4)0.0019 (4)
O280.0217 (4)0.0150 (4)0.0286 (5)0.0028 (3)0.0010 (4)0.0012 (3)
C290.0234 (6)0.0222 (6)0.0215 (6)0.0003 (5)0.0039 (5)0.0020 (5)
O290.0422 (6)0.0448 (6)0.0238 (5)0.0150 (5)0.0044 (4)0.0134 (4)
C300.0200 (6)0.0283 (7)0.0266 (6)0.0009 (5)0.0044 (5)0.0053 (5)
Geometric parameters (Å, º) top
C1—N271.4761 (14)C16—C171.3936 (19)
C1—C21.5118 (16)C16—H160.9500
C1—C261.5653 (16)C17—C181.3816 (19)
C1—H11.0000C17—H170.9500
C2—C31.3888 (17)C18—C191.3999 (17)
C2—C71.4056 (17)C18—H180.9500
C3—C41.3937 (18)C19—C201.3923 (16)
C3—H30.9500C19—H190.9500
C4—C51.381 (2)C20—C211.5151 (15)
C4—H40.9500C21—N271.4843 (14)
C5—C61.394 (2)C21—C221.5725 (16)
C5—H50.9500C21—H211.0000
C6—C71.3950 (17)C22—C281.5076 (16)
C6—H60.9500C22—C231.5497 (15)
C7—O81.3646 (15)C22—H221.0000
O8—C91.4353 (15)C23—N241.4686 (15)
C9—C101.498 (2)C23—H23A0.9900
C9—H9A0.9900C23—H23B0.9900
C9—H9B0.9900N24—C291.3674 (16)
C10—O111.4199 (16)N24—C251.4655 (15)
C10—H10A0.9900C25—C261.5370 (16)
C10—H10B0.9900C25—H25A0.9900
O11—C121.4220 (16)C25—H25B0.9900
C12—C131.4978 (19)C26—C281.5099 (16)
C12—H12A0.9900C26—H261.0000
C12—H12B0.9900N27—H270.898 (15)
C13—O141.4381 (14)C28—O281.2159 (14)
C13—H13A0.9900C29—O291.2314 (16)
C13—H13B0.9900C29—C301.5074 (18)
O14—C151.3694 (14)C30—H30A0.9800
C15—C161.3930 (16)C30—H30B0.9800
C15—C201.4091 (16)C30—H30C0.9800
N27—C1—C2112.01 (9)C16—C17—H17119.6
N27—C1—C26112.44 (9)C17—C18—C19119.19 (12)
C2—C1—C26112.88 (9)C17—C18—H18120.4
N27—C1—H1106.3C19—C18—H18120.4
C2—C1—H1106.3C20—C19—C18121.45 (11)
C26—C1—H1106.3C20—C19—H19119.3
C3—C2—C7117.89 (11)C18—C19—H19119.3
C3—C2—C1120.13 (11)C19—C20—C15118.16 (10)
C7—C2—C1121.96 (10)C19—C20—C21120.07 (10)
C2—C3—C4121.72 (13)C15—C20—C21121.71 (10)
C2—C3—H3119.1N27—C21—C20109.71 (9)
C4—C3—H3119.1N27—C21—C22113.25 (9)
C5—C4—C3119.53 (13)C20—C21—C22113.03 (9)
C5—C4—H4120.2N27—C21—H21106.8
C3—C4—H4120.2C20—C21—H21106.8
C4—C5—C6120.32 (12)C22—C21—H21106.8
C4—C5—H5119.8C28—C22—C23106.18 (9)
C6—C5—H5119.8C28—C22—C21109.01 (9)
C5—C6—C7119.60 (13)C23—C22—C21113.51 (9)
C5—C6—H6120.2C28—C22—H22109.3
C7—C6—H6120.2C23—C22—H22109.3
O8—C7—C6124.40 (12)C21—C22—H22109.3
O8—C7—C2114.73 (10)N24—C23—C22111.47 (9)
C6—C7—C2120.87 (12)N24—C23—H23A109.3
C7—O8—C9119.20 (10)C22—C23—H23A109.3
O8—C9—C10105.64 (10)N24—C23—H23B109.3
O8—C9—H9A110.6C22—C23—H23B109.3
C10—C9—H9A110.6H23A—C23—H23B108.0
O8—C9—H9B110.6C29—N24—C25118.73 (10)
C10—C9—H9B110.6C29—N24—C23125.40 (10)
H9A—C9—H9B108.7C25—N24—C23115.69 (9)
O11—C10—C9107.69 (11)N24—C25—C26110.66 (9)
O11—C10—H10A110.2N24—C25—H25A109.5
C9—C10—H10A110.2C26—C25—H25A109.5
O11—C10—H10B110.2N24—C25—H25B109.5
C9—C10—H10B110.2C26—C25—H25B109.5
H10A—C10—H10B108.5H25A—C25—H25B108.1
C10—O11—C12113.49 (10)C28—C26—C25105.67 (9)
O11—C12—C13107.48 (11)C28—C26—C1110.10 (9)
O11—C12—H12A110.2C25—C26—C1109.95 (9)
C13—C12—H12A110.2C28—C26—H26110.3
O11—C12—H12B110.2C25—C26—H26110.3
C13—C12—H12B110.2C1—C26—H26110.3
H12A—C12—H12B108.5C1—N27—C21109.71 (9)
O14—C13—C12107.90 (10)C1—N27—H27108.2 (9)
O14—C13—H13A110.1C21—N27—H27108.8 (9)
C12—C13—H13A110.1O28—C28—C22124.66 (11)
O14—C13—H13B110.1O28—C28—C26123.82 (11)
C12—C13—H13B110.1C22—C28—C26111.26 (9)
H13A—C13—H13B108.4O29—C29—N24121.11 (12)
C15—O14—C13117.69 (9)O29—C29—C30120.02 (12)
O14—C15—C16123.92 (11)N24—C29—C30118.83 (11)
O14—C15—C20115.27 (10)C29—C30—H30A109.5
C16—C15—C20120.81 (11)C29—C30—H30B109.5
C15—C16—C17119.46 (12)H30A—C30—H30B109.5
C15—C16—H16120.3C29—C30—H30C109.5
C17—C16—H16120.3H30A—C30—H30C109.5
C18—C17—C16120.88 (12)H30B—C30—H30C109.5
C18—C17—H17119.6
N27—C1—C2—C3111.77 (12)C19—C20—C21—N27110.05 (11)
C26—C1—C2—C3120.11 (12)C15—C20—C21—N2767.13 (13)
N27—C1—C2—C767.29 (14)C19—C20—C21—C22122.51 (11)
C26—C1—C2—C760.83 (14)C15—C20—C21—C2260.31 (14)
C7—C2—C3—C42.39 (19)N27—C21—C22—C285.27 (12)
C1—C2—C3—C4176.71 (12)C20—C21—C22—C28120.29 (10)
C2—C3—C4—C51.0 (2)N27—C21—C22—C23112.85 (10)
C3—C4—C5—C61.3 (2)C20—C21—C22—C23121.59 (10)
C4—C5—C6—C72.06 (19)C28—C22—C23—N2453.90 (12)
C5—C6—C7—O8178.82 (11)C21—C22—C23—N2465.84 (12)
C5—C6—C7—C20.61 (18)C22—C23—N24—C29133.39 (12)
C3—C2—C7—O8178.95 (11)C22—C23—N24—C2551.51 (13)
C1—C2—C7—O81.97 (16)C29—N24—C25—C26131.12 (11)
C3—C2—C7—C61.57 (18)C23—N24—C25—C2653.45 (13)
C1—C2—C7—C6177.51 (11)N24—C25—C26—C2857.62 (12)
C6—C7—O8—C93.31 (18)N24—C25—C26—C161.17 (12)
C2—C7—O8—C9176.15 (11)N27—C1—C26—C286.70 (13)
C7—O8—C9—C10177.69 (11)C2—C1—C26—C28134.60 (10)
O8—C9—C10—O1163.66 (13)N27—C1—C26—C25122.73 (10)
C9—C10—O11—C12161.37 (10)C2—C1—C26—C25109.37 (11)
C10—O11—C12—C13164.28 (10)C2—C1—N27—C21172.45 (9)
O11—C12—C13—O1468.21 (13)C26—C1—N27—C2159.19 (12)
C12—C13—O14—C15166.84 (10)C20—C21—N27—C1179.95 (9)
C13—O14—C15—C169.56 (17)C22—C21—N27—C152.63 (12)
C13—O14—C15—C20170.68 (10)C23—C22—C28—O28110.25 (12)
O14—C15—C16—C17178.30 (11)C21—C22—C28—O28127.11 (12)
C20—C15—C16—C171.95 (18)C23—C22—C28—C2664.03 (11)
C15—C16—C17—C181.83 (19)C21—C22—C28—C2658.60 (11)
C16—C17—C18—C190.10 (19)C25—C26—C28—O28108.24 (12)
C17—C18—C19—C201.97 (18)C1—C26—C28—O28133.08 (11)
C18—C19—C20—C151.83 (17)C25—C26—C28—C2266.11 (11)
C18—C19—C20—C21175.45 (10)C1—C26—C28—C2252.58 (12)
O14—C15—C20—C19179.92 (10)C25—N24—C29—O298.16 (18)
C16—C15—C20—C190.15 (17)C23—N24—C29—O29176.88 (12)
O14—C15—C20—C212.85 (16)C25—N24—C29—C30169.51 (11)
C16—C15—C20—C21177.38 (11)C23—N24—C29—C305.45 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N27—H27···O80.90 (2)2.49 (2)3.0337 (13)119 (1)
N27—H27···O140.90 (2)2.44 (1)3.0193 (13)122 (1)
C21—H21···O28i1.002.483.4683 (14)168
C30—H30B···O28i0.982.513.0556 (16)115
Symmetry code: (i) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC25H28N2O5
Mr436.49
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)100
a, b, c (Å)17.1756 (6), 11.1724 (4), 22.6546 (8)
V3)4347.3 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.25 × 0.25
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.973, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
54466, 6326, 4682
Rint0.069
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.106, 1.00
No. of reflections6326
No. of parameters293
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.24

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N27—H27···O80.90 (2)2.49 (2)3.0337 (13)119 (1)
N27—H27···O140.90 (2)2.44 (1)3.0193 (13)122 (1)
C21—H21···O28i1.002.483.4683 (14)168
C30—H30B···O28i0.982.513.0556 (16)115
Symmetry code: (i) x+1/2, y1/2, z.
 

Acknowledgements

We thank the Vietnam National University, Hanoi, (grant No. QG.11.09) for the financial support of this work.

References

First citationAnh, L. T., Hieu, T. H., Soldatenkov, A. T., Kolyadina, N. M. & Khrustalev, V. N. (2012b). Acta Cryst. E68, o1588–o1589.  CSD CrossRef IUCr Journals Google Scholar
First citationAnh, L. T., Hieu, T. H., Soldatenkov, A. T., Soldatova, S. A. & Khrustalev, V. N. (2012a). Acta Cryst. E68, o1386–o1387.  CSD CrossRef IUCr Journals Google Scholar
First citationAnh, L. T., Levov, A. N., Soldatenkov, A. T., Gruzdev, R. D. & Hieu, T. H. (2008). Russ. J. Org. Chem. 44, 463–465.  Google Scholar
First citationBradshaw, J. S. & Izatt, R. M. (1997). Acc. Chem. Res. 30, 338–345.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGokel, G. W. & Murillo, O. (1996). Acc. Chem. Res. 29, 425–432.  CrossRef CAS Web of Science Google Scholar
First citationHieu, T. H., Anh, L. T., Soldatenkov, A. T., Golovtsov, N. I. & Soldatova, S. A. (2011). Chem. Heterocycl. Compd, 47, 1307–1308.  Google Scholar
First citationHiraoka, M. (1978). In Crown Compounds. Their Characteristic and Application. Tokyo: Kodansha.  Google Scholar
First citationKhieu, T. H., Soldatenkov, A. T., Anh, L. T., Levov, A. N., Smol'yakov, A. F., Khrustalev, V. N. & Antipin, M. Yu. (2011). Russ. J. Org. Chem. 47, 766–770.  Web of Science CrossRef CAS Google Scholar
First citationKomarova, A. I., Levov, A. N., Soldatenkov, A. T. & Soldatova, S. A. (2008). Chem. Heterocycl. Compd, 44, 624–625.  Web of Science CrossRef CAS Google Scholar
First citationLevov, A. N., Komarova, A. I., Soldatenkov, A. T., Avramenko, G. V., Soldatova, S. A. & Khrustalev, V. N. (2008). Russ. J. Org. Chem. 44, 1665–1670.  Web of Science CrossRef CAS Google Scholar
First citationLevov, A. N., Strokina, V. M., Komarova, A. I., Anh, L. T., Soldatenkov, A. T. & Khrustalev, V. N. (2006). Mendeleev Commun. 16, 35–37.  Web of Science CSD CrossRef Google Scholar
First citationPedersen, C. J. (1988). Angew. Chem. Int. Ed. Engl. 27, 1053–1083.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSokol, V. I., Kolyadina, N. M., Kvartalov, V. B., Sergienko, V. S., Soldatenkov, A. T. & Davydov, V. V. (2011). Russ. Chem. Bull. 60, 2086–2088.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds