organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-{[3-Methyl-4-(2,2,2-tri­fluoro­eth­­oxy)pyridin-2-yl]methyl­sulfan­yl}-1H-benzimidazole propan-2-ol monosolvate: a second monoclinic polymorph

aSchool of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, People's Republic of China, bPharmaceutical Crystal Engineering Research Group, Shanghai Institute of Pharmaceutical Industry, 1320 Beijing Road (West), Shanghai 200040, People's Republic of China, and cNational Engineering Laboratory for Cereal Fermentation Technology, School of Chemical & Material Engineering, Jiangnan University, Wuxi 214122, People's Republic of China
*Correspondence e-mail: renguobin2557@yahoo.com.cn

(Received 10 May 2012; accepted 16 May 2012; online 13 June 2012)

In the crystal structure of the title compound, C16H14F3N3OS·C3H8O, the mol­ecules are linked into chains along [010] via N—H⋯O and O—H⋯N hydrogen bonds. The triclinic form was reported by Ren et al. [(2011). Acta Cryst. E67, o270] and the first monoclinic form by Chen et al. [(2012). Acta Cryst. E68, o2015–o2016]. The fused five-and six-membered rings make a dihedral angle of 1.22 (2)°, while the benzene and pyridine rings make a dihedral angle of 10.15 (2)°.

Related literature

For the use of the title compound as an inter­mediate in the synthesis of the anti-ulcer drug lansoprazole {systematic name: (RS)-2-([3-methyl-4-(2,2,2-trifluoro­eth­oxy)pyridin-2-yl]methyl­sulfin­yl)-1H-benzo[d]imidazole}, see: Del Rio et al. (2007[Del Rio, R. E., Wang, B., Achab, S. & Bohe, L. (2007). Org. Lett. 9, 2265-2268.]); Reddy et al. (2008[Reddy, G. M., Mukkanti, K., Kumar, T., Babu, J., Moses, M. & Reddy, P. P. (2008). Synth. Commun. 38, 3477-3489.]); Iwahi et al. (1991[Iwahi, T., Satoh, H., Nakao, M., Iwasaki, T., Yamazaki, T., Kubo, K., Tamura, T. & Imada, A. (1991). Antimicrob. Agents Chemother. 35, 490-496.]). For related structures, see: Swamy & Ravikumar (2007[Swamy, G. Y. S. K. & Ravikumar, K. (2007). J. Struct. Chem. 48, 715-718.]); Hakim et al. (2010[Hakim Al-arique, Q. N. M., Jasinski, J. P., Butcher, R. J., Yathirajan, H. S. & Narayana, B. (2010). Acta Cryst. E66, o1507-o1508.]). For the triclinic polymorph of the title propan-2-ol solvo-polymorph, see: Ren et al. (2011[Ren, G.-B., Hong, M.-H., Zhong, J.-L., Yi, D.-X. & Xu, L.-H. (2011). Acta Cryst. E67, o270.]) and for the monoclinic mono­hydrate, see: Chen et al. (2012[Chen, Y.-F., Chen, J.-Y., Hong, M.-H., Lu, J. & Ren, G.-B. (2012). Acta Cryst. E68, o2015-o2016.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14F3N3OS·C3H8O

  • Mr = 413.46

  • Monoclinic, P 21 /c

  • a = 17.4583 (2) Å

  • b = 7.4162 (1) Å

  • c = 16.9622 (2) Å

  • β = 116.255 (2)°

  • V = 1969.60 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.89 mm−1

  • T = 296 K

  • 0.31 × 0.23 × 0.15 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.592, Tmax = 0.765

  • 13351 measured reflections

  • 3410 independent reflections

  • 3266 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.116

  • S = 1.06

  • 3410 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2B⋯N1i 0.82 2.01 2.8142 (18) 167
N2—H2A⋯O2ii 0.86 1.98 2.8027 (18) 161
Symmetry codes: (i) x, y, z-1; (ii) x, y-1, z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Lansoprazole (Del Rio et al., 2007; Reddy et al., 2008) and many of its analogues are characterized by an anti-ulcer effect (Iwahi et al.,1991) The title compound, (I), is the critical reaction intermediate of lansoprazole Recently, the compound was successfully crystallized from 2-propanol, and the crystal structure is now firstly reported.

The crystral structure (Fig 1) contains one independent molecule and one 2-propanol solvato which are involved in the formation of hydrogen-bonded chains running along [010] via N—H···O and O—H···N hydrogen bonds (Table 1 and Fig. 2). The 2-propanol molecules acts as a hydrogen-bond bridge, providing further stability to the crystal lattice.

Related literature top

For the use of the title compound as an intermediate in the synthesis of the anti-ulcer drug lansoprazole {systematic name: (RS)-2-([3-methyl-4-(2,2,2-trifluoroethoxy)pyridin-2-yl]methylsulfinyl)-1H-benzo[d]imidazole}, see: Del Rio et al. (2007); Reddy et al. (2008); Iwahi et al. (1991). For related structures, see: Swamy & Ravikumar (2007); Hakim et al. (2010); Ren et al. (2011). For 2-{[3-methyl-4-(2,2,2-trifluoroethoxy)pyridin-2-yl]methylsulfanyl}-1H-benzimidazole monohydrate, see: Chen et al. (2012).

Experimental top

The raw material was kindly provided by Shanghai Enran Sci-Tech Investment Management Co., Ltd. The compound was dissolved in 2-propanol and suitable crystals of X-ray were obtained by slow evaporation at room temperature over a period of one week.

Refinement top

All C-H atoms were constrained to an ideal geometry with C—H distances of 0.98 Å and Uiso(H) = 1.2Ueq(C) for CH; 0.97 Å and Uiso(H) = 1.2Ueq (C) for CH2; 0.96 Å and Uiso(H) = 1.5Ueq(C) for CH3; 0.82 Å and Uiso(H) = 1.5Ueq(C)for OH atoms; and 0.86 Å and Uiso(H) = 1.5Ueq(C) for NH atoms.

Structure description top

Lansoprazole (Del Rio et al., 2007; Reddy et al., 2008) and many of its analogues are characterized by an anti-ulcer effect (Iwahi et al.,1991) The title compound, (I), is the critical reaction intermediate of lansoprazole Recently, the compound was successfully crystallized from 2-propanol, and the crystal structure is now firstly reported.

The crystral structure (Fig 1) contains one independent molecule and one 2-propanol solvato which are involved in the formation of hydrogen-bonded chains running along [010] via N—H···O and O—H···N hydrogen bonds (Table 1 and Fig. 2). The 2-propanol molecules acts as a hydrogen-bond bridge, providing further stability to the crystal lattice.

For the use of the title compound as an intermediate in the synthesis of the anti-ulcer drug lansoprazole {systematic name: (RS)-2-([3-methyl-4-(2,2,2-trifluoroethoxy)pyridin-2-yl]methylsulfinyl)-1H-benzo[d]imidazole}, see: Del Rio et al. (2007); Reddy et al. (2008); Iwahi et al. (1991). For related structures, see: Swamy & Ravikumar (2007); Hakim et al. (2010); Ren et al. (2011). For 2-{[3-methyl-4-(2,2,2-trifluoroethoxy)pyridin-2-yl]methylsulfanyl}-1H-benzimidazole monohydrate, see: Chen et al. (2012).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The content of asymmetric unit (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. Dashed lines denote hydrogen bonds. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. A packing diagram, projected along the [010] chains.
2-{[3-Methyl-4-(2,2,2-trifluoroethoxy)pyridin-2-yl]methylsulfanyl}- 1H-benzimidazole propan-2-ol monosolvate top
Crystal data top
C16H14F3N3OS·C3H8OF(000) = 864
Mr = 413.46Dx = 1.394 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 3266 reflections
a = 17.4583 (2) Åθ = 6.1–67.0°
b = 7.4162 (1) ŵ = 1.89 mm1
c = 16.9622 (2) ÅT = 296 K
β = 116.255 (2)°Column, colorless
V = 1969.60 (5) Å30.31 × 0.23 × 0.15 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
3410 independent reflections
Radiation source: fine-focus sealed tube3266 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
Detector resolution: 0 pixels mm-1θmax = 67.0°, θmin = 6.1°
phi and ω scansh = 1920
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 88
Tmin = 0.592, Tmax = 0.765l = 2019
13351 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.0697P)2 + 0.5861P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.002
3410 reflectionsΔρmax = 0.38 e Å3
254 parametersΔρmin = 0.28 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0024 (3)
Crystal data top
C16H14F3N3OS·C3H8OV = 1969.60 (5) Å3
Mr = 413.46Z = 4
Monoclinic, P21/cCu Kα radiation
a = 17.4583 (2) ŵ = 1.89 mm1
b = 7.4162 (1) ÅT = 296 K
c = 16.9622 (2) Å0.31 × 0.23 × 0.15 mm
β = 116.255 (2)°
Data collection top
Bruker APEXII
diffractometer
3410 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3266 reflections with I > 2σ(I)
Tmin = 0.592, Tmax = 0.765Rint = 0.017
13351 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.06Δρmax = 0.38 e Å3
3410 reflectionsΔρmin = 0.28 e Å3
254 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.22271 (3)0.11157 (5)1.05242 (3)0.04524 (17)
O10.09818 (8)0.61043 (16)0.71885 (7)0.0497 (3)
O20.32047 (8)0.67645 (16)0.17242 (10)0.0573 (4)
H2B0.30160.58010.18000.086*
N10.28104 (9)0.32274 (18)1.20227 (9)0.0417 (3)
N20.29844 (8)0.02492 (18)1.22301 (8)0.0419 (3)
H2A0.29580.08801.21050.050*
N30.14436 (10)0.1600 (2)0.87641 (9)0.0476 (4)
F10.13495 (9)0.8359 (2)0.61276 (11)0.0938 (5)
F20.01560 (8)0.89596 (15)0.61011 (8)0.0681 (3)
F30.02040 (11)0.76215 (19)0.50116 (8)0.0893 (5)
C10.26983 (10)0.1637 (2)1.16472 (10)0.0375 (3)
C1'0.47122 (13)0.6930 (4)0.26857 (17)0.0747 (6)
H1'A0.46390.61670.31040.112*
H1'B0.46580.81690.28160.112*
H1'C0.52690.67340.27170.112*
C20.32070 (10)0.2857 (2)1.29233 (11)0.0415 (4)
C2'0.40380 (12)0.6487 (3)0.17709 (15)0.0594 (5)
H2'A0.40950.52170.16460.071*
C30.34706 (13)0.4014 (3)1.36387 (13)0.0556 (5)
H3B0.33840.52511.35610.067*
C3'0.41146 (15)0.7633 (4)0.10808 (17)0.0729 (6)
H3'A0.36730.73110.05130.109*
H3'B0.46630.74400.10920.109*
H3'C0.40570.88800.11960.109*
C40.38645 (14)0.3274 (3)1.44666 (13)0.0631 (5)
H4A0.40480.40291.49540.076*
C50.39947 (13)0.1429 (3)1.45925 (13)0.0595 (5)
H5A0.42720.09791.51620.071*
C60.37235 (11)0.0253 (3)1.38953 (11)0.0519 (4)
H6A0.38030.09851.39800.062*
C70.33245 (10)0.0997 (2)1.30578 (11)0.0408 (4)
C80.20875 (11)0.3377 (2)1.00826 (11)0.0443 (4)
H8A0.17360.40761.02810.053*
H8B0.26380.39691.02850.053*
C90.16630 (10)0.3261 (2)0.90919 (10)0.0385 (3)
C100.15158 (10)0.4812 (2)0.85880 (10)0.0393 (4)
C110.11201 (10)0.4568 (2)0.76766 (10)0.0405 (4)
C120.08915 (12)0.2862 (2)0.73202 (11)0.0493 (4)
H12A0.06280.26860.67150.059*
C130.10670 (13)0.1429 (2)0.78931 (12)0.0536 (5)
H13A0.09130.02780.76570.064*
C140.05724 (12)0.5917 (2)0.62635 (11)0.0454 (4)
H14A0.00100.55000.60700.054*
H14B0.08750.50510.60760.054*
C150.05779 (11)0.7721 (3)0.58855 (11)0.0495 (4)
C160.17477 (13)0.6669 (3)0.89758 (12)0.0548 (5)
H16A0.15920.75390.85110.082*
H16B0.23520.67300.93440.082*
H16C0.14480.69240.93200.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0616 (3)0.0325 (3)0.0362 (2)0.00018 (16)0.0168 (2)0.00201 (14)
O10.0649 (8)0.0411 (7)0.0345 (6)0.0002 (5)0.0143 (5)0.0050 (5)
O20.0481 (7)0.0306 (6)0.0920 (10)0.0005 (5)0.0299 (7)0.0013 (6)
N10.0517 (8)0.0324 (7)0.0404 (7)0.0030 (6)0.0199 (6)0.0036 (5)
N20.0523 (8)0.0304 (7)0.0395 (7)0.0015 (6)0.0172 (6)0.0040 (5)
N30.0613 (9)0.0367 (7)0.0395 (8)0.0012 (6)0.0174 (7)0.0000 (6)
F10.0650 (8)0.1046 (11)0.1088 (12)0.0198 (7)0.0357 (8)0.0334 (9)
F20.0844 (8)0.0471 (7)0.0706 (8)0.0098 (5)0.0322 (7)0.0056 (5)
F30.1476 (14)0.0680 (8)0.0367 (6)0.0046 (8)0.0267 (7)0.0095 (6)
C10.0419 (8)0.0318 (8)0.0383 (8)0.0007 (6)0.0172 (7)0.0037 (6)
C1'0.0519 (11)0.0715 (15)0.0859 (16)0.0019 (10)0.0171 (11)0.0122 (12)
C20.0444 (8)0.0411 (9)0.0408 (9)0.0024 (7)0.0203 (7)0.0022 (7)
C2'0.0493 (10)0.0350 (9)0.0896 (15)0.0018 (8)0.0268 (10)0.0054 (9)
C30.0682 (12)0.0485 (11)0.0517 (11)0.0001 (9)0.0280 (9)0.0078 (8)
C3'0.0667 (13)0.0789 (16)0.0785 (15)0.0071 (11)0.0369 (12)0.0080 (12)
C40.0703 (12)0.0766 (14)0.0434 (10)0.0044 (11)0.0260 (9)0.0130 (9)
C50.0584 (11)0.0791 (14)0.0382 (9)0.0024 (10)0.0188 (8)0.0082 (9)
C60.0554 (10)0.0533 (11)0.0442 (10)0.0035 (8)0.0195 (8)0.0122 (8)
C70.0419 (8)0.0412 (9)0.0401 (8)0.0006 (6)0.0190 (7)0.0044 (6)
C80.0566 (10)0.0334 (8)0.0365 (9)0.0009 (7)0.0147 (7)0.0028 (7)
C90.0404 (8)0.0363 (8)0.0365 (8)0.0010 (6)0.0149 (6)0.0004 (6)
C100.0406 (8)0.0374 (8)0.0367 (8)0.0014 (6)0.0143 (6)0.0014 (6)
C110.0425 (8)0.0388 (8)0.0375 (8)0.0016 (7)0.0152 (6)0.0044 (7)
C120.0595 (10)0.0467 (10)0.0337 (8)0.0012 (8)0.0134 (7)0.0017 (7)
C130.0726 (12)0.0376 (9)0.0421 (9)0.0051 (8)0.0176 (9)0.0053 (7)
C140.0536 (9)0.0453 (10)0.0341 (8)0.0029 (7)0.0165 (7)0.0017 (7)
C150.0548 (10)0.0539 (11)0.0365 (8)0.0026 (8)0.0170 (7)0.0045 (7)
C160.0733 (12)0.0383 (9)0.0422 (9)0.0022 (8)0.0159 (9)0.0010 (7)
Geometric parameters (Å, º) top
S1—C11.7517 (16)C3'—H3'A0.9600
S1—C81.8088 (17)C3'—H3'B0.9600
O1—C111.366 (2)C3'—H3'C0.9600
O1—C141.414 (2)C4—C51.388 (3)
O2—C2'1.436 (2)C4—H4A0.9300
O2—H2B0.8200C5—C61.374 (3)
N1—C11.313 (2)C5—H5A0.9300
N1—C21.397 (2)C6—C71.390 (2)
N2—C11.360 (2)C6—H6A0.9300
N2—C71.376 (2)C8—C91.510 (2)
N2—H2A0.8600C8—H8A0.9700
N3—C131.331 (2)C8—H8B0.9700
N3—C91.337 (2)C9—C101.387 (2)
F1—C151.311 (2)C10—C111.398 (2)
F2—C151.326 (2)C10—C161.502 (2)
F3—C151.331 (2)C11—C121.383 (3)
C1'—C2'1.512 (3)C12—C131.380 (3)
C1'—H1'A0.9600C12—H12A0.9300
C1'—H1'B0.9600C13—H13A0.9300
C1'—H1'C0.9600C14—C151.486 (3)
C2—C31.388 (3)C14—H14A0.9700
C2—C71.398 (2)C14—H14B0.9700
C2'—C3'1.499 (3)C16—H16A0.9600
C2'—H2'A0.9800C16—H16B0.9600
C3—C41.375 (3)C16—H16C0.9600
C3—H3B0.9300
C1—S1—C899.09 (8)C7—C6—H6A121.5
C11—O1—C14117.24 (13)N2—C7—C6132.68 (16)
C2'—O2—H2B109.5N2—C7—C2105.36 (14)
C1—N1—C2104.42 (13)C6—C7—C2121.96 (17)
C1—N2—C7106.91 (13)C9—C8—S1108.55 (11)
C1—N2—H2A126.5C9—C8—H8A110.0
C7—N2—H2A126.5S1—C8—H8A110.0
C13—N3—C9117.35 (15)C9—C8—H8B110.0
N1—C1—N2113.52 (14)S1—C8—H8B110.0
N1—C1—S1128.56 (12)H8A—C8—H8B108.4
N2—C1—S1117.92 (12)N3—C9—C10124.55 (15)
C2'—C1'—H1'A109.5N3—C9—C8115.14 (14)
C2'—C1'—H1'B109.5C10—C9—C8120.30 (14)
H1'A—C1'—H1'B109.5C9—C10—C11116.09 (15)
C2'—C1'—H1'C109.5C9—C10—C16123.33 (14)
H1'A—C1'—H1'C109.5C11—C10—C16120.58 (14)
H1'B—C1'—H1'C109.5O1—C11—C12123.98 (14)
C3—C2—N1130.27 (16)O1—C11—C10115.48 (14)
C3—C2—C7119.94 (16)C12—C11—C10120.53 (15)
N1—C2—C7109.79 (15)C13—C12—C11117.74 (16)
O2—C2'—C3'108.28 (17)C13—C12—H12A121.1
O2—C2'—C1'109.59 (18)C11—C12—H12A121.1
C3'—C2'—C1'112.37 (18)N3—C13—C12123.72 (17)
O2—C2'—H2'A108.8N3—C13—H13A118.1
C3'—C2'—H2'A108.8C12—C13—H13A118.1
C1'—C2'—H2'A108.8O1—C14—C15107.09 (14)
C4—C3—C2117.96 (19)O1—C14—H14A110.3
C4—C3—H3B121.0C15—C14—H14A110.3
C2—C3—H3B121.0O1—C14—H14B110.3
C2'—C3'—H3'A109.5C15—C14—H14B110.3
C2'—C3'—H3'B109.5H14A—C14—H14B108.6
H3'A—C3'—H3'B109.5F1—C15—F2106.44 (17)
C2'—C3'—H3'C109.5F1—C15—F3107.37 (16)
H3'A—C3'—H3'C109.5F2—C15—F3106.68 (16)
H3'B—C3'—H3'C109.5F1—C15—C14113.07 (16)
C3—C4—C5121.61 (19)F2—C15—C14113.23 (14)
C3—C4—H4A119.2F3—C15—C14109.68 (15)
C5—C4—H4A119.2C10—C16—H16A109.5
C6—C5—C4121.53 (18)C10—C16—H16B109.5
C6—C5—H5A119.2H16A—C16—H16B109.5
C4—C5—H5A119.2C10—C16—H16C109.5
C5—C6—C7116.97 (19)H16A—C16—H16C109.5
C5—C6—H6A121.5H16B—C16—H16C109.5
C2—N1—C1—N20.47 (18)C13—N3—C9—C100.8 (3)
C2—N1—C1—S1179.51 (12)C13—N3—C9—C8179.99 (15)
C7—N2—C1—N10.99 (18)S1—C8—C9—N33.65 (19)
C7—N2—C1—S1179.85 (11)S1—C8—C9—C10177.14 (12)
C8—S1—C1—N16.99 (17)N3—C9—C10—C110.9 (2)
C8—S1—C1—N2174.00 (12)C8—C9—C10—C11179.94 (14)
C1—N1—C2—C3179.33 (18)N3—C9—C10—C16178.21 (17)
C1—N1—C2—C70.23 (18)C8—C9—C10—C160.9 (2)
N1—C2—C3—C4178.76 (18)C14—O1—C11—C120.6 (2)
C7—C2—C3—C41.7 (3)C14—O1—C11—C10179.17 (14)
C2—C3—C4—C50.3 (3)C9—C10—C11—O1179.78 (13)
C3—C4—C5—C61.1 (3)C16—C10—C11—O11.1 (2)
C4—C5—C6—C71.0 (3)C9—C10—C11—C120.5 (2)
C1—N2—C7—C6178.20 (18)C16—C10—C11—C12178.69 (17)
C1—N2—C7—C21.05 (17)O1—C11—C12—C13179.70 (17)
C5—C6—C7—N2179.62 (17)C10—C11—C12—C130.0 (3)
C5—C6—C7—C20.5 (3)C9—N3—C13—C120.2 (3)
C3—C2—C7—N2178.81 (15)C11—C12—C13—N30.2 (3)
N1—C2—C7—N20.81 (18)C11—O1—C14—C15174.15 (14)
C3—C2—C7—C61.8 (3)O1—C14—C15—F159.7 (2)
N1—C2—C7—C6178.54 (15)O1—C14—C15—F261.42 (19)
C1—S1—C8—C9178.94 (12)O1—C14—C15—F3179.55 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2B···N1i0.822.012.8142 (18)167
N2—H2A···O2ii0.861.982.8027 (18)161
Symmetry codes: (i) x, y, z1; (ii) x, y1, z+1.

Experimental details

Crystal data
Chemical formulaC16H14F3N3OS·C3H8O
Mr413.46
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)17.4583 (2), 7.4162 (1), 16.9622 (2)
β (°) 116.255 (2)
V3)1969.60 (5)
Z4
Radiation typeCu Kα
µ (mm1)1.89
Crystal size (mm)0.31 × 0.23 × 0.15
Data collection
DiffractometerBruker APEXII
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.592, 0.765
No. of measured, independent and
observed [I > 2σ(I)] reflections
13351, 3410, 3266
Rint0.017
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.116, 1.06
No. of reflections3410
No. of parameters254
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.28

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2B···N1i0.822.012.8142 (18)167.1
N2—H2A···O2ii0.861.982.8027 (18)161.1
Symmetry codes: (i) x, y, z1; (ii) x, y1, z+1.
 

Acknowledgements

This work was supported by the New Drug Innovation (2009ZX09301–007) project of the Ministry of Science and Technology of China and the National Natural Science Foundation of China (Nos. 81102391 and 21176102).

References

First citationBruker (2009). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Y.-F., Chen, J.-Y., Hong, M.-H., Lu, J. & Ren, G.-B. (2012). Acta Cryst. E68, o2015–o2016.  CSD CrossRef IUCr Journals Google Scholar
First citationDel Rio, R. E., Wang, B., Achab, S. & Bohe, L. (2007). Org. Lett. 9, 2265–2268.  Web of Science PubMed CAS Google Scholar
First citationHakim Al-arique, Q. N. M., Jasinski, J. P., Butcher, R. J., Yathirajan, H. S. & Narayana, B. (2010). Acta Cryst. E66, o1507–o1508.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationIwahi, T., Satoh, H., Nakao, M., Iwasaki, T., Yamazaki, T., Kubo, K., Tamura, T. & Imada, A. (1991). Antimicrob. Agents Chemother. 35, 490–496.  CrossRef CAS PubMed Web of Science Google Scholar
First citationReddy, G. M., Mukkanti, K., Kumar, T., Babu, J., Moses, M. & Reddy, P. P. (2008). Synth. Commun. 38, 3477–3489.  Web of Science CrossRef CAS Google Scholar
First citationRen, G.-B., Hong, M.-H., Zhong, J.-L., Yi, D.-X. & Xu, L.-H. (2011). Acta Cryst. E67, o270.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSwamy, G. Y. S. K. & Ravikumar, K. (2007). J. Struct. Chem. 48, 715–718.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds