metal-organic compounds
catena-Poly[[(1,10-phenanthroline)zinc]-μ-3-[3-(carboxylatomethoxy)phenyl]acrylato]
aSchool of Pharmacy and Material Engineering, Jinhua College of Vocation and Technology, Jinhua, Zhejiang 321017, People's Republic of China
*Correspondence e-mail: chenling78@126.com
The 11H8O5)(C12H8N2)]n, is composed of a ZnII ion and 3-[3-(carboxylatomethoxy)phenyl]acrylate and 1,10-phenanthroline ligands. The ZnII ion adopts a distorted square-pyramidal ZnN2O3 coordination. The bridging mode of the dianion leads to the formation of zigzag chains parallel to [010]. Intermolecular π–π stacking interactions [centroid–centroid distance of 3.5716 (12) Å] lead to the formation of a two-dimensional network parallel to (001).
of the title compound, [Zn(CRelated literature
For background to inorganic-organic hybrid materials, see: Fujita et al. (1994) and for their applications and topological structures, see: Comotti et al. (2008); Hong et al. (2006); Moulton & Zaworotko (2001); Swiegers & Malefeste (2000); Kaes et al. (2000).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2006); cell SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008.
Supporting information
https://doi.org/10.1107/S1600536812024610/bg2464sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812024610/bg2464Isup2.hkl
A mixture of ZnCl2(0.136 g,1 mmol),3-carboxymethoxy phenycl acrylic acid(0.2220 g,1 mmol) and 1,10-phenanthroline(0.0991 g,0.5 mmol) was dissolved in a 20 mL EtOH/H2O(v/v,1:9). Then, the pH value was adjusted to 7 through the use of a 2 mol/L NaOH solution. The mixture was then sealed in a 25 mL stainless steel reactor and heated to 433 K for 3 days. Then the reactant mixture was cooled to room temperature at the rate of 5 degrees per hour. Evaporation of the resulting solution for a few days afforded colorless crystals of title compound.
The carbon-bound H-atoms were positioned geometrically and included in the
using a riding model [C—H 0.93 Å Uiso(H) = 1.2Ueq(C)].In recent decades, inorganic-organic hybrid materials such as coordination complexes have attracted plenty of attention (Fujita et al. (1994)) due to the fact that they might have potential applications as functional solid materials in adsorption, catalysis, and ion exchange (Comotti et al. (2008), Hong et al. (2006)), at the same time that they usually present intriguing topological structures (Moulton et al.(2001), Swiegers et al.(2000),Kaes et al.(2000)). Herein we report one such inorganic-organic hybrid compound, [Zn L (phen), where L is 3-carboxymethoxy phenyl acrylate (C11H8O5) and phen is 1,10-phenanthroline(C12H8N2)].
As shown in Figure 1, the strucure contains one ZnII ion coordinated by two N atoms from a chelating phen and two O atoms from a chelating carboxylato group from one L ligand, defining the base of a distorted square pyramidal coordination; the apical site is occupied by a third O from the reamining carboxylato group of another L ligand which thus behaves in a µ2κ3 bridging chelating mode, forming a one-dimensional zigzag chain which extends along the b axis (Figure 2).
In this structure, the benzene ring from a L ligand and an adjacent six-membered heterocycle ring of phen are nearly parallel (dihedral angle: 4.83 (10)°), affording a face-to-face intermolecular π-π stacking with an intercentroid distance of 3.5716 (12) Å. Intermolecular π-π stacking interactions lead to the formation of a two-dimensional network (Figure 3).
For background to inorganic-organic hybrid materials, see: Fujita et al. (1994) and for their applications and topological structures, see: Comotti et al. (2008); Hong et al. (2006); Moulton & Zaworotko (2001); Swiegers & Malefeste (2000); Kaes et al. (2000)
Data collection: APEX2 (Bruker, 2006); cell
SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Zn(C11H8O5)(C12H8N2)] | F(000) = 952 |
Mr = 465.75 | Dx = 1.588 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 9958 reflections |
a = 10.2744 (4) Å | θ = 2.1–25.0° |
b = 14.9979 (6) Å | µ = 1.30 mm−1 |
c = 15.9060 (6) Å | T = 296 K |
β = 127.347 (2)° | Prism, colourless |
V = 1948.51 (13) Å3 | 0.46 × 0.42 × 0.26 mm |
Z = 4 |
Bruker APEXII area-detector diffractometer | 3430 independent reflections |
Radiation source: fine-focus sealed tube | 2980 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.022 |
ω scans | θmax = 25.0°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −12→12 |
Tmin = 0.56, Tmax = 0.71 | k = −17→17 |
26006 measured reflections | l = −18→18 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.023 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.070 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0426P)2 + 0.5701P] where P = (Fo2 + 2Fc2)/3 |
3430 reflections | (Δ/σ)max = 0.001 |
280 parameters | Δρmax = 0.22 e Å−3 |
0 restraints | Δρmin = −0.35 e Å−3 |
[Zn(C11H8O5)(C12H8N2)] | V = 1948.51 (13) Å3 |
Mr = 465.75 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 10.2744 (4) Å | µ = 1.30 mm−1 |
b = 14.9979 (6) Å | T = 296 K |
c = 15.9060 (6) Å | 0.46 × 0.42 × 0.26 mm |
β = 127.347 (2)° |
Bruker APEXII area-detector diffractometer | 3430 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2980 reflections with I > 2σ(I) |
Tmin = 0.56, Tmax = 0.71 | Rint = 0.022 |
26006 measured reflections |
R[F2 > 2σ(F2)] = 0.023 | 0 restraints |
wR(F2) = 0.070 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.22 e Å−3 |
3430 reflections | Δρmin = −0.35 e Å−3 |
280 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Zn1 | −0.30637 (2) | −0.253939 (12) | 0.368035 (16) | 0.03728 (9) | |
O1 | −0.33062 (15) | 0.25494 (8) | 0.04670 (10) | 0.0419 (3) | |
O2 | −0.36123 (19) | −0.15717 (9) | 0.26359 (11) | 0.0591 (4) | |
O3 | −0.13946 (19) | −0.12441 (9) | 0.42086 (11) | 0.0567 (4) | |
O4 | −0.66285 (17) | 0.13485 (10) | 0.00573 (12) | 0.0591 (4) | |
O5 | −0.56836 (17) | 0.26740 (9) | 0.07863 (12) | 0.0482 (3) | |
N1 | −0.41141 (18) | −0.35805 (9) | 0.25550 (12) | 0.0408 (3) | |
N2 | −0.10093 (17) | −0.33092 (9) | 0.42815 (12) | 0.0373 (3) | |
C1 | −0.20554 (19) | 0.21845 (11) | 0.14171 (12) | 0.0320 (3) | |
C2 | −0.22189 (19) | 0.14486 (10) | 0.18669 (13) | 0.0335 (4) | |
H2A | −0.3230 | 0.1168 | 0.1518 | 0.040* | |
C3 | −0.0880 (2) | 0.11214 (11) | 0.28402 (13) | 0.0353 (4) | |
C4 | 0.0613 (2) | 0.15579 (13) | 0.33550 (14) | 0.0442 (4) | |
H4A | 0.1511 | 0.1361 | 0.4015 | 0.053* | |
C5 | 0.0764 (2) | 0.22891 (13) | 0.28838 (15) | 0.0449 (4) | |
H5A | 0.1773 | 0.2571 | 0.3227 | 0.054* | |
C6 | −0.0547 (2) | 0.26020 (11) | 0.19240 (15) | 0.0377 (4) | |
H6A | −0.0429 | 0.3089 | 0.1614 | 0.045* | |
C7 | −0.1050 (2) | 0.03192 (12) | 0.32975 (14) | 0.0412 (4) | |
H7A | −0.0254 | 0.0223 | 0.4017 | 0.049* | |
C8 | −0.2224 (3) | −0.02701 (12) | 0.27791 (15) | 0.0473 (5) | |
H8A | −0.3011 | −0.0182 | 0.2056 | 0.057* | |
C9 | −0.2398 (3) | −0.10691 (12) | 0.32551 (15) | 0.0457 (4) | |
C10 | −0.4780 (2) | 0.20433 (14) | −0.01510 (13) | 0.0433 (4) | |
H10A | −0.4506 | 0.1438 | −0.0206 | 0.052* | |
H10B | −0.5465 | 0.2291 | −0.0859 | 0.052* | |
C11 | −0.5770 (2) | 0.20077 (12) | 0.02659 (13) | 0.0386 (4) | |
C12 | −0.5648 (2) | −0.37041 (13) | 0.17056 (16) | 0.0511 (5) | |
H12A | −0.6440 | −0.3295 | 0.1562 | 0.061* | |
C13 | −0.6122 (3) | −0.44236 (15) | 0.10171 (17) | 0.0602 (6) | |
H13A | −0.7209 | −0.4489 | 0.0429 | 0.072* | |
C14 | −0.4975 (3) | −0.50280 (14) | 0.12172 (17) | 0.0583 (5) | |
H14A | −0.5279 | −0.5515 | 0.0771 | 0.070* | |
C15 | −0.3334 (3) | −0.49139 (12) | 0.20977 (16) | 0.0486 (5) | |
C16 | −0.2961 (2) | −0.41737 (11) | 0.27537 (14) | 0.0382 (4) | |
C17 | −0.2041 (3) | −0.55048 (13) | 0.23654 (19) | 0.0583 (6) | |
H17A | −0.2280 | −0.5997 | 0.1938 | 0.070* | |
C18 | −0.0487 (3) | −0.53644 (13) | 0.32207 (19) | 0.0564 (6) | |
H18A | 0.0330 | −0.5756 | 0.3367 | 0.068* | |
C19 | −0.0068 (2) | −0.46234 (12) | 0.39092 (16) | 0.0447 (4) | |
C20 | −0.1308 (2) | −0.40297 (11) | 0.36709 (14) | 0.0369 (4) | |
C21 | 0.1518 (2) | −0.44575 (13) | 0.48294 (17) | 0.0506 (5) | |
H21A | 0.2373 | −0.4837 | 0.5020 | 0.061* | |
C22 | 0.1806 (2) | −0.37366 (14) | 0.54458 (16) | 0.0503 (5) | |
H22A | 0.2852 | −0.3625 | 0.6061 | 0.060* | |
C23 | 0.0510 (2) | −0.31708 (12) | 0.51406 (15) | 0.0443 (4) | |
H23A | 0.0720 | −0.2675 | 0.5557 | 0.053* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.04366 (15) | 0.02930 (13) | 0.04777 (15) | 0.00345 (7) | 0.03236 (12) | 0.00291 (8) |
O1 | 0.0319 (6) | 0.0483 (8) | 0.0439 (7) | 0.0026 (5) | 0.0221 (6) | 0.0141 (5) |
O2 | 0.0862 (11) | 0.0392 (7) | 0.0518 (8) | −0.0111 (7) | 0.0418 (8) | 0.0017 (6) |
O3 | 0.0772 (9) | 0.0435 (8) | 0.0504 (8) | 0.0091 (7) | 0.0393 (8) | 0.0136 (6) |
O4 | 0.0534 (8) | 0.0638 (9) | 0.0682 (9) | −0.0194 (7) | 0.0411 (7) | −0.0084 (7) |
O5 | 0.0560 (8) | 0.0423 (7) | 0.0640 (9) | 0.0012 (6) | 0.0456 (8) | 0.0041 (6) |
N1 | 0.0480 (9) | 0.0336 (7) | 0.0481 (9) | −0.0012 (6) | 0.0330 (8) | 0.0024 (6) |
N2 | 0.0435 (8) | 0.0309 (7) | 0.0492 (9) | 0.0005 (6) | 0.0342 (8) | 0.0025 (6) |
C1 | 0.0317 (9) | 0.0319 (8) | 0.0352 (9) | 0.0016 (6) | 0.0217 (8) | −0.0012 (7) |
C2 | 0.0284 (8) | 0.0327 (8) | 0.0368 (9) | −0.0036 (6) | 0.0184 (7) | −0.0016 (7) |
C3 | 0.0363 (9) | 0.0358 (9) | 0.0343 (9) | 0.0028 (7) | 0.0217 (8) | −0.0015 (7) |
C4 | 0.0329 (9) | 0.0543 (11) | 0.0327 (9) | 0.0013 (8) | 0.0132 (8) | −0.0043 (8) |
C5 | 0.0327 (9) | 0.0508 (10) | 0.0453 (11) | −0.0119 (8) | 0.0205 (9) | −0.0131 (8) |
C6 | 0.0390 (10) | 0.0334 (9) | 0.0477 (11) | −0.0064 (7) | 0.0300 (9) | −0.0061 (7) |
C7 | 0.0447 (10) | 0.0411 (10) | 0.0382 (9) | 0.0121 (8) | 0.0254 (8) | 0.0091 (8) |
C8 | 0.0663 (12) | 0.0362 (9) | 0.0389 (10) | 0.0006 (9) | 0.0316 (10) | 0.0053 (8) |
C9 | 0.0702 (13) | 0.0329 (9) | 0.0505 (12) | 0.0086 (9) | 0.0452 (11) | 0.0040 (8) |
C10 | 0.0311 (9) | 0.0620 (12) | 0.0338 (9) | 0.0001 (8) | 0.0182 (8) | 0.0049 (8) |
C11 | 0.0306 (8) | 0.0460 (10) | 0.0341 (9) | 0.0058 (8) | 0.0170 (8) | 0.0110 (8) |
C12 | 0.0493 (11) | 0.0481 (11) | 0.0543 (12) | −0.0018 (9) | 0.0305 (10) | 0.0058 (9) |
C13 | 0.0628 (13) | 0.0589 (13) | 0.0528 (12) | −0.0191 (11) | 0.0319 (11) | −0.0051 (10) |
C14 | 0.0806 (15) | 0.0440 (11) | 0.0616 (13) | −0.0192 (11) | 0.0491 (13) | −0.0127 (10) |
C15 | 0.0738 (14) | 0.0333 (9) | 0.0597 (12) | −0.0089 (9) | 0.0514 (12) | −0.0034 (8) |
C16 | 0.0541 (11) | 0.0273 (8) | 0.0509 (10) | −0.0009 (7) | 0.0410 (9) | 0.0031 (7) |
C17 | 0.0897 (17) | 0.0348 (10) | 0.0808 (16) | −0.0005 (10) | 0.0675 (15) | −0.0061 (10) |
C18 | 0.0836 (16) | 0.0334 (10) | 0.0880 (16) | 0.0105 (10) | 0.0708 (15) | 0.0066 (10) |
C19 | 0.0605 (12) | 0.0332 (9) | 0.0658 (12) | 0.0073 (8) | 0.0516 (11) | 0.0114 (8) |
C20 | 0.0501 (10) | 0.0272 (8) | 0.0509 (10) | 0.0006 (7) | 0.0398 (9) | 0.0049 (7) |
C21 | 0.0528 (11) | 0.0457 (11) | 0.0734 (14) | 0.0138 (9) | 0.0488 (11) | 0.0213 (10) |
C22 | 0.0436 (10) | 0.0563 (12) | 0.0571 (12) | 0.0029 (9) | 0.0336 (10) | 0.0148 (10) |
C23 | 0.0491 (11) | 0.0414 (10) | 0.0514 (11) | −0.0023 (8) | 0.0352 (10) | 0.0019 (8) |
Zn1—O5i | 1.9502 (13) | C7—C8 | 1.307 (3) |
Zn1—O2 | 2.0119 (13) | C7—H7A | 0.9300 |
Zn1—N2 | 2.0626 (14) | C8—C9 | 1.485 (2) |
Zn1—N1 | 2.1126 (15) | C8—H8A | 0.9300 |
Zn1—O3 | 2.3818 (15) | C10—C11 | 1.515 (2) |
Zn1—C9 | 2.5197 (19) | C10—H10A | 0.9700 |
O1—C1 | 1.371 (2) | C10—H10B | 0.9700 |
O1—C10 | 1.425 (2) | C12—C13 | 1.398 (3) |
O2—C9 | 1.266 (2) | C12—H12A | 0.9300 |
O3—C9 | 1.239 (2) | C13—C14 | 1.363 (3) |
O4—C11 | 1.229 (2) | C13—H13A | 0.9300 |
O5—C11 | 1.266 (2) | C14—C15 | 1.403 (3) |
O5—Zn1ii | 1.9502 (13) | C14—H14A | 0.9300 |
N1—C12 | 1.327 (2) | C15—C16 | 1.408 (2) |
N1—C16 | 1.357 (2) | C15—C17 | 1.430 (3) |
N2—C23 | 1.326 (2) | C16—C20 | 1.433 (3) |
N2—C20 | 1.358 (2) | C17—C18 | 1.345 (3) |
C1—C2 | 1.380 (2) | C17—H17A | 0.9300 |
C1—C6 | 1.389 (2) | C18—C19 | 1.431 (3) |
C2—C3 | 1.395 (2) | C18—H18A | 0.9300 |
C2—H2A | 0.9300 | C19—C21 | 1.402 (3) |
C3—C4 | 1.388 (2) | C19—C20 | 1.405 (2) |
C3—C7 | 1.470 (2) | C21—C22 | 1.366 (3) |
C4—C5 | 1.389 (3) | C21—H21A | 0.9300 |
C4—H4A | 0.9300 | C22—C23 | 1.394 (3) |
C5—C6 | 1.367 (3) | C22—H22A | 0.9300 |
C5—H5A | 0.9300 | C23—H23A | 0.9300 |
C6—H6A | 0.9300 | ||
O5i—Zn1—O2 | 108.22 (6) | O3—C9—C8 | 121.79 (19) |
O5i—Zn1—N2 | 130.55 (6) | O2—C9—C8 | 116.76 (17) |
O2—Zn1—N2 | 118.81 (6) | O3—C9—Zn1 | 69.26 (10) |
O5i—Zn1—N1 | 110.93 (6) | O2—C9—Zn1 | 52.27 (9) |
O2—Zn1—N1 | 95.18 (6) | C8—C9—Zn1 | 168.31 (14) |
N2—Zn1—N1 | 80.34 (6) | O1—C10—C11 | 115.57 (15) |
O5i—Zn1—O3 | 103.69 (5) | O1—C10—H10A | 108.4 |
O2—Zn1—O3 | 58.93 (5) | C11—C10—H10A | 108.4 |
N2—Zn1—O3 | 88.72 (5) | O1—C10—H10B | 108.4 |
N1—Zn1—O3 | 142.20 (5) | C11—C10—H10B | 108.4 |
O5i—Zn1—C9 | 109.35 (6) | H10A—C10—H10B | 107.4 |
O2—Zn1—C9 | 29.86 (6) | O4—C11—O5 | 124.43 (17) |
N2—Zn1—C9 | 104.25 (6) | O4—C11—C10 | 118.21 (17) |
N1—Zn1—C9 | 120.11 (6) | O5—C11—C10 | 117.33 (16) |
O3—Zn1—C9 | 29.10 (6) | N1—C12—C13 | 122.7 (2) |
C1—O1—C10 | 116.18 (13) | N1—C12—H12A | 118.7 |
C9—O2—Zn1 | 97.87 (11) | C13—C12—H12A | 118.7 |
C9—O3—Zn1 | 81.63 (12) | C14—C13—C12 | 119.3 (2) |
C11—O5—Zn1ii | 110.61 (11) | C14—C13—H13A | 120.3 |
C12—N1—C16 | 118.40 (16) | C12—C13—H13A | 120.3 |
C12—N1—Zn1 | 130.30 (13) | C13—C14—C15 | 119.82 (19) |
C16—N1—Zn1 | 111.24 (12) | C13—C14—H14A | 120.1 |
C23—N2—C20 | 118.40 (15) | C15—C14—H14A | 120.1 |
C23—N2—Zn1 | 128.60 (12) | C14—C15—C16 | 117.25 (19) |
C20—N2—Zn1 | 112.97 (11) | C14—C15—C17 | 123.94 (19) |
O1—C1—C2 | 124.29 (14) | C16—C15—C17 | 118.80 (19) |
O1—C1—C6 | 115.46 (15) | N1—C16—C15 | 122.52 (17) |
C2—C1—C6 | 120.24 (15) | N1—C16—C20 | 117.81 (15) |
C1—C2—C3 | 120.56 (15) | C15—C16—C20 | 119.67 (16) |
C1—C2—H2A | 119.7 | C18—C17—C15 | 121.51 (19) |
C3—C2—H2A | 119.7 | C18—C17—H17A | 119.2 |
C4—C3—C2 | 118.79 (16) | C15—C17—H17A | 119.2 |
C4—C3—C7 | 120.96 (16) | C17—C18—C19 | 121.12 (19) |
C2—C3—C7 | 120.24 (15) | C17—C18—H18A | 119.4 |
C3—C4—C5 | 119.93 (16) | C19—C18—H18A | 119.4 |
C3—C4—H4A | 120.0 | C21—C19—C20 | 117.30 (17) |
C5—C4—H4A | 120.0 | C21—C19—C18 | 123.79 (18) |
C6—C5—C4 | 121.12 (17) | C20—C19—C18 | 118.90 (19) |
C6—C5—H5A | 119.4 | N2—C20—C19 | 122.48 (17) |
C4—C5—H5A | 119.4 | N2—C20—C16 | 117.53 (15) |
C5—C6—C1 | 119.32 (17) | C19—C20—C16 | 119.99 (16) |
C5—C6—H6A | 120.3 | C22—C21—C19 | 119.86 (17) |
C1—C6—H6A | 120.3 | C22—C21—H21A | 120.1 |
C8—C7—C3 | 125.61 (17) | C19—C21—H21A | 120.1 |
C8—C7—H7A | 117.2 | C21—C22—C23 | 119.14 (19) |
C3—C7—H7A | 117.2 | C21—C22—H22A | 120.4 |
C7—C8—C9 | 125.05 (18) | C23—C22—H22A | 120.4 |
C7—C8—H8A | 117.5 | N2—C23—C22 | 122.81 (18) |
C9—C8—H8A | 117.5 | N2—C23—H23A | 118.6 |
O3—C9—O2 | 121.44 (17) | C22—C23—H23A | 118.6 |
Symmetry codes: (i) −x−1, y−1/2, −z+1/2; (ii) −x−1, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Zn(C11H8O5)(C12H8N2)] |
Mr | 465.75 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 296 |
a, b, c (Å) | 10.2744 (4), 14.9979 (6), 15.9060 (6) |
β (°) | 127.347 (2) |
V (Å3) | 1948.51 (13) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.30 |
Crystal size (mm) | 0.46 × 0.42 × 0.26 |
Data collection | |
Diffractometer | Bruker APEXII area-detector |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.56, 0.71 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 26006, 3430, 2980 |
Rint | 0.022 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.023, 0.070, 1.02 |
No. of reflections | 3430 |
No. of parameters | 280 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.22, −0.35 |
Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).
Acknowledgements
This work was supported financially by the Foundation of Jinhua College of Vocation and Technlogy (20110013).
References
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Comotti, A., Bracco, S., Sozzani, P., Horike, S. & Matsuda, R. (2008). J. Am. Chem. Soc. 130, 13664–13672. Web of Science CSD CrossRef PubMed CAS Google Scholar
Fujita, M., Kwon, Y. J., Washizu, S. & Ogura, K. (1994). J. Am. Chem. Soc. 116, 1151–1152. CSD CrossRef CAS Web of Science Google Scholar
Hong, X. L., Li, Y. Z., Hu, H., Pan, Y. & Bai, J. (2006). Cryst. Growth Des. 6, 1121–1126. Web of Science CSD CrossRef Google Scholar
Kaes, C., Katz, A. & Hosseini, M. W. (2000). Chem. Rev. 100, 3553–3590. Web of Science CrossRef PubMed CAS Google Scholar
Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Go¨ttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Swiegers, G. F. & Malefeste, T. J. (2000). Chem. Rev. 100, 3483–3538. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In recent decades, inorganic-organic hybrid materials such as coordination complexes have attracted plenty of attention (Fujita et al. (1994)) due to the fact that they might have potential applications as functional solid materials in adsorption, catalysis, and ion exchange (Comotti et al. (2008), Hong et al. (2006)), at the same time that they usually present intriguing topological structures (Moulton et al.(2001), Swiegers et al.(2000),Kaes et al.(2000)). Herein we report one such inorganic-organic hybrid compound, [Zn L (phen), where L is 3-carboxymethoxy phenyl acrylate (C11H8O5) and phen is 1,10-phenanthroline(C12H8N2)].
As shown in Figure 1, the strucure contains one ZnII ion coordinated by two N atoms from a chelating phen and two O atoms from a chelating carboxylato group from one L ligand, defining the base of a distorted square pyramidal coordination; the apical site is occupied by a third O from the reamining carboxylato group of another L ligand which thus behaves in a µ2κ3 bridging chelating mode, forming a one-dimensional zigzag chain which extends along the b axis (Figure 2).
In this structure, the benzene ring from a L ligand and an adjacent six-membered heterocycle ring of phen are nearly parallel (dihedral angle: 4.83 (10)°), affording a face-to-face intermolecular π-π stacking with an intercentroid distance of 3.5716 (12) Å. Intermolecular π-π stacking interactions lead to the formation of a two-dimensional network (Figure 3).