metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[(1,10-phenanthroline)zinc]-μ-3-[3-(carboxyl­atometh­­oxy)phen­yl]acrylato]

aSchool of Pharmacy and Material Engineering, Jinhua College of Vocation and Technology, Jinhua, Zhejiang 321017, People's Republic of China
*Correspondence e-mail: chenling78@126.com

(Received 24 May 2012; accepted 30 May 2012; online 13 June 2012)

The asymmetric unit of the title compound, [Zn(C11H8O5)(C12H8N2)]n, is composed of a ZnII ion and 3-[3-(carboxyl­atometh­oxy)phen­yl]acrylate and 1,10-phenanthroline ligands. The ZnII ion adopts a distorted square-pyramidal ZnN2O3 coordination. The bridging mode of the dianion leads to the formation of zigzag chains parallel to [010]. Intermolecular ππ stacking inter­actions [centroid–centroid distance of 3.5716 (12) Å] lead to the formation of a two-dimensional network parallel to (001).

Related literature

For background to inorganic-organic hybrid materials, see: Fujita et al. (1994[Fujita, M., Kwon, Y. J., Washizu, S. & Ogura, K. (1994). J. Am. Chem. Soc. 116, 1151-1152.]) and for their applications and topological structures, see: Comotti et al. (2008[Comotti, A., Bracco, S., Sozzani, P., Horike, S. & Matsuda, R. (2008). J. Am. Chem. Soc. 130, 13664-13672.]); Hong et al. (2006[Hong, X. L., Li, Y. Z., Hu, H., Pan, Y. & Bai, J. (2006). Cryst. Growth Des. 6, 1121-1126.]); Moulton & Zaworotko (2001[Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.]); Swiegers & Malefeste (2000[Swiegers, G. F. & Malefeste, T. J. (2000). Chem. Rev. 100, 3483-3538.]); Kaes et al. (2000[Kaes, C., Katz, A. & Hosseini, M. W. (2000). Chem. Rev. 100, 3553-3590.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C11H8O5)(C12H8N2)]

  • Mr = 465.75

  • Monoclinic, P 21 /c

  • a = 10.2744 (4) Å

  • b = 14.9979 (6) Å

  • c = 15.9060 (6) Å

  • β = 127.347 (2)°

  • V = 1948.51 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.30 mm−1

  • T = 296 K

  • 0.46 × 0.42 × 0.26 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Go¨ttingen, Germany.]) Tmin = 0.56, Tmax = 0.71

  • 26006 measured reflections

  • 3430 independent reflections

  • 2980 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.070

  • S = 1.02

  • 3430 reflections

  • 280 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.35 e Å−3

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.].

Supporting information


Comment top

In recent decades, inorganic-organic hybrid materials such as coordination complexes have attracted plenty of attention (Fujita et al. (1994)) due to the fact that they might have potential applications as functional solid materials in adsorption, catalysis, and ion exchange (Comotti et al. (2008), Hong et al. (2006)), at the same time that they usually present intriguing topological structures (Moulton et al.(2001), Swiegers et al.(2000),Kaes et al.(2000)). Herein we report one such inorganic-organic hybrid compound, [Zn L (phen), where L is 3-carboxymethoxy phenyl acrylate (C11H8O5) and phen is 1,10-phenanthroline(C12H8N2)].

As shown in Figure 1, the strucure contains one ZnII ion coordinated by two N atoms from a chelating phen and two O atoms from a chelating carboxylato group from one L ligand, defining the base of a distorted square pyramidal coordination; the apical site is occupied by a third O from the reamining carboxylato group of another L ligand which thus behaves in a µ2κ3 bridging chelating mode, forming a one-dimensional zigzag chain which extends along the b axis (Figure 2).

In this structure, the benzene ring from a L ligand and an adjacent six-membered heterocycle ring of phen are nearly parallel (dihedral angle: 4.83 (10)°), affording a face-to-face intermolecular π-π stacking with an intercentroid distance of 3.5716 (12) Å. Intermolecular π-π stacking interactions lead to the formation of a two-dimensional network (Figure 3).

Related literature top

For background to inorganic-organic hybrid materials, see: Fujita et al. (1994) and for their applications and topological structures, see: Comotti et al. (2008); Hong et al. (2006); Moulton & Zaworotko (2001); Swiegers & Malefeste (2000); Kaes et al. (2000)

Experimental top

A mixture of ZnCl2(0.136 g,1 mmol),3-carboxymethoxy phenycl acrylic acid(0.2220 g,1 mmol) and 1,10-phenanthroline(0.0991 g,0.5 mmol) was dissolved in a 20 mL EtOH/H2O(v/v,1:9). Then, the pH value was adjusted to 7 through the use of a 2 mol/L NaOH solution. The mixture was then sealed in a 25 mL stainless steel reactor and heated to 433 K for 3 days. Then the reactant mixture was cooled to room temperature at the rate of 5 degrees per hour. Evaporation of the resulting solution for a few days afforded colorless crystals of title compound.

Refinement top

The carbon-bound H-atoms were positioned geometrically and included in the refinement using a riding model [C—H 0.93 Å Uiso(H) = 1.2Ueq(C)].

Structure description top

In recent decades, inorganic-organic hybrid materials such as coordination complexes have attracted plenty of attention (Fujita et al. (1994)) due to the fact that they might have potential applications as functional solid materials in adsorption, catalysis, and ion exchange (Comotti et al. (2008), Hong et al. (2006)), at the same time that they usually present intriguing topological structures (Moulton et al.(2001), Swiegers et al.(2000),Kaes et al.(2000)). Herein we report one such inorganic-organic hybrid compound, [Zn L (phen), where L is 3-carboxymethoxy phenyl acrylate (C11H8O5) and phen is 1,10-phenanthroline(C12H8N2)].

As shown in Figure 1, the strucure contains one ZnII ion coordinated by two N atoms from a chelating phen and two O atoms from a chelating carboxylato group from one L ligand, defining the base of a distorted square pyramidal coordination; the apical site is occupied by a third O from the reamining carboxylato group of another L ligand which thus behaves in a µ2κ3 bridging chelating mode, forming a one-dimensional zigzag chain which extends along the b axis (Figure 2).

In this structure, the benzene ring from a L ligand and an adjacent six-membered heterocycle ring of phen are nearly parallel (dihedral angle: 4.83 (10)°), affording a face-to-face intermolecular π-π stacking with an intercentroid distance of 3.5716 (12) Å. Intermolecular π-π stacking interactions lead to the formation of a two-dimensional network (Figure 3).

For background to inorganic-organic hybrid materials, see: Fujita et al. (1994) and for their applications and topological structures, see: Comotti et al. (2008); Hong et al. (2006); Moulton & Zaworotko (2001); Swiegers & Malefeste (2000); Kaes et al. (2000)

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code:(A) -x - 1,y - 1/2,-z + 1/2]
[Figure 2] Fig. 2. The one-dimensional chain structure in the title compound along the b axis.
[Figure 3] Fig. 3. View of the two-dimensional supramolecular network connected by π-π stacking interactions.
catena-Poly[[(1,10-phenanthroline)zinc]- µ-3-[3-(carboxylatomethoxy)phenyl]acrylato] top
Crystal data top
[Zn(C11H8O5)(C12H8N2)]F(000) = 952
Mr = 465.75Dx = 1.588 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9958 reflections
a = 10.2744 (4) Åθ = 2.1–25.0°
b = 14.9979 (6) ŵ = 1.30 mm1
c = 15.9060 (6) ÅT = 296 K
β = 127.347 (2)°Prism, colourless
V = 1948.51 (13) Å30.46 × 0.42 × 0.26 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
3430 independent reflections
Radiation source: fine-focus sealed tube2980 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.56, Tmax = 0.71k = 1717
26006 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0426P)2 + 0.5701P]
where P = (Fo2 + 2Fc2)/3
3430 reflections(Δ/σ)max = 0.001
280 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
[Zn(C11H8O5)(C12H8N2)]V = 1948.51 (13) Å3
Mr = 465.75Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.2744 (4) ŵ = 1.30 mm1
b = 14.9979 (6) ÅT = 296 K
c = 15.9060 (6) Å0.46 × 0.42 × 0.26 mm
β = 127.347 (2)°
Data collection top
Bruker APEXII area-detector
diffractometer
3430 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2980 reflections with I > 2σ(I)
Tmin = 0.56, Tmax = 0.71Rint = 0.022
26006 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.070H-atom parameters constrained
S = 1.02Δρmax = 0.22 e Å3
3430 reflectionsΔρmin = 0.35 e Å3
280 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.30637 (2)0.253939 (12)0.368035 (16)0.03728 (9)
O10.33062 (15)0.25494 (8)0.04670 (10)0.0419 (3)
O20.36123 (19)0.15717 (9)0.26359 (11)0.0591 (4)
O30.13946 (19)0.12441 (9)0.42086 (11)0.0567 (4)
O40.66285 (17)0.13485 (10)0.00573 (12)0.0591 (4)
O50.56836 (17)0.26740 (9)0.07863 (12)0.0482 (3)
N10.41141 (18)0.35805 (9)0.25550 (12)0.0408 (3)
N20.10093 (17)0.33092 (9)0.42815 (12)0.0373 (3)
C10.20554 (19)0.21845 (11)0.14171 (12)0.0320 (3)
C20.22189 (19)0.14486 (10)0.18669 (13)0.0335 (4)
H2A0.32300.11680.15180.040*
C30.0880 (2)0.11214 (11)0.28402 (13)0.0353 (4)
C40.0613 (2)0.15579 (13)0.33550 (14)0.0442 (4)
H4A0.15110.13610.40150.053*
C50.0764 (2)0.22891 (13)0.28838 (15)0.0449 (4)
H5A0.17730.25710.32270.054*
C60.0547 (2)0.26020 (11)0.19240 (15)0.0377 (4)
H6A0.04290.30890.16140.045*
C70.1050 (2)0.03192 (12)0.32975 (14)0.0412 (4)
H7A0.02540.02230.40170.049*
C80.2224 (3)0.02701 (12)0.27791 (15)0.0473 (5)
H8A0.30110.01820.20560.057*
C90.2398 (3)0.10691 (12)0.32551 (15)0.0457 (4)
C100.4780 (2)0.20433 (14)0.01510 (13)0.0433 (4)
H10A0.45060.14380.02060.052*
H10B0.54650.22910.08590.052*
C110.5770 (2)0.20077 (12)0.02659 (13)0.0386 (4)
C120.5648 (2)0.37041 (13)0.17056 (16)0.0511 (5)
H12A0.64400.32950.15620.061*
C130.6122 (3)0.44236 (15)0.10171 (17)0.0602 (6)
H13A0.72090.44890.04290.072*
C140.4975 (3)0.50280 (14)0.12172 (17)0.0583 (5)
H14A0.52790.55150.07710.070*
C150.3334 (3)0.49139 (12)0.20977 (16)0.0486 (5)
C160.2961 (2)0.41737 (11)0.27537 (14)0.0382 (4)
C170.2041 (3)0.55048 (13)0.23654 (19)0.0583 (6)
H17A0.22800.59970.19380.070*
C180.0487 (3)0.53644 (13)0.32207 (19)0.0564 (6)
H18A0.03300.57560.33670.068*
C190.0068 (2)0.46234 (12)0.39092 (16)0.0447 (4)
C200.1308 (2)0.40297 (11)0.36709 (14)0.0369 (4)
C210.1518 (2)0.44575 (13)0.48294 (17)0.0506 (5)
H21A0.23730.48370.50200.061*
C220.1806 (2)0.37366 (14)0.54458 (16)0.0503 (5)
H22A0.28520.36250.60610.060*
C230.0510 (2)0.31708 (12)0.51406 (15)0.0443 (4)
H23A0.07200.26750.55570.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.04366 (15)0.02930 (13)0.04777 (15)0.00345 (7)0.03236 (12)0.00291 (8)
O10.0319 (6)0.0483 (8)0.0439 (7)0.0026 (5)0.0221 (6)0.0141 (5)
O20.0862 (11)0.0392 (7)0.0518 (8)0.0111 (7)0.0418 (8)0.0017 (6)
O30.0772 (9)0.0435 (8)0.0504 (8)0.0091 (7)0.0393 (8)0.0136 (6)
O40.0534 (8)0.0638 (9)0.0682 (9)0.0194 (7)0.0411 (7)0.0084 (7)
O50.0560 (8)0.0423 (7)0.0640 (9)0.0012 (6)0.0456 (8)0.0041 (6)
N10.0480 (9)0.0336 (7)0.0481 (9)0.0012 (6)0.0330 (8)0.0024 (6)
N20.0435 (8)0.0309 (7)0.0492 (9)0.0005 (6)0.0342 (8)0.0025 (6)
C10.0317 (9)0.0319 (8)0.0352 (9)0.0016 (6)0.0217 (8)0.0012 (7)
C20.0284 (8)0.0327 (8)0.0368 (9)0.0036 (6)0.0184 (7)0.0016 (7)
C30.0363 (9)0.0358 (9)0.0343 (9)0.0028 (7)0.0217 (8)0.0015 (7)
C40.0329 (9)0.0543 (11)0.0327 (9)0.0013 (8)0.0132 (8)0.0043 (8)
C50.0327 (9)0.0508 (10)0.0453 (11)0.0119 (8)0.0205 (9)0.0131 (8)
C60.0390 (10)0.0334 (9)0.0477 (11)0.0064 (7)0.0300 (9)0.0061 (7)
C70.0447 (10)0.0411 (10)0.0382 (9)0.0121 (8)0.0254 (8)0.0091 (8)
C80.0663 (12)0.0362 (9)0.0389 (10)0.0006 (9)0.0316 (10)0.0053 (8)
C90.0702 (13)0.0329 (9)0.0505 (12)0.0086 (9)0.0452 (11)0.0040 (8)
C100.0311 (9)0.0620 (12)0.0338 (9)0.0001 (8)0.0182 (8)0.0049 (8)
C110.0306 (8)0.0460 (10)0.0341 (9)0.0058 (8)0.0170 (8)0.0110 (8)
C120.0493 (11)0.0481 (11)0.0543 (12)0.0018 (9)0.0305 (10)0.0058 (9)
C130.0628 (13)0.0589 (13)0.0528 (12)0.0191 (11)0.0319 (11)0.0051 (10)
C140.0806 (15)0.0440 (11)0.0616 (13)0.0192 (11)0.0491 (13)0.0127 (10)
C150.0738 (14)0.0333 (9)0.0597 (12)0.0089 (9)0.0514 (12)0.0034 (8)
C160.0541 (11)0.0273 (8)0.0509 (10)0.0009 (7)0.0410 (9)0.0031 (7)
C170.0897 (17)0.0348 (10)0.0808 (16)0.0005 (10)0.0675 (15)0.0061 (10)
C180.0836 (16)0.0334 (10)0.0880 (16)0.0105 (10)0.0708 (15)0.0066 (10)
C190.0605 (12)0.0332 (9)0.0658 (12)0.0073 (8)0.0516 (11)0.0114 (8)
C200.0501 (10)0.0272 (8)0.0509 (10)0.0006 (7)0.0398 (9)0.0049 (7)
C210.0528 (11)0.0457 (11)0.0734 (14)0.0138 (9)0.0488 (11)0.0213 (10)
C220.0436 (10)0.0563 (12)0.0571 (12)0.0029 (9)0.0336 (10)0.0148 (10)
C230.0491 (11)0.0414 (10)0.0514 (11)0.0023 (8)0.0352 (10)0.0019 (8)
Geometric parameters (Å, º) top
Zn1—O5i1.9502 (13)C7—C81.307 (3)
Zn1—O22.0119 (13)C7—H7A0.9300
Zn1—N22.0626 (14)C8—C91.485 (2)
Zn1—N12.1126 (15)C8—H8A0.9300
Zn1—O32.3818 (15)C10—C111.515 (2)
Zn1—C92.5197 (19)C10—H10A0.9700
O1—C11.371 (2)C10—H10B0.9700
O1—C101.425 (2)C12—C131.398 (3)
O2—C91.266 (2)C12—H12A0.9300
O3—C91.239 (2)C13—C141.363 (3)
O4—C111.229 (2)C13—H13A0.9300
O5—C111.266 (2)C14—C151.403 (3)
O5—Zn1ii1.9502 (13)C14—H14A0.9300
N1—C121.327 (2)C15—C161.408 (2)
N1—C161.357 (2)C15—C171.430 (3)
N2—C231.326 (2)C16—C201.433 (3)
N2—C201.358 (2)C17—C181.345 (3)
C1—C21.380 (2)C17—H17A0.9300
C1—C61.389 (2)C18—C191.431 (3)
C2—C31.395 (2)C18—H18A0.9300
C2—H2A0.9300C19—C211.402 (3)
C3—C41.388 (2)C19—C201.405 (2)
C3—C71.470 (2)C21—C221.366 (3)
C4—C51.389 (3)C21—H21A0.9300
C4—H4A0.9300C22—C231.394 (3)
C5—C61.367 (3)C22—H22A0.9300
C5—H5A0.9300C23—H23A0.9300
C6—H6A0.9300
O5i—Zn1—O2108.22 (6)O3—C9—C8121.79 (19)
O5i—Zn1—N2130.55 (6)O2—C9—C8116.76 (17)
O2—Zn1—N2118.81 (6)O3—C9—Zn169.26 (10)
O5i—Zn1—N1110.93 (6)O2—C9—Zn152.27 (9)
O2—Zn1—N195.18 (6)C8—C9—Zn1168.31 (14)
N2—Zn1—N180.34 (6)O1—C10—C11115.57 (15)
O5i—Zn1—O3103.69 (5)O1—C10—H10A108.4
O2—Zn1—O358.93 (5)C11—C10—H10A108.4
N2—Zn1—O388.72 (5)O1—C10—H10B108.4
N1—Zn1—O3142.20 (5)C11—C10—H10B108.4
O5i—Zn1—C9109.35 (6)H10A—C10—H10B107.4
O2—Zn1—C929.86 (6)O4—C11—O5124.43 (17)
N2—Zn1—C9104.25 (6)O4—C11—C10118.21 (17)
N1—Zn1—C9120.11 (6)O5—C11—C10117.33 (16)
O3—Zn1—C929.10 (6)N1—C12—C13122.7 (2)
C1—O1—C10116.18 (13)N1—C12—H12A118.7
C9—O2—Zn197.87 (11)C13—C12—H12A118.7
C9—O3—Zn181.63 (12)C14—C13—C12119.3 (2)
C11—O5—Zn1ii110.61 (11)C14—C13—H13A120.3
C12—N1—C16118.40 (16)C12—C13—H13A120.3
C12—N1—Zn1130.30 (13)C13—C14—C15119.82 (19)
C16—N1—Zn1111.24 (12)C13—C14—H14A120.1
C23—N2—C20118.40 (15)C15—C14—H14A120.1
C23—N2—Zn1128.60 (12)C14—C15—C16117.25 (19)
C20—N2—Zn1112.97 (11)C14—C15—C17123.94 (19)
O1—C1—C2124.29 (14)C16—C15—C17118.80 (19)
O1—C1—C6115.46 (15)N1—C16—C15122.52 (17)
C2—C1—C6120.24 (15)N1—C16—C20117.81 (15)
C1—C2—C3120.56 (15)C15—C16—C20119.67 (16)
C1—C2—H2A119.7C18—C17—C15121.51 (19)
C3—C2—H2A119.7C18—C17—H17A119.2
C4—C3—C2118.79 (16)C15—C17—H17A119.2
C4—C3—C7120.96 (16)C17—C18—C19121.12 (19)
C2—C3—C7120.24 (15)C17—C18—H18A119.4
C3—C4—C5119.93 (16)C19—C18—H18A119.4
C3—C4—H4A120.0C21—C19—C20117.30 (17)
C5—C4—H4A120.0C21—C19—C18123.79 (18)
C6—C5—C4121.12 (17)C20—C19—C18118.90 (19)
C6—C5—H5A119.4N2—C20—C19122.48 (17)
C4—C5—H5A119.4N2—C20—C16117.53 (15)
C5—C6—C1119.32 (17)C19—C20—C16119.99 (16)
C5—C6—H6A120.3C22—C21—C19119.86 (17)
C1—C6—H6A120.3C22—C21—H21A120.1
C8—C7—C3125.61 (17)C19—C21—H21A120.1
C8—C7—H7A117.2C21—C22—C23119.14 (19)
C3—C7—H7A117.2C21—C22—H22A120.4
C7—C8—C9125.05 (18)C23—C22—H22A120.4
C7—C8—H8A117.5N2—C23—C22122.81 (18)
C9—C8—H8A117.5N2—C23—H23A118.6
O3—C9—O2121.44 (17)C22—C23—H23A118.6
Symmetry codes: (i) x1, y1/2, z+1/2; (ii) x1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn(C11H8O5)(C12H8N2)]
Mr465.75
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)10.2744 (4), 14.9979 (6), 15.9060 (6)
β (°) 127.347 (2)
V3)1948.51 (13)
Z4
Radiation typeMo Kα
µ (mm1)1.30
Crystal size (mm)0.46 × 0.42 × 0.26
Data collection
DiffractometerBruker APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.56, 0.71
No. of measured, independent and
observed [I > 2σ(I)] reflections
26006, 3430, 2980
Rint0.022
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.070, 1.02
No. of reflections3430
No. of parameters280
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.35

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported financially by the Foundation of Jinhua College of Vocation and Technlogy (20110013).

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationComotti, A., Bracco, S., Sozzani, P., Horike, S. & Matsuda, R. (2008). J. Am. Chem. Soc. 130, 13664–13672.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFujita, M., Kwon, Y. J., Washizu, S. & Ogura, K. (1994). J. Am. Chem. Soc. 116, 1151–1152.  CSD CrossRef CAS Web of Science Google Scholar
First citationHong, X. L., Li, Y. Z., Hu, H., Pan, Y. & Bai, J. (2006). Cryst. Growth Des. 6, 1121–1126.  Web of Science CSD CrossRef Google Scholar
First citationKaes, C., Katz, A. & Hosseini, M. W. (2000). Chem. Rev. 100, 3553–3590.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMoulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Go¨ttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSwiegers, G. F. & Malefeste, T. J. (2000). Chem. Rev. 100, 3483–3538.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds