organic compounds
(Z,1S,10aR)-(−)-Menthyl 1-hydroxy-1,2,3,5,6,7,10,10a-octahydropyrrolo[1,2-a]azocine-10a-carboxylate
aDipartimento di Chimica e Farmacia, Università degli Studi di Sassari, via Vienna 2, 07100 Sassari, Italy, bCRISMAT, UMR CNRS 6508, ENSICAEN, 6 Boulevard du Marechal Juin, F-14050 Caen CEDEX 4, France, and cCNR Istituto di Chimica Biomolecolare sez. di Sassari, via La Crucca, Baldinca-Li Punti, 07040 Sassari, Italy
*Correspondence e-mail: dmuroni@uniss.it
The 21H35NO3, obtained as an intermediate in the enantioselective synthesis of deoxynojirimicine analogs. The system contains a pyrrolo[1,2-a]azocine backbone, which was synthesized by a domino process involving a [2,3]-sigmatropic rearrangement. The incorporation of a chiral auxiliary (−)-menthyl, whose stereocentres are not involved during the synthesis, enables the assignation of The features O—H⋯O hydrogen bonds involving the hydroxy groups as donors and the carbonyl groups as acceptors, which link the molecules into chains running along [010].
confirms the stereochemistry of the title compound, CRelated literature
For the construction of the pyrrolo[1,2-a]azocine backbone by the domino sequence, see: Clark et al. (2001); Muroni et al. (2006). For domino processes promoted by catalytic decomposition of diazocompounds, see: Doyle et al. (1997). For [2,3]-sigmatropic rearrangement, see: Sweeney (2009); Zhang & Wang (2010). For manzamine and other biologically active compounds containing the pyrrolo[1,2-a]azocine subunit, see: Rao et al. (2006); Yap et al. (2011); Sun et al. (2011). For deoxynojirimicine and iminosugars, see: Asano et al. (2000); Watson et al. (2001). For chiral auxiliary (−)-menthyl, see: Wang et al. (2006).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2005); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SIR2011 (Burla et al., 2012); program(s) used to refine structure: JANA2006 (Petricek et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010) and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536812027900/bh2433sup1.cif
contains datablocks global, I. DOI:Supporting information file. DOI: https://doi.org/10.1107/S1600536812027900/bh2433Isup2.cdx
Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812027900/bh2433Isup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536812027900/bh2433Isup4.cml
All 1H NMR (400 MHz) and 13C NMR (100 MHz) spectra were recorded on a Varian Mercury plus 400 spectrometer. Infrared (IR) spectra were performed on a FT/IR-480plus JASKO spectrophotometer. The optical rotations were measured by a polarimeter P-1010 JASCO in a 1 dm tube. All reagents and solvents employed were reagent grade materials purified by standard methods and redistilled before use. (1R)-(–)-menthyl acetate (>98%) and L-proline (>99.0%) were purchased from Sigma-Aldrich.
To a solution of compound 3 (210 mg, 0.6 mmol, see Fig. 1) in dry THF (5 ml) was added L-selectride (1.21 ml of 1.0 M solution in THF, 1.21 mmol) dropwise at 273 K. The reaction mixture was stirred for 1 h at 273 K and then allowed to warm to room temperature for another 1 h. The mixture was then diluted with EtOAc (50 ml) and filtered through a pad of silica gel, which was rinsed with EtOAc (50 ml). The filtrate was concentrated under reduced pressure, and the residue purified by flash α]25D = -92.94 (c 0.32, CHCl3); 1H NMR (CDCl3): δ 0.74 (d, 3H, J=7.0 Hz), 0.89 (d, 3H, J=6.8 Hz), 0.91 (d, 3H, J=6.8 Hz), 0.80–1.11 (m, 3H), 1.30–1.58 (m, 3H), 1.60–1.73 (m, 3H), 1.73–1.86 (m, 1H), 1.92–2.10 (m, 3H), 2.12–2.32 (m, 3H), 2.37 (d, 1H, J=8.4 Hz), 2.64–2.80 (m, 2H), 2.92 (ddd, 1H, J=15.8, 12.1, 3.1 Hz), 3.00 (dt, 1H, J=9, 5.2 Hz), 3.15 (dt, 1H, J=8.4, 5.2 Hz), 3.98 (q, 1H, J=8.0 Hz), 4.74 (dt, 1H, J=4.4, 10.8 Hz), 5.65–5.80 p.p.m. (m, 2H). 13C NMR (CDCl3): δ 15.71, 20.90, 22.03, 22.91, 25.40, 25.89, 29.12, 31.39, 31.45, 32.50, 34.22, 41.18, 47.07 48.21, 50.04, 74.97, 75.08, 78.01, 126.17, 132.84, 173.64 p.p.m.; IR (neat): 3465, 3019, 2954, 1708, 1456, 1214 cm-1. Anal. Calc. for C21H35NO3: C 72.17, H 10.09, N 4.01%; Found: C 72.20, H 10.05, N 4.05%.
(petroleum ether/ethyl acetate, 9:1) to give 180 mg of 4 (85%) as white oil. Recrystallization from EtOH/H2O (8:2) gave the title compound 4 as white crystals: m.p. 389 K; [All C-bonded H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å and with Uiso(H) = 1.2Ueq(carrier C). The hydroxyl H-atom H1o was located in a difference map, and included in the subsequent
with Uiso(H1o) = 1.2Ueq(O1). All H atoms were refined isotropically. The was assigned from the use of the chiral auxiliary (–)-menthyl (Wang et al., 2006) as the starting material, whose stereo centres are not involved in the reaction. Owing to the absence of significant for data collected with the Mo radiation, 2332 measured Friedel pairs were merged.The pyrrolo[1,2-a]azocine backbone is contained as the CE subunit in the structures of manzamine and ircinal
(Rao et al., 2006), as well as other natural and synthetic compounds which have shown interesting biological properties (Yap et al., 2011; Sun et al., 2011). Among the methods for a rapid construction of bicycle alkaloid, domino processes promoted by catalytic decomposition of have become commonly employed since they give a rapid access to complex structures in a stereoselective way (Doyle et al., 1997; Clark et al., 2001).The used route for the synthesis of the title compound is described in Figure 1. The diazocarbonyl derivative 1 was synthesized starting from L-proline and (–)-menthyl acetate. The decomposition in refluxing toluene with Cu(acac)2 or Rh2(OAc)4 brought in one step to the pyrroloazocine alkaloid 3. The decomposition triggers a domino process that involved a carbenoidic attack to the nitrogen lone pair and the formation of the [5,5]-spirocyclic ammonium ylide 2. The ylide undergoes a [2,3]-sigmatropic rearrangement and it was possible to isolate the alkaloid 3 in 70% yield and 97%
(Muroni et al., 2006). The stereo specific nature of [2,3]-sigmatropic rearrangement allows a complete transfer of (Sweeney, 2009; Zhang & Wang, 2010). As first step in the conversion in deoxynojirimicine analogs (Asano et al., 2000; Watson et al., 2001), the reduction of the carbonyl with L-selectride gave, after and recrystallization, the title compound 4 as a single diastereoisomer. The confirms the configuration of the quaternary stereocentre formed during the domino sequence and the configuration of the carbinol function, which is in accordance with the attack of L-selectride at the opposite face of the ester function.The structural model (Fig. 2) showed standard bond lengths and angles; the X-ray analysis confirmed a cis C7═C8 double bond in the azocine ring, and the stereochemistry of C atoms known from literature in the auxiliary chiral (–)-menthyl: S-C13, R-C12 and R-C16. Two new chiral centers were identified S-C1 and R-C10.
The
(Fig. 3 and 4) consists of one type of O—H···O hydrogen-bond, with each molecule acting as a donor and acceptor of two hydrogen bonds. One molecule is linked through hydrogen interaction to other two symmetry-related molecules in the crystal, resulting in the formation of chains parallel to the [010] direction.For the construction of the pyrrolo[1,2-a]azocine backbone by the domino sequence, see: Clark et al. (2001); Muroni et al. (2006). For domino processes promoted by catalytic decomposition of diazocompounds, see: Doyle et al. (1997). For [2,3]-sigmatropic rearrangement, see: Sweeney (2009); Zhang & Wang (2010). For manzamine
and other biologically active compounds containing the pyrrolo[1,2-a]azocine subunit, see: Rao et al. (2006); Yap et al. (2011); Sun et al. (2011). For deoxynojirimicine and iminosugars, see: Asano et al. (2000); Watson et al. (2001). For chiral auxiliary (-)-menthyl, see: Wang et al. (2006).Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SIR2011 (Burla et al., 2012); program(s) used to refine structure: JANA2006 (Petricek et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010) and PLATON (Spek, 2009).C21H35NO3 | Dx = 1.156 Mg m−3 |
Mr = 349.5 | Melting point: 389 K |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71069 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 192 reflections |
a = 10.7804 (8) Å | θ = 3.8–17.2° |
b = 7.7938 (7) Å | µ = 0.08 mm−1 |
c = 23.8862 (17) Å | T = 120 K |
V = 2006.9 (3) Å3 | Prism, colourless |
Z = 4 | 0.36 × 0.13 × 0.13 mm |
F(000) = 768 |
Bruker APEXII CCD diffractometer | 3281 independent reflections |
Radiation source: sealed X-ray tube | 2331 reflections with I > 3σ(I) |
Graphite monochromator | Rint = 0.048 |
ω scans | θmax = 30.0°, θmin = 1.7° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008) | h = −15→14 |
Tmin = 0.716, Tmax = 0.746 | k = −10→4 |
21709 measured reflections | l = −33→33 |
Refinement on F | H atoms treated by a mixture of independent and constrained refinement |
R[F > 3σ(F)] = 0.041 | Weighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0004F2) |
wR(F) = 0.047 | (Δ/σ)max = 0.016 |
S = 1.23 | Δρmax = 0.23 e Å−3 |
3281 reflections | Δρmin = −0.28 e Å−3 |
230 parameters | Extinction correction: B-C type 1 Gaussian isotropic |
0 restraints | Extinction coefficient: 16900 (1800) |
0 constraints |
C21H35NO3 | V = 2006.9 (3) Å3 |
Mr = 349.5 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 10.7804 (8) Å | µ = 0.08 mm−1 |
b = 7.7938 (7) Å | T = 120 K |
c = 23.8862 (17) Å | 0.36 × 0.13 × 0.13 mm |
Bruker APEXII CCD diffractometer | 3281 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008) | 2331 reflections with I > 3σ(I) |
Tmin = 0.716, Tmax = 0.746 | Rint = 0.048 |
21709 measured reflections |
R[F > 3σ(F)] = 0.041 | 0 restraints |
wR(F) = 0.047 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.23 | Δρmax = 0.23 e Å−3 |
3281 reflections | Δρmin = −0.28 e Å−3 |
230 parameters |
x | y | z | Uiso*/Ueq | ||
N1 | 0.67923 (4) | 0.06933 (14) | 0.867458 (19) | 0.0178 (4) | |
C4 | 0.67762 (4) | −0.11800 (4) | 0.865956 (9) | 0.0220 (5) | |
C5 | 0.80174 (3) | −0.19770 (3) | 0.849823 (11) | 0.0257 (6) | |
C6 | 0.83930 (2) | −0.17312 (6) | 0.788428 (13) | 0.0300 (6) | |
C7 | 0.87823 (6) | 0.0057 (2) | 0.77279 (3) | 0.0269 (6) | |
C8 | 0.80364 (17) | 0.13680 (12) | 0.76224 (5) | 0.0248 (6) | |
C9 | 0.66451 (6) | 0.12758 (8) | 0.76547 (3) | 0.0217 (5) | |
C10 | 0.61339 (12) | 0.16447 (13) | 0.82487 (7) | 0.0164 (5) | |
C1 | 0.63656 (4) | 0.35106 (14) | 0.84420 (7) | 0.0191 (5) | |
O1 | 0.54447 (13) | 0.46881 (18) | 0.82643 (6) | 0.0257 (4) | |
C2 | 0.63894 (2) | 0.34119 (7) | 0.90814 (3) | 0.0217 (5) | |
C3 | 0.67015 (2) | 0.15400 (4) | 0.92186 (3) | 0.0210 (5) | |
C11 | 0.47217 (16) | 0.1302 (2) | 0.82373 (7) | 0.0164 (5) | |
O2 | 0.41170 (12) | 0.10136 (18) | 0.78189 (5) | 0.0266 (4) | |
O3 | 0.42289 (10) | 0.13359 (17) | 0.87513 (5) | 0.0182 (4) | |
C12 | 0.28911 (11) | 0.1047 (2) | 0.88055 (3) | 0.0181 (5) | |
C17 | 0.22301 (3) | 0.27715 (11) | 0.880303 (16) | 0.0229 (6) | |
C16 | 0.08230 (4) | 0.24991 (5) | 0.88606 (2) | 0.0268 (6) | |
C21 | 0.01309 (2) | 0.42102 (2) | 0.886679 (15) | 0.0438 (8) | |
C15 | 0.05454 (3) | 0.14406 (3) | 0.93799 (2) | 0.0280 (6) | |
C14 | 0.12697 (3) | −0.02306 (5) | 0.940244 (13) | 0.0253 (6) | |
C13 | 0.26755 (15) | 0.00578 (9) | 0.93465 (2) | 0.0188 (5) | |
C18 | 0.34514 (5) | −0.16029 (4) | 0.93837 (3) | 0.0251 (6) | |
C20 | 0.32327 (3) | −0.25601 (4) | 0.993247 (7) | 0.0414 (8) | |
C19 | 0.32833 (4) | −0.27844 (2) | 0.888694 (8) | 0.0426 (8) | |
H4a | 0.614688 | −0.156111 | 0.840384 | 0.0264* | |
H4b | 0.6521 | −0.161351 | 0.901768 | 0.0264* | |
H5a | 0.800812 | −0.317901 | 0.858591 | 0.0309* | |
H5b | 0.865733 | −0.153207 | 0.873703 | 0.0309* | |
H6b | 0.904465 | −0.252127 | 0.779173 | 0.036* | |
H6a | 0.772558 | −0.209188 | 0.764565 | 0.036* | |
H7a | 0.965749 | 0.027044 | 0.77019 | 0.0323* | |
H8a | 0.840656 | 0.244258 | 0.75191 | 0.0298* | |
H9a | 0.637241 | 0.016292 | 0.753417 | 0.0261* | |
H9b | 0.629027 | 0.207304 | 0.739349 | 0.0261* | |
H1a | 0.712104 | 0.393489 | 0.828043 | 0.023* | |
H2a | 0.558255 | 0.368556 | 0.922615 | 0.0261* | |
H2b | 0.703241 | 0.414569 | 0.92227 | 0.0261* | |
H3b | 0.749001 | 0.148824 | 0.940459 | 0.0251* | |
H3a | 0.603436 | 0.104084 | 0.94292 | 0.0251* | |
H12a | 0.256529 | 0.038941 | 0.849922 | 0.0217* | |
H17b | 0.24025 | 0.335803 | 0.845829 | 0.0275* | |
H17a | 0.25235 | 0.34555 | 0.910993 | 0.0275* | |
H16a | 0.053248 | 0.1875 | 0.853987 | 0.0322* | |
H21a | 0.032739 | 0.48441 | 0.853379 | 0.0526* | |
H21c | −0.074614 | 0.400151 | 0.888079 | 0.0526* | |
H21b | 0.037679 | 0.485998 | 0.91897 | 0.0526* | |
H15b | −0.032695 | 0.11983 | 0.939646 | 0.0336* | |
H15a | 0.072245 | 0.210793 | 0.970814 | 0.0336* | |
H14a | 0.099119 | −0.097775 | 0.910867 | 0.0303* | |
H14b | 0.10981 | −0.080807 | 0.974889 | 0.0303* | |
H13a | 0.296357 | 0.071257 | 0.96611 | 0.0225* | |
H18a | 0.430002 | −0.123046 | 0.937575 | 0.0302* | |
H20a | 0.33419 | −0.178579 | 1.024112 | 0.0496* | |
H20c | 0.240371 | −0.300948 | 0.993776 | 0.0496* | |
H20b | 0.381516 | −0.348697 | 0.996362 | 0.0496* | |
H19a | 0.34236 | −0.215556 | 0.854721 | 0.0512* | |
H19c | 0.386534 | −0.371357 | 0.89113 | 0.0512* | |
H19b | 0.245414 | −0.32338 | 0.88871 | 0.0512* | |
H1o | 0.556 (2) | 0.499 (3) | 0.7944 (9) | 0.0309* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0178 (7) | 0.0180 (8) | 0.0174 (7) | 0.0028 (6) | −0.0002 (6) | 0.0006 (6) |
C4 | 0.0200 (9) | 0.0191 (10) | 0.0268 (10) | 0.0010 (7) | −0.0007 (8) | 0.0041 (8) |
C5 | 0.0218 (10) | 0.0180 (10) | 0.0374 (11) | 0.0050 (7) | −0.0012 (8) | −0.0013 (9) |
C6 | 0.0215 (10) | 0.0320 (12) | 0.0364 (11) | 0.0038 (9) | 0.0023 (9) | −0.0108 (10) |
C7 | 0.0169 (9) | 0.0376 (12) | 0.0263 (10) | −0.0026 (8) | 0.0056 (8) | −0.0079 (10) |
C8 | 0.0239 (9) | 0.0303 (11) | 0.0203 (9) | −0.0050 (9) | 0.0069 (8) | −0.0030 (9) |
C9 | 0.0211 (9) | 0.0252 (10) | 0.0189 (9) | 0.0016 (8) | 0.0046 (7) | −0.0009 (8) |
C10 | 0.0148 (8) | 0.0183 (9) | 0.0162 (8) | 0.0005 (7) | 0.0025 (7) | 0.0033 (8) |
C1 | 0.0180 (8) | 0.0179 (9) | 0.0215 (9) | 0.0000 (7) | 0.0040 (7) | 0.0033 (8) |
O1 | 0.0307 (7) | 0.0224 (7) | 0.0241 (7) | 0.0078 (6) | 0.0055 (6) | 0.0083 (6) |
C2 | 0.0214 (9) | 0.0205 (10) | 0.0232 (9) | −0.0018 (8) | 0.0017 (7) | −0.0020 (8) |
C3 | 0.0173 (9) | 0.0263 (10) | 0.0193 (9) | 0.0007 (8) | −0.0017 (7) | 0.0004 (8) |
C11 | 0.0193 (8) | 0.0142 (9) | 0.0159 (8) | 0.0040 (7) | 0.0016 (7) | 0.0014 (8) |
O2 | 0.0197 (6) | 0.0408 (9) | 0.0192 (7) | 0.0014 (6) | −0.0014 (5) | −0.0028 (6) |
O3 | 0.0139 (6) | 0.0243 (7) | 0.0164 (6) | −0.0016 (5) | 0.0022 (5) | 0.0009 (6) |
C12 | 0.0132 (8) | 0.0227 (10) | 0.0184 (9) | −0.0017 (7) | 0.0015 (6) | −0.0005 (8) |
C17 | 0.0226 (9) | 0.0239 (11) | 0.0223 (10) | 0.0032 (8) | 0.0007 (8) | 0.0037 (8) |
C16 | 0.0189 (9) | 0.0340 (12) | 0.0276 (11) | 0.0040 (9) | −0.0018 (8) | 0.0000 (9) |
C21 | 0.0283 (11) | 0.0506 (16) | 0.0527 (15) | 0.0167 (11) | 0.0056 (10) | 0.0170 (13) |
C15 | 0.0183 (9) | 0.0321 (12) | 0.0336 (11) | 0.0022 (9) | 0.0067 (8) | −0.0013 (10) |
C14 | 0.0189 (9) | 0.0251 (11) | 0.0318 (11) | −0.0023 (8) | 0.0052 (8) | 0.0000 (9) |
C13 | 0.0177 (8) | 0.0202 (10) | 0.0185 (9) | −0.0009 (7) | 0.0014 (7) | −0.0001 (8) |
C18 | 0.0202 (9) | 0.0203 (10) | 0.0348 (11) | 0.0020 (8) | 0.0071 (8) | 0.0055 (9) |
C20 | 0.0396 (13) | 0.0359 (13) | 0.0485 (13) | 0.0092 (11) | 0.0061 (11) | 0.0186 (11) |
C19 | 0.0566 (16) | 0.0222 (12) | 0.0492 (14) | 0.0067 (11) | 0.0135 (12) | −0.0031 (10) |
N1—C4 | 1.4605 (11) | C11—O3 | 1.338 (2) |
N1—C10 | 1.4450 (16) | O3—C12 | 1.4654 (16) |
N1—C3 | 1.4607 (9) | C12—C17 | 1.5209 (17) |
C4—C5 | 1.5247 (5) | C12—C13 | 1.5228 (11) |
C4—H4a | 0.9600 | C12—H12a | 0.9600 |
C4—H4b | 0.9600 | C17—C16 | 1.5379 (6) |
C5—C6 | 1.5335 (4) | C17—H17b | 0.9600 |
C5—H5a | 0.9600 | C17—H17a | 0.9600 |
C5—H5b | 0.9600 | C16—C21 | 1.5282 (4) |
C6—C7 | 1.5029 (18) | C16—C15 | 1.5195 (7) |
C6—H6b | 0.9600 | C16—H16a | 0.9600 |
C6—H6a | 0.9600 | C21—H21a | 0.9600 |
C7—C8 | 1.324 (2) | C21—H21c | 0.9600 |
C7—H7a | 0.9600 | C21—H21b | 0.9600 |
C8—C9 | 1.5035 (19) | C15—C14 | 1.5196 (5) |
C8—H8a | 0.9600 | C15—H15b | 0.9600 |
C9—C10 | 1.5492 (17) | C15—H15a | 0.9600 |
C9—H9a | 0.9600 | C14—C13 | 1.5379 (16) |
C9—H9b | 0.9600 | C14—H14a | 0.9600 |
C10—C1 | 1.5461 (16) | C14—H14b | 0.9600 |
C10—C11 | 1.546 (2) | C13—C18 | 1.5436 (11) |
C1—O1 | 1.4169 (17) | C13—H13a | 0.9600 |
C1—C2 | 1.5294 (18) | C18—C20 | 1.5266 (6) |
C1—H1a | 0.9600 | C18—C19 | 1.5128 (6) |
O1—H1o | 0.81 (2) | C18—H18a | 0.9600 |
C2—C3 | 1.5327 (6) | C20—H20a | 0.9600 |
C2—H2a | 0.9600 | C20—H20c | 0.9600 |
C2—H2b | 0.9600 | C20—H20b | 0.9600 |
C3—H3b | 0.9600 | C19—H19a | 0.9600 |
C3—H3a | 0.9600 | C19—H19c | 0.9600 |
C11—O2 | 1.214 (2) | C19—H19b | 0.9600 |
C4—N1—C10 | 119.33 (6) | C11—O3—C12 | 117.97 (11) |
C4—N1—C3 | 118.20 (5) | O3—C12—C17 | 108.98 (11) |
C10—N1—C3 | 111.19 (8) | O3—C12—C13 | 107.64 (10) |
N1—C4—C5 | 113.76 (3) | O3—C12—H12a | 112.00 |
N1—C4—H4a | 109.47 | C17—C12—C13 | 112.28 (7) |
N1—C4—H4b | 109.47 | C17—C12—H12a | 107.00 |
C5—C4—H4a | 109.47 | C13—C12—H12a | 109.00 |
C5—C4—H4b | 109.47 | C12—C17—C16 | 109.87 (7) |
H4a—C4—H4b | 105.00 | C12—C17—H17b | 109.47 |
C4—C5—C6 | 115.00 (2) | C12—C17—H17a | 109.47 |
C4—C5—H5a | 109.47 | C16—C17—H17b | 109.47 |
C4—C5—H5b | 109.47 | C16—C17—H17a | 109.47 |
C6—C5—H5a | 109.47 | H17b—C17—H17a | 109.00 |
C6—C5—H5b | 109.47 | C17—C16—C21 | 111.22 (4) |
H5a—C5—H5b | 103.00 | C17—C16—C15 | 110.02 (4) |
C5—C6—C7 | 115.30 (4) | C17—C16—H16a | 109.00 |
C5—C6—H6b | 109.47 | C21—C16—C15 | 111.69 (4) |
C5—C6—H6a | 109.47 | C21—C16—H16a | 107.00 |
C7—C6—H6b | 109.47 | C15—C16—H16a | 108.00 |
C7—C6—H6a | 109.47 | C16—C21—H21a | 109.47 |
H6b—C6—H6a | 103.00 | C16—C21—H21c | 109.47 |
C6—C7—C8 | 126.38 (9) | C16—C21—H21b | 109.47 |
C6—C7—H7a | 117.00 | H21a—C21—H21c | 109.00 |
C8—C7—H7a | 117.00 | H21a—C21—H21b | 109.00 |
C7—C8—C9 | 124.00 (10) | H21c—C21—H21b | 109.47 |
C7—C8—H8a | 118.00 | C16—C15—C14 | 113.14 (3) |
C9—C8—H8a | 118.00 | C16—C15—H15b | 109.00 |
C8—C9—C10 | 113.14 (8) | C16—C15—H15a | 109.47 |
C8—C9—H9a | 109.47 | C14—C15—H15b | 109.47 |
C8—C9—H9b | 109.47 | C14—C15—H15a | 109.47 |
C10—C9—H9a | 109.47 | H15b—C15—H15a | 106.00 |
C10—C9—H9b | 109.47 | C15—C14—C13 | 112.21 (4) |
H9a—C9—H9b | 105.53 | C15—C14—H14a | 109.47 |
N1—C10—C9 | 112.01 (8) | C15—C14—H14b | 109.47 |
N1—C10—C1 | 101.14 (11) | C13—C14—H14a | 109.47 |
N1—C10—C11 | 114.03 (11) | C13—C14—H14b | 109.47 |
C9—C10—C1 | 112.99 (10) | H14a—C14—H14b | 107.00 |
C9—C10—C11 | 107.60 (11) | C12—C13—C14 | 107.36 (9) |
C1—C10—C11 | 109.07 (10) | C12—C13—C18 | 113.00 (9) |
C10—C1—O1 | 114.00 (10) | C12—C13—H13a | 110.00 |
C10—C1—C2 | 104.69 (10) | C14—C13—C18 | 113.97 (6) |
C10—C1—H1a | 110.00 | C14—C13—H13a | 109.00 |
O1—C1—C2 | 110.07 (10) | C18—C13—H13a | 103.00 |
O1—C1—H1a | 105.00 | C13—C18—C20 | 112.05 (5) |
C2—C1—H1a | 114.00 | C13—C18—C19 | 113.60 (5) |
C1—O1—H1o | 111.1 (16) | C13—C18—H18a | 105.00 |
C1—C2—C3 | 105.37 (6) | C20—C18—C19 | 110.95 (2) |
C1—C2—H2a | 109.47 | C20—C18—H18a | 108.00 |
C1—C2—H2b | 109.47 | C19—C18—H18a | 106.00 |
C3—C2—H2a | 109.47 | C18—C20—H20a | 109.47 |
C3—C2—H2b | 109.47 | C18—C20—H20c | 109.47 |
H2a—C2—H2b | 113.00 | C18—C20—H20b | 109.47 |
N1—C3—C2 | 104.74 (6) | H20a—C20—H20c | 109.47 |
N1—C3—H3b | 109.47 | H20a—C20—H20b | 109.47 |
N1—C3—H3a | 109.47 | H20c—C20—H20b | 109.47 |
C2—C3—H3b | 109.47 | C18—C19—H19a | 109.47 |
C2—C3—H3a | 109.47 | C18—C19—H19c | 109.47 |
H3b—C3—H3a | 114.00 | C18—C19—H19b | 109.47 |
C10—C11—O2 | 125.10 (15) | H19a—C19—H19c | 109.47 |
C10—C11—O3 | 111.82 (14) | H19a—C19—H19b | 109.47 |
O2—C11—O3 | 123.07 (16) | H19c—C19—H19b | 109.00 |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1o···O2i | 0.81 (2) | 2.02 (2) | 2.8259 (19) | 174 (2) |
Symmetry code: (i) −x+1, y+1/2, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | C21H35NO3 |
Mr | 349.5 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 120 |
a, b, c (Å) | 10.7804 (8), 7.7938 (7), 23.8862 (17) |
V (Å3) | 2006.9 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.08 |
Crystal size (mm) | 0.36 × 0.13 × 0.13 |
Data collection | |
Diffractometer | Bruker APEXII CCD |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2008) |
Tmin, Tmax | 0.716, 0.746 |
No. of measured, independent and observed [I > 3σ(I)] reflections | 21709, 3281, 2331 |
Rint | 0.048 |
(sin θ/λ)max (Å−1) | 0.703 |
Refinement | |
R[F > 3σ(F)], wR(F), S | 0.041, 0.047, 1.23 |
No. of reflections | 3281 |
No. of parameters | 230 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.23, −0.28 |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2007), SIR2011 (Burla et al., 2012), JANA2006 (Petricek et al., 2006), DIAMOND (Brandenburg & Putz, 2005) and ORTEP-3 (Farrugia, 1997), publCIF (Westrip, 2010) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1o···O2i | 0.81 (2) | 2.02 (2) | 2.8259 (19) | 174 (2) |
Symmetry code: (i) −x+1, y+1/2, −z+3/2. |
Acknowledgements
The authors are thankful to the Fondazione Banco di Sardegna and the Regione Autonoma della Sardegna (programma operativo FSE Sardegna 2007–2013 legge regionale 7 agosto 2007, n. 7 promozione della ricerca scientifica e dell'innovazione tecnologica in Sardegna). EN is particularly grateful to Professor D. Chateigner and the staff of the CRISMAT Laboratoire (Caen, France) for crystallographic support and useful discussions about diffraction.
References
Asano, N., Nash, R. J., Molyneux, R. J. & Fleet, G. W. J. (2000). Tetrahedron Asymmetry, 11, 1645–1680. Web of Science CrossRef CAS Google Scholar
Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2007). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357–361. Web of Science CrossRef CAS IUCr Journals Google Scholar
Clark, J. S., Hodgson, P. B., Goldsmith, M. D., Blake, A. J., Cooke, P. A. & Street, L. J. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 3325–3337. Google Scholar
Doyle, M. P., McKervey, M. A. & Ye, T. (1997). Modern Catalytic Methods for Organic Synthesis with Diazo Compounds. New York: John Wiley and Sons. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Muroni, D., Saba, A. & Culeddu, N. (2006). Heterocycles, 68, 47–58. CAS Google Scholar
Petricek, V., Dusek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic. Google Scholar
Rao, K. V., Donia, M. S., Peng, J. N., Garcia-Palomero, E., Alonso, D., Martinez, A., Medina, M., Franzblau, S. G., Tekwani, B. L., Khan, S. I., Wahyuono, S., Willett, K. L. & Hamann, M. T. (2006). J. Nat. Prod. 69, 1034–1040. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). SADABS. University of Göttingen, Germany. Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sun, H., Liu, L., Lu, J. F., Bai, L. C., Li, X. Q., Nikolovska-Coleska, Z., McEachern, D., Yang, C. Y., Qiu, S., Yi, H., Sun, D. X. & Wang, S. M. (2011). J. Med. Chem. 54, 3306–3318. Web of Science CrossRef CAS PubMed Google Scholar
Sweeney, J. B. (2009). Chem. Soc. Rev. 38, 1027–1038. Web of Science CrossRef PubMed CAS Google Scholar
Wang, T.-J., Fang, H., Cheng, F., Tang, G. & Zhao, Y.-F. (2006). Acta Cryst. E62, o5784–o5785. Web of Science CSD CrossRef IUCr Journals Google Scholar
Watson, A. A., Fleet, G. W. J., Asano, N., Molyneux, R. J. & Nash, R. J. (2001). Phytochemistry, 56, 265–295. Web of Science CrossRef PubMed CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yap, W.-S., Gan, C.-Y., Low, Y.-Y., Choo, Y.-M., Etoh, T., Hayashi, M., Komiyama, K. & Kam, T.-S. (2011). J. Nat. Prod. 74, 1309–1312. Web of Science CSD CrossRef CAS PubMed Google Scholar
Zhang, Y. & Wang, J. (2010). Coord. Chem. Rev. 254, 941–953. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The pyrrolo[1,2-a]azocine backbone is contained as the CE subunit in the structures of manzamine and ircinal alkaloids (Rao et al., 2006), as well as other natural and synthetic compounds which have shown interesting biological properties (Yap et al., 2011; Sun et al., 2011). Among the methods for a rapid construction of bicycle alkaloid, domino processes promoted by catalytic decomposition of diazo compounds have become commonly employed since they give a rapid access to complex structures in a stereoselective way (Doyle et al., 1997; Clark et al., 2001).
The used route for the synthesis of the title compound is described in Figure 1. The diazocarbonyl derivative 1 was synthesized starting from L-proline and (–)-menthyl acetate. The decomposition in refluxing toluene with Cu(acac)2 or Rh2(OAc)4 brought in one step to the pyrroloazocine alkaloid 3. The decomposition triggers a domino process that involved a carbenoidic attack to the nitrogen lone pair and the formation of the [5,5]-spirocyclic ammonium ylide 2. The ylide undergoes a [2,3]-sigmatropic rearrangement and it was possible to isolate the alkaloid 3 in 70% yield and 97% enantiomeric excess (Muroni et al., 2006). The stereo specific nature of [2,3]-sigmatropic rearrangement allows a complete transfer of chirality (Sweeney, 2009; Zhang & Wang, 2010). As first step in the conversion in deoxynojirimicine analogs (Asano et al., 2000; Watson et al., 2001), the reduction of the carbonyl with L-selectride gave, after chromatography and recrystallization, the title compound 4 as a single diastereoisomer. The structure determination confirms the configuration of the quaternary stereocentre formed during the domino sequence and the configuration of the carbinol function, which is in accordance with the attack of L-selectride at the opposite face of the ester function.
The structural model (Fig. 2) showed standard bond lengths and angles; the X-ray analysis confirmed a cis C7═C8 double bond in the azocine ring, and the stereochemistry of C atoms known from literature in the auxiliary chiral (–)-menthyl: S-C13, R-C12 and R-C16. Two new chiral centers were identified S-C1 and R-C10.
The crystal structure (Fig. 3 and 4) consists of one type of O—H···O hydrogen-bond, with each molecule acting as a donor and acceptor of two hydrogen bonds. One molecule is linked through hydrogen interaction to other two symmetry-related molecules in the crystal, resulting in the formation of chains parallel to the [010] direction.