organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z,1S,10aR)-(−)-Menthyl 1-hy­dr­oxy-1,2,3,5,6,7,10,10a-octa­hydro­pyrrolo­[1,2-a]azocine-10a-carboxyl­ate

aDipartimento di Chimica e Farmacia, Università degli Studi di Sassari, via Vienna 2, 07100 Sassari, Italy, bCRISMAT, UMR CNRS 6508, ENSICAEN, 6 Boulevard du Marechal Juin, F-14050 Caen CEDEX 4, France, and cCNR Istituto di Chimica Biomolecolare sez. di Sassari, via La Crucca, Baldinca-Li Punti, 07040 Sassari, Italy
*Correspondence e-mail: dmuroni@uniss.it

(Received 4 May 2012; accepted 19 June 2012; online 27 June 2012)

The structure determination confirms the stereochemistry of the title compound, C21H35NO3, obtained as an inter­mediate in the enanti­oselective synthesis of de­oxy­nojirimicine analogs. The system contains a pyrrolo­[1,2-a]azocine backbone, which was synthesized by a domino process involving a [2,3]-sigmatropic rearrangement. The incorporation of a chiral auxiliary (−)-menthyl, whose stereocentres are not involved during the synthesis, enables the assignation of absolute configuration. The crystal structure features O—H⋯O hydrogen bonds involving the hy­droxy groups as donors and the carbonyl groups as acceptors, which link the mol­ecules into chains running along [010].

Related literature

For the construction of the pyrrolo­[1,2-a]azocine backbone by the domino sequence, see: Clark et al. (2001[Clark, J. S., Hodgson, P. B., Goldsmith, M. D., Blake, A. J., Cooke, P. A. & Street, L. J. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 3325-3337.]); Muroni et al. (2006[Muroni, D., Saba, A. & Culeddu, N. (2006). Heterocycles, 68, 47-58.]). For domino processes promoted by catalytic decomposition of diazo­compounds, see: Doyle et al. (1997[Doyle, M. P., McKervey, M. A. & Ye, T. (1997). Modern Catalytic Methods for Organic Synthesis with Diazo Compounds. New York: John Wiley and Sons.]). For [2,3]-sigmatropic rearrangement, see: Sweeney (2009[Sweeney, J. B. (2009). Chem. Soc. Rev. 38, 1027-1038.]); Zhang & Wang (2010[Zhang, Y. & Wang, J. (2010). Coord. Chem. Rev. 254, 941-953.]). For manzamine alkaloids and other biologically active compounds containing the pyrrolo­[1,2-a]azocine subunit, see: Rao et al. (2006[Rao, K. V., Donia, M. S., Peng, J. N., Garcia-Palomero, E., Alonso, D., Martinez, A., Medina, M., Franzblau, S. G., Tekwani, B. L., Khan, S. I., Wahyuono, S., Willett, K. L. & Hamann, M. T. (2006). J. Nat. Prod. 69, 1034-1040.]); Yap et al. (2011[Yap, W.-S., Gan, C.-Y., Low, Y.-Y., Choo, Y.-M., Etoh, T., Hayashi, M., Komiyama, K. & Kam, T.-S. (2011). J. Nat. Prod. 74, 1309-1312.]); Sun et al. (2011[Sun, H., Liu, L., Lu, J. F., Bai, L. C., Li, X. Q., Nikolovska-Coleska, Z., McEachern, D., Yang, C. Y., Qiu, S., Yi, H., Sun, D. X. & Wang, S. M. (2011). J. Med. Chem. 54, 3306-3318.]). For de­oxy­nojirimicine and imino­sugars, see: Asano et al. (2000[Asano, N., Nash, R. J., Molyneux, R. J. & Fleet, G. W. J. (2000). Tetrahedron Asymmetry, 11, 1645-1680.]); Watson et al. (2001[Watson, A. A., Fleet, G. W. J., Asano, N., Molyneux, R. J. & Nash, R. J. (2001). Phytochemistry, 56, 265-295.]). For chiral auxiliary (−)-menthyl, see: Wang et al. (2006[Wang, T.-J., Fang, H., Cheng, F., Tang, G. & Zhao, Y.-F. (2006). Acta Cryst. E62, o5784-o5785.]).

[Scheme 1]

Experimental

Crystal data
  • C21H35NO3

  • Mr = 349.5

  • Orthorhombic, P 21 21 21

  • a = 10.7804 (8) Å

  • b = 7.7938 (7) Å

  • c = 23.8862 (17) Å

  • V = 2006.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 120 K

  • 0.36 × 0.13 × 0.13 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008[Sheldrick, G. M. (2008). SADABS. University of Göttingen, Germany.]) Tmin = 0.716, Tmax = 0.746

  • 21709 measured reflections

  • 3281 independent reflections

  • 2331 reflections with I > 3σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.047

  • S = 1.23

  • 3281 reflections

  • 230 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1o⋯O2i 0.81 (2) 2.02 (2) 2.8259 (19) 174 (2)
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2011 (Burla et al., 2012[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357-361.]); program(s) used to refine structure: JANA2006 (Petricek et al., 2006[Petricek, V., Dusek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The pyrrolo[1,2-a]azocine backbone is contained as the CE subunit in the structures of manzamine and ircinal alkaloids (Rao et al., 2006), as well as other natural and synthetic compounds which have shown interesting biological properties (Yap et al., 2011; Sun et al., 2011). Among the methods for a rapid construction of bicycle alkaloid, domino processes promoted by catalytic decomposition of diazo compounds have become commonly employed since they give a rapid access to complex structures in a stereoselective way (Doyle et al., 1997; Clark et al., 2001).

The used route for the synthesis of the title compound is described in Figure 1. The diazocarbonyl derivative 1 was synthesized starting from L-proline and (–)-menthyl acetate. The decomposition in refluxing toluene with Cu(acac)2 or Rh2(OAc)4 brought in one step to the pyrroloazocine alkaloid 3. The decomposition triggers a domino process that involved a carbenoidic attack to the nitrogen lone pair and the formation of the [5,5]-spirocyclic ammonium ylide 2. The ylide undergoes a [2,3]-sigmatropic rearrangement and it was possible to isolate the alkaloid 3 in 70% yield and 97% enantiomeric excess (Muroni et al., 2006). The stereo specific nature of [2,3]-sigmatropic rearrangement allows a complete transfer of chirality (Sweeney, 2009; Zhang & Wang, 2010). As first step in the conversion in deoxynojirimicine analogs (Asano et al., 2000; Watson et al., 2001), the reduction of the carbonyl with L-selectride gave, after chromatography and recrystallization, the title compound 4 as a single diastereoisomer. The structure determination confirms the configuration of the quaternary stereocentre formed during the domino sequence and the configuration of the carbinol function, which is in accordance with the attack of L-selectride at the opposite face of the ester function.

The structural model (Fig. 2) showed standard bond lengths and angles; the X-ray analysis confirmed a cis C7C8 double bond in the azocine ring, and the stereochemistry of C atoms known from literature in the auxiliary chiral (–)-menthyl: S-C13, R-C12 and R-C16. Two new chiral centers were identified S-C1 and R-C10.

The crystal structure (Fig. 3 and 4) consists of one type of O—H···O hydrogen-bond, with each molecule acting as a donor and acceptor of two hydrogen bonds. One molecule is linked through hydrogen interaction to other two symmetry-related molecules in the crystal, resulting in the formation of chains parallel to the [010] direction.

Related literature top

For the construction of the pyrrolo[1,2-a]azocine backbone by the domino sequence, see: Clark et al. (2001); Muroni et al. (2006). For domino processes promoted by catalytic decomposition of diazocompounds, see: Doyle et al. (1997). For [2,3]-sigmatropic rearrangement, see: Sweeney (2009); Zhang & Wang (2010). For manzamine alkaloids and other biologically active compounds containing the pyrrolo[1,2-a]azocine subunit, see: Rao et al. (2006); Yap et al. (2011); Sun et al. (2011). For deoxynojirimicine and iminosugars, see: Asano et al. (2000); Watson et al. (2001). For chiral auxiliary (-)-menthyl, see: Wang et al. (2006).

Experimental top

All 1H NMR (400 MHz) and 13C NMR (100 MHz) spectra were recorded on a Varian Mercury plus 400 spectrometer. Infrared (IR) spectra were performed on a FT/IR-480plus JASKO spectrophotometer. The optical rotations were measured by a polarimeter P-1010 JASCO in a 1 dm tube. All reagents and solvents employed were reagent grade materials purified by standard methods and redistilled before use. (1R)-(–)-menthyl acetate (>98%) and L-proline (>99.0%) were purchased from Sigma-Aldrich.

To a solution of compound 3 (210 mg, 0.6 mmol, see Fig. 1) in dry THF (5 ml) was added L-selectride (1.21 ml of 1.0 M solution in THF, 1.21 mmol) dropwise at 273 K. The reaction mixture was stirred for 1 h at 273 K and then allowed to warm to room temperature for another 1 h. The mixture was then diluted with EtOAc (50 ml) and filtered through a pad of silica gel, which was rinsed with EtOAc (50 ml). The filtrate was concentrated under reduced pressure, and the residue purified by flash chromatography (petroleum ether/ethyl acetate, 9:1) to give 180 mg of 4 (85%) as white oil. Recrystallization from EtOH/H2O (8:2) gave the title compound 4 as white crystals: m.p. 389 K; [α]25D = -92.94 (c 0.32, CHCl3); 1H NMR (CDCl3): δ 0.74 (d, 3H, J=7.0 Hz), 0.89 (d, 3H, J=6.8 Hz), 0.91 (d, 3H, J=6.8 Hz), 0.80–1.11 (m, 3H), 1.30–1.58 (m, 3H), 1.60–1.73 (m, 3H), 1.73–1.86 (m, 1H), 1.92–2.10 (m, 3H), 2.12–2.32 (m, 3H), 2.37 (d, 1H, J=8.4 Hz), 2.64–2.80 (m, 2H), 2.92 (ddd, 1H, J=15.8, 12.1, 3.1 Hz), 3.00 (dt, 1H, J=9, 5.2 Hz), 3.15 (dt, 1H, J=8.4, 5.2 Hz), 3.98 (q, 1H, J=8.0 Hz), 4.74 (dt, 1H, J=4.4, 10.8 Hz), 5.65–5.80 p.p.m. (m, 2H). 13C NMR (CDCl3): δ 15.71, 20.90, 22.03, 22.91, 25.40, 25.89, 29.12, 31.39, 31.45, 32.50, 34.22, 41.18, 47.07 48.21, 50.04, 74.97, 75.08, 78.01, 126.17, 132.84, 173.64 p.p.m.; IR (neat): 3465, 3019, 2954, 1708, 1456, 1214 cm-1. Anal. Calc. for C21H35NO3: C 72.17, H 10.09, N 4.01%; Found: C 72.20, H 10.05, N 4.05%.

Refinement top

All C-bonded H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å and with Uiso(H) = 1.2Ueq(carrier C). The hydroxyl H-atom H1o was located in a difference map, and included in the subsequent refinement with Uiso(H1o) = 1.2Ueq(O1). All H atoms were refined isotropically. The absolute configuration was assigned from the use of the chiral auxiliary (–)-menthyl (Wang et al., 2006) as the starting material, whose stereo centres are not involved in the reaction. Owing to the absence of significant anomalous dispersion for data collected with the Mo radiation, 2332 measured Friedel pairs were merged.

Structure description top

The pyrrolo[1,2-a]azocine backbone is contained as the CE subunit in the structures of manzamine and ircinal alkaloids (Rao et al., 2006), as well as other natural and synthetic compounds which have shown interesting biological properties (Yap et al., 2011; Sun et al., 2011). Among the methods for a rapid construction of bicycle alkaloid, domino processes promoted by catalytic decomposition of diazo compounds have become commonly employed since they give a rapid access to complex structures in a stereoselective way (Doyle et al., 1997; Clark et al., 2001).

The used route for the synthesis of the title compound is described in Figure 1. The diazocarbonyl derivative 1 was synthesized starting from L-proline and (–)-menthyl acetate. The decomposition in refluxing toluene with Cu(acac)2 or Rh2(OAc)4 brought in one step to the pyrroloazocine alkaloid 3. The decomposition triggers a domino process that involved a carbenoidic attack to the nitrogen lone pair and the formation of the [5,5]-spirocyclic ammonium ylide 2. The ylide undergoes a [2,3]-sigmatropic rearrangement and it was possible to isolate the alkaloid 3 in 70% yield and 97% enantiomeric excess (Muroni et al., 2006). The stereo specific nature of [2,3]-sigmatropic rearrangement allows a complete transfer of chirality (Sweeney, 2009; Zhang & Wang, 2010). As first step in the conversion in deoxynojirimicine analogs (Asano et al., 2000; Watson et al., 2001), the reduction of the carbonyl with L-selectride gave, after chromatography and recrystallization, the title compound 4 as a single diastereoisomer. The structure determination confirms the configuration of the quaternary stereocentre formed during the domino sequence and the configuration of the carbinol function, which is in accordance with the attack of L-selectride at the opposite face of the ester function.

The structural model (Fig. 2) showed standard bond lengths and angles; the X-ray analysis confirmed a cis C7C8 double bond in the azocine ring, and the stereochemistry of C atoms known from literature in the auxiliary chiral (–)-menthyl: S-C13, R-C12 and R-C16. Two new chiral centers were identified S-C1 and R-C10.

The crystal structure (Fig. 3 and 4) consists of one type of O—H···O hydrogen-bond, with each molecule acting as a donor and acceptor of two hydrogen bonds. One molecule is linked through hydrogen interaction to other two symmetry-related molecules in the crystal, resulting in the formation of chains parallel to the [010] direction.

For the construction of the pyrrolo[1,2-a]azocine backbone by the domino sequence, see: Clark et al. (2001); Muroni et al. (2006). For domino processes promoted by catalytic decomposition of diazocompounds, see: Doyle et al. (1997). For [2,3]-sigmatropic rearrangement, see: Sweeney (2009); Zhang & Wang (2010). For manzamine alkaloids and other biologically active compounds containing the pyrrolo[1,2-a]azocine subunit, see: Rao et al. (2006); Yap et al. (2011); Sun et al. (2011). For deoxynojirimicine and iminosugars, see: Asano et al. (2000); Watson et al. (2001). For chiral auxiliary (-)-menthyl, see: Wang et al. (2006).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SIR2011 (Burla et al., 2012); program(s) used to refine structure: JANA2006 (Petricek et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Synthesis scheme.
[Figure 2] Fig. 2. The molecular structure of the title compound, showing displacement ellipsoids at the 50% probability level.
[Figure 3] Fig. 3. H-bridged molecule of title compound in the solid state. The The O—H···O hydrogen bonding is shown as blue dashed lines.
[Figure 4] Fig. 4. The crystal packing of the title compound viewed along the b axis. The H atoms not involved in intermolecular interactions (dashed lines) have been omitted for clarity.
(Z,1S,10aR)-(-)-Menthyl 1-hydroxy-1,2,3,5,6,7,10,10a-octahydropyrrolo[1,2-a]azocine- 10a-carboxylate top
Crystal data top
C21H35NO3Dx = 1.156 Mg m3
Mr = 349.5Melting point: 389 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71069 Å
Hall symbol: P 2ac 2abCell parameters from 192 reflections
a = 10.7804 (8) Åθ = 3.8–17.2°
b = 7.7938 (7) ŵ = 0.08 mm1
c = 23.8862 (17) ÅT = 120 K
V = 2006.9 (3) Å3Prism, colourless
Z = 40.36 × 0.13 × 0.13 mm
F(000) = 768
Data collection top
Bruker APEXII CCD
diffractometer
3281 independent reflections
Radiation source: sealed X-ray tube2331 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.048
ω scansθmax = 30.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
h = 1514
Tmin = 0.716, Tmax = 0.746k = 104
21709 measured reflectionsl = 3333
Refinement top
Refinement on FH atoms treated by a mixture of independent and constrained refinement
R[F > 3σ(F)] = 0.041Weighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0004F2)
wR(F) = 0.047(Δ/σ)max = 0.016
S = 1.23Δρmax = 0.23 e Å3
3281 reflectionsΔρmin = 0.28 e Å3
230 parametersExtinction correction: B-C type 1 Gaussian isotropic
0 restraintsExtinction coefficient: 16900 (1800)
0 constraints
Crystal data top
C21H35NO3V = 2006.9 (3) Å3
Mr = 349.5Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 10.7804 (8) ŵ = 0.08 mm1
b = 7.7938 (7) ÅT = 120 K
c = 23.8862 (17) Å0.36 × 0.13 × 0.13 mm
Data collection top
Bruker APEXII CCD
diffractometer
3281 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
2331 reflections with I > 3σ(I)
Tmin = 0.716, Tmax = 0.746Rint = 0.048
21709 measured reflections
Refinement top
R[F > 3σ(F)] = 0.0410 restraints
wR(F) = 0.047H atoms treated by a mixture of independent and constrained refinement
S = 1.23Δρmax = 0.23 e Å3
3281 reflectionsΔρmin = 0.28 e Å3
230 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.67923 (4)0.06933 (14)0.867458 (19)0.0178 (4)
C40.67762 (4)0.11800 (4)0.865956 (9)0.0220 (5)
C50.80174 (3)0.19770 (3)0.849823 (11)0.0257 (6)
C60.83930 (2)0.17312 (6)0.788428 (13)0.0300 (6)
C70.87823 (6)0.0057 (2)0.77279 (3)0.0269 (6)
C80.80364 (17)0.13680 (12)0.76224 (5)0.0248 (6)
C90.66451 (6)0.12758 (8)0.76547 (3)0.0217 (5)
C100.61339 (12)0.16447 (13)0.82487 (7)0.0164 (5)
C10.63656 (4)0.35106 (14)0.84420 (7)0.0191 (5)
O10.54447 (13)0.46881 (18)0.82643 (6)0.0257 (4)
C20.63894 (2)0.34119 (7)0.90814 (3)0.0217 (5)
C30.67015 (2)0.15400 (4)0.92186 (3)0.0210 (5)
C110.47217 (16)0.1302 (2)0.82373 (7)0.0164 (5)
O20.41170 (12)0.10136 (18)0.78189 (5)0.0266 (4)
O30.42289 (10)0.13359 (17)0.87513 (5)0.0182 (4)
C120.28911 (11)0.1047 (2)0.88055 (3)0.0181 (5)
C170.22301 (3)0.27715 (11)0.880303 (16)0.0229 (6)
C160.08230 (4)0.24991 (5)0.88606 (2)0.0268 (6)
C210.01309 (2)0.42102 (2)0.886679 (15)0.0438 (8)
C150.05454 (3)0.14406 (3)0.93799 (2)0.0280 (6)
C140.12697 (3)0.02306 (5)0.940244 (13)0.0253 (6)
C130.26755 (15)0.00578 (9)0.93465 (2)0.0188 (5)
C180.34514 (5)0.16029 (4)0.93837 (3)0.0251 (6)
C200.32327 (3)0.25601 (4)0.993247 (7)0.0414 (8)
C190.32833 (4)0.27844 (2)0.888694 (8)0.0426 (8)
H4a0.6146880.1561110.8403840.0264*
H4b0.65210.1613510.9017680.0264*
H5a0.8008120.3179010.8585910.0309*
H5b0.8657330.1532070.8737030.0309*
H6b0.9044650.2521270.7791730.036*
H6a0.7725580.2091880.7645650.036*
H7a0.9657490.0270440.770190.0323*
H8a0.8406560.2442580.751910.0298*
H9a0.6372410.0162920.7534170.0261*
H9b0.6290270.2073040.7393490.0261*
H1a0.7121040.3934890.8280430.023*
H2a0.5582550.3685560.9226150.0261*
H2b0.7032410.4145690.922270.0261*
H3b0.7490010.1488240.9404590.0251*
H3a0.6034360.1040840.942920.0251*
H12a0.2565290.0389410.8499220.0217*
H17b0.240250.3358030.8458290.0275*
H17a0.252350.345550.9109930.0275*
H16a0.0532480.18750.8539870.0322*
H21a0.0327390.484410.8533790.0526*
H21c0.0746140.4001510.8880790.0526*
H21b0.0376790.4859980.918970.0526*
H15b0.0326950.119830.9396460.0336*
H15a0.0722450.2107930.9708140.0336*
H14a0.0991190.0977750.9108670.0303*
H14b0.109810.0808070.9748890.0303*
H13a0.2963570.0712570.966110.0225*
H18a0.4300020.1230460.9375750.0302*
H20a0.334190.1785791.0241120.0496*
H20c0.2403710.3009480.9937760.0496*
H20b0.3815160.3486970.9963620.0496*
H19a0.342360.2155560.8547210.0512*
H19c0.3865340.3713570.891130.0512*
H19b0.2454140.323380.888710.0512*
H1o0.556 (2)0.499 (3)0.7944 (9)0.0309*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0178 (7)0.0180 (8)0.0174 (7)0.0028 (6)0.0002 (6)0.0006 (6)
C40.0200 (9)0.0191 (10)0.0268 (10)0.0010 (7)0.0007 (8)0.0041 (8)
C50.0218 (10)0.0180 (10)0.0374 (11)0.0050 (7)0.0012 (8)0.0013 (9)
C60.0215 (10)0.0320 (12)0.0364 (11)0.0038 (9)0.0023 (9)0.0108 (10)
C70.0169 (9)0.0376 (12)0.0263 (10)0.0026 (8)0.0056 (8)0.0079 (10)
C80.0239 (9)0.0303 (11)0.0203 (9)0.0050 (9)0.0069 (8)0.0030 (9)
C90.0211 (9)0.0252 (10)0.0189 (9)0.0016 (8)0.0046 (7)0.0009 (8)
C100.0148 (8)0.0183 (9)0.0162 (8)0.0005 (7)0.0025 (7)0.0033 (8)
C10.0180 (8)0.0179 (9)0.0215 (9)0.0000 (7)0.0040 (7)0.0033 (8)
O10.0307 (7)0.0224 (7)0.0241 (7)0.0078 (6)0.0055 (6)0.0083 (6)
C20.0214 (9)0.0205 (10)0.0232 (9)0.0018 (8)0.0017 (7)0.0020 (8)
C30.0173 (9)0.0263 (10)0.0193 (9)0.0007 (8)0.0017 (7)0.0004 (8)
C110.0193 (8)0.0142 (9)0.0159 (8)0.0040 (7)0.0016 (7)0.0014 (8)
O20.0197 (6)0.0408 (9)0.0192 (7)0.0014 (6)0.0014 (5)0.0028 (6)
O30.0139 (6)0.0243 (7)0.0164 (6)0.0016 (5)0.0022 (5)0.0009 (6)
C120.0132 (8)0.0227 (10)0.0184 (9)0.0017 (7)0.0015 (6)0.0005 (8)
C170.0226 (9)0.0239 (11)0.0223 (10)0.0032 (8)0.0007 (8)0.0037 (8)
C160.0189 (9)0.0340 (12)0.0276 (11)0.0040 (9)0.0018 (8)0.0000 (9)
C210.0283 (11)0.0506 (16)0.0527 (15)0.0167 (11)0.0056 (10)0.0170 (13)
C150.0183 (9)0.0321 (12)0.0336 (11)0.0022 (9)0.0067 (8)0.0013 (10)
C140.0189 (9)0.0251 (11)0.0318 (11)0.0023 (8)0.0052 (8)0.0000 (9)
C130.0177 (8)0.0202 (10)0.0185 (9)0.0009 (7)0.0014 (7)0.0001 (8)
C180.0202 (9)0.0203 (10)0.0348 (11)0.0020 (8)0.0071 (8)0.0055 (9)
C200.0396 (13)0.0359 (13)0.0485 (13)0.0092 (11)0.0061 (11)0.0186 (11)
C190.0566 (16)0.0222 (12)0.0492 (14)0.0067 (11)0.0135 (12)0.0031 (10)
Geometric parameters (Å, º) top
N1—C41.4605 (11)C11—O31.338 (2)
N1—C101.4450 (16)O3—C121.4654 (16)
N1—C31.4607 (9)C12—C171.5209 (17)
C4—C51.5247 (5)C12—C131.5228 (11)
C4—H4a0.9600C12—H12a0.9600
C4—H4b0.9600C17—C161.5379 (6)
C5—C61.5335 (4)C17—H17b0.9600
C5—H5a0.9600C17—H17a0.9600
C5—H5b0.9600C16—C211.5282 (4)
C6—C71.5029 (18)C16—C151.5195 (7)
C6—H6b0.9600C16—H16a0.9600
C6—H6a0.9600C21—H21a0.9600
C7—C81.324 (2)C21—H21c0.9600
C7—H7a0.9600C21—H21b0.9600
C8—C91.5035 (19)C15—C141.5196 (5)
C8—H8a0.9600C15—H15b0.9600
C9—C101.5492 (17)C15—H15a0.9600
C9—H9a0.9600C14—C131.5379 (16)
C9—H9b0.9600C14—H14a0.9600
C10—C11.5461 (16)C14—H14b0.9600
C10—C111.546 (2)C13—C181.5436 (11)
C1—O11.4169 (17)C13—H13a0.9600
C1—C21.5294 (18)C18—C201.5266 (6)
C1—H1a0.9600C18—C191.5128 (6)
O1—H1o0.81 (2)C18—H18a0.9600
C2—C31.5327 (6)C20—H20a0.9600
C2—H2a0.9600C20—H20c0.9600
C2—H2b0.9600C20—H20b0.9600
C3—H3b0.9600C19—H19a0.9600
C3—H3a0.9600C19—H19c0.9600
C11—O21.214 (2)C19—H19b0.9600
C4—N1—C10119.33 (6)C11—O3—C12117.97 (11)
C4—N1—C3118.20 (5)O3—C12—C17108.98 (11)
C10—N1—C3111.19 (8)O3—C12—C13107.64 (10)
N1—C4—C5113.76 (3)O3—C12—H12a112.00
N1—C4—H4a109.47C17—C12—C13112.28 (7)
N1—C4—H4b109.47C17—C12—H12a107.00
C5—C4—H4a109.47C13—C12—H12a109.00
C5—C4—H4b109.47C12—C17—C16109.87 (7)
H4a—C4—H4b105.00C12—C17—H17b109.47
C4—C5—C6115.00 (2)C12—C17—H17a109.47
C4—C5—H5a109.47C16—C17—H17b109.47
C4—C5—H5b109.47C16—C17—H17a109.47
C6—C5—H5a109.47H17b—C17—H17a109.00
C6—C5—H5b109.47C17—C16—C21111.22 (4)
H5a—C5—H5b103.00C17—C16—C15110.02 (4)
C5—C6—C7115.30 (4)C17—C16—H16a109.00
C5—C6—H6b109.47C21—C16—C15111.69 (4)
C5—C6—H6a109.47C21—C16—H16a107.00
C7—C6—H6b109.47C15—C16—H16a108.00
C7—C6—H6a109.47C16—C21—H21a109.47
H6b—C6—H6a103.00C16—C21—H21c109.47
C6—C7—C8126.38 (9)C16—C21—H21b109.47
C6—C7—H7a117.00H21a—C21—H21c109.00
C8—C7—H7a117.00H21a—C21—H21b109.00
C7—C8—C9124.00 (10)H21c—C21—H21b109.47
C7—C8—H8a118.00C16—C15—C14113.14 (3)
C9—C8—H8a118.00C16—C15—H15b109.00
C8—C9—C10113.14 (8)C16—C15—H15a109.47
C8—C9—H9a109.47C14—C15—H15b109.47
C8—C9—H9b109.47C14—C15—H15a109.47
C10—C9—H9a109.47H15b—C15—H15a106.00
C10—C9—H9b109.47C15—C14—C13112.21 (4)
H9a—C9—H9b105.53C15—C14—H14a109.47
N1—C10—C9112.01 (8)C15—C14—H14b109.47
N1—C10—C1101.14 (11)C13—C14—H14a109.47
N1—C10—C11114.03 (11)C13—C14—H14b109.47
C9—C10—C1112.99 (10)H14a—C14—H14b107.00
C9—C10—C11107.60 (11)C12—C13—C14107.36 (9)
C1—C10—C11109.07 (10)C12—C13—C18113.00 (9)
C10—C1—O1114.00 (10)C12—C13—H13a110.00
C10—C1—C2104.69 (10)C14—C13—C18113.97 (6)
C10—C1—H1a110.00C14—C13—H13a109.00
O1—C1—C2110.07 (10)C18—C13—H13a103.00
O1—C1—H1a105.00C13—C18—C20112.05 (5)
C2—C1—H1a114.00C13—C18—C19113.60 (5)
C1—O1—H1o111.1 (16)C13—C18—H18a105.00
C1—C2—C3105.37 (6)C20—C18—C19110.95 (2)
C1—C2—H2a109.47C20—C18—H18a108.00
C1—C2—H2b109.47C19—C18—H18a106.00
C3—C2—H2a109.47C18—C20—H20a109.47
C3—C2—H2b109.47C18—C20—H20c109.47
H2a—C2—H2b113.00C18—C20—H20b109.47
N1—C3—C2104.74 (6)H20a—C20—H20c109.47
N1—C3—H3b109.47H20a—C20—H20b109.47
N1—C3—H3a109.47H20c—C20—H20b109.47
C2—C3—H3b109.47C18—C19—H19a109.47
C2—C3—H3a109.47C18—C19—H19c109.47
H3b—C3—H3a114.00C18—C19—H19b109.47
C10—C11—O2125.10 (15)H19a—C19—H19c109.47
C10—C11—O3111.82 (14)H19a—C19—H19b109.47
O2—C11—O3123.07 (16)H19c—C19—H19b109.00
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···O2i0.81 (2)2.02 (2)2.8259 (19)174 (2)
Symmetry code: (i) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC21H35NO3
Mr349.5
Crystal system, space groupOrthorhombic, P212121
Temperature (K)120
a, b, c (Å)10.7804 (8), 7.7938 (7), 23.8862 (17)
V3)2006.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.36 × 0.13 × 0.13
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008)
Tmin, Tmax0.716, 0.746
No. of measured, independent and
observed [I > 3σ(I)] reflections
21709, 3281, 2331
Rint0.048
(sin θ/λ)max1)0.703
Refinement
R[F > 3σ(F)], wR(F), S 0.041, 0.047, 1.23
No. of reflections3281
No. of parameters230
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.28

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2007), SIR2011 (Burla et al., 2012), JANA2006 (Petricek et al., 2006), DIAMOND (Brandenburg & Putz, 2005) and ORTEP-3 (Farrugia, 1997), publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···O2i0.81 (2)2.02 (2)2.8259 (19)174 (2)
Symmetry code: (i) x+1, y+1/2, z+3/2.
 

Acknowledgements

The authors are thankful to the Fondazione Banco di Sardegna and the Regione Autonoma della Sardegna (programma operativo FSE Sardegna 2007–2013 legge regionale 7 agosto 2007, n. 7 promozione della ricerca scientifica e dell'innovazione tecnologica in Sardegna). EN is particularly grateful to Professor D. Chateigner and the staff of the CRISMAT Laboratoire (Caen, France) for crystallographic support and useful discussions about diffraction.

References

First citationAsano, N., Nash, R. J., Molyneux, R. J. & Fleet, G. W. J. (2000). Tetrahedron Asymmetry, 11, 1645–1680.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357–361.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationClark, J. S., Hodgson, P. B., Goldsmith, M. D., Blake, A. J., Cooke, P. A. & Street, L. J. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 3325–3337.  Google Scholar
First citationDoyle, M. P., McKervey, M. A. & Ye, T. (1997). Modern Catalytic Methods for Organic Synthesis with Diazo Compounds. New York: John Wiley and Sons.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMuroni, D., Saba, A. & Culeddu, N. (2006). Heterocycles, 68, 47–58.  CAS Google Scholar
First citationPetricek, V., Dusek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.  Google Scholar
First citationRao, K. V., Donia, M. S., Peng, J. N., Garcia-Palomero, E., Alonso, D., Martinez, A., Medina, M., Franzblau, S. G., Tekwani, B. L., Khan, S. I., Wahyuono, S., Willett, K. L. & Hamann, M. T. (2006). J. Nat. Prod. 69, 1034–1040.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, H., Liu, L., Lu, J. F., Bai, L. C., Li, X. Q., Nikolovska-Coleska, Z., McEachern, D., Yang, C. Y., Qiu, S., Yi, H., Sun, D. X. & Wang, S. M. (2011). J. Med. Chem. 54, 3306–3318.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSweeney, J. B. (2009). Chem. Soc. Rev. 38, 1027–1038.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWang, T.-J., Fang, H., Cheng, F., Tang, G. & Zhao, Y.-F. (2006). Acta Cryst. E62, o5784–o5785.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWatson, A. A., Fleet, G. W. J., Asano, N., Molyneux, R. J. & Nash, R. J. (2001). Phytochemistry, 56, 265–295.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYap, W.-S., Gan, C.-Y., Low, Y.-Y., Choo, Y.-M., Etoh, T., Hayashi, M., Komiyama, K. & Kam, T.-S. (2011). J. Nat. Prod. 74, 1309–1312.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZhang, Y. & Wang, J. (2010). Coord. Chem. Rev. 254, 941–953.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds