organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-{[3-Methyl-4-(2,2,2-tri­fluoro­eth­­oxy)pyridin-2-yl]methyl­sulfan­yl}-1H-benzimidazole monohydrate: a monoclinic polymorph

aSchool of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, People's Republic of China, bPharmaceutical Crystal Engineering Research Group, Shanghai Institute of Pharmaceutical Industry, 1320 Beijing Road (West), Shanghai 200040, People's Republic of China, and cNational Engineering Laboratory for Cereal Fermentation Technology, School of Chemical & Material Engineering, Jiangnan University, Wuxi 214122, People's Republic of China
*Correspondence e-mail: renguobin2557@yahoo.com.cn

(Received 10 May 2012; accepted 16 May 2012; online 13 June 2012)

The title compound, C16H14F3N3OS·H2O, which had been previously characterized in the space group P-1 [Ren et al. (2011[Ren, G.-B., Hong, M.-H., Zhong, J.-L., Yi, D.-X. & Xu, L.-H. (2011). Acta Cryst. E67, o270.]). Acta Cryst. E67, o270], has now been crystallized from 1-propanol in the monoclinic form in the space group P21/c. While the triclinic form is a Z′ = 2 crystal, the new monoclinic polymorph includes one main mol­ecule and one water lattice mol­ecule in the asymmetric unit. In the crystal, the water mol­ecule is sandwiched between neighboring main mol­ecules and behaves as both donor and acceptor in O—H⋯N and N—H⋯O hydrogen bonds with the imidazole N atoms. This pattern of chains parallel to [100] further inter­acts via O—H⋯N(pyridine) contacts.

Related literature

For the role of the title compound in the synthesis of the anti-ulcer drug lansoprazole {systematic name: (RS)-2-([3-methyl-4-(2,2,2-trifluoro­eth­oxy)pyridin-2-yl]methyl­sulfin­yl)-1H-benzo[d]imidazole}, see: Del Rio et al. (2007[Del Rio, R. E., Wang, B., Achab, S. & Bohé, L. (2007). Org. Lett. 9, 2265-2268.]); Reddy et al. (2008[Reddy, G. M., Mukkanti, K., Kumar, T. L., Babu, J. M. & Reddy, P. P. (2008). Synth. Commun. 38, 3477-3489.]); Iwahi et al. (1991[Iwahi, T., Satoh, H., Nakao, M., Iwasaki, T., Yamazaki, T., Kubo, K., Tamura, T. & Imada, A. (1991). Antimicrob. Agents Chemother. 35, 490-496.]). For related structures, see: Swamy & Ravikumar (2007[Swamy, G. Y. S. K. & Ravikumar, K. (2007). J. Struct. Chem. 48, 715-718.]); Hakim Al-arique et al. (2010[Hakim Al-arique, Q. N. M., Jasinski, J. P., Butcher, R. J., Yathirajan, H. S. & Narayana, B. (2010). Acta Cryst. E66, o1507-o1508.]). For the triclinic polymorph of the title hydrate, see: Ren et al. (2011[Ren, G.-B., Hong, M.-H., Zhong, J.-L., Yi, D.-X. & Xu, L.-H. (2011). Acta Cryst. E67, o270.]) and for the structure of the propan-2-ol solvo-polymorph, see: Ma et al. (2012[Ma, J.-J., Qi, M.-H., Hong, M.-H., Lu, J. & Ren, G.-B. (2012). Acta Cryst. E68, o2017.])

[Scheme 1]

Experimental

Crystal data
  • C16H14F3N3OS·H2O

  • Mr = 371.39

  • Monoclinic, P 21 /c

  • a = 7.3886 (15) Å

  • b = 25.497 (5) Å

  • c = 8.8579 (18) Å

  • β = 93.64 (3)°

  • V = 1665.4 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.17 mm−1

  • T = 296 K

  • 0.27 × 0.16 × 0.15 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.592, Tmax = 0.737

  • 7679 measured reflections

  • 2827 independent reflections

  • 2713 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.152

  • S = 1.15

  • 2827 reflections

  • 227 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1′—H1′B⋯N2i 0.85 2.10 2.869 (3) 150
N1—H1A⋯O1′ii 0.86 1.91 2.765 (3) 170
O1′—H1′A⋯N3 0.85 2.36 3.077 (4) 143
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound is the critical reaction intermediate for the synthesis of lansoprazole (Del Rio et al., 2007; Reddy et al., 2008), and its analogs, used as drugs for their anti-ulcer effects (Iwahi et al., 1991). Recently, the compound was successfully crystallized from 1-propanol, and the crystal structure is reported here. A first polymorph was X-ray characterized in space group P1 (Ren et al., 2011).

The asymmetric unit (Fig. 1) contains one independent molecule and one water molecule which are involved in the formation of hydrogen-bonded chains via, N—H···O and O—H···N hydrogen bonds. These chains further interact through O—H···N(pyridine) contacts (Fig. 2). The water molecule could thus be considered to be a hydrogen-bond bridge, which provides stability to the crystal lattice. The hydrogen bond characteristics and geometric parameters are given in Table 1. The geometry of the main molecule is close to that reported for analog systems (Hakim Al-arique et al., 2010; Swamy & Ravikumar, 2007).

Related literature top

For the role of the title compound in the synthesis of the anti-ulcer drug lansoprazole {systematic name: (RS)-2-([3-methyl-4-(2,2,2-trifluoroethoxy)pyridin-2-yl]methylsulfinyl)-1H-benzo[d]imidazole}, see: Del Rio et al. (2007); Reddy et al. (2008); Iwahi et al. (1991). For related structures, see: Swamy & Ravikumar (2007); Hakim Al-arique et al. (2010). For the triclinic polymorph of the title hydrate, see: Ren et al. (2011). For the structure of the propan-2-ol solvo-polymorph, see: Ma et al. (2012).

Experimental top

The raw material was kindly provided by Shanghai Enran Sci-Tech Investment Management Co., Ltd. The compound was dissolved in 1-propanol and suitable crystals were obtained by slow evaporation at room temperature over a period of one week.

Refinement top

Water H atoms were initially located in a difference map and then fixed in their as-found positions, while all other H atoms were constrained to an ideal geometry with C—H distances of 0.93 Å (aromatic CH), 0.96 Å (methyl CH3), 0.97 Å (methylene CH2) and N—H distance of 0.86 Å (imidazolic NH). Isotropic displacement parameters for H atoms were calculated as Uiso(H) = xUeq(carrier atom) with x = 1.5 (H2O and methyl group) or x = 1.2 (other H atoms).

Structure description top

The title compound is the critical reaction intermediate for the synthesis of lansoprazole (Del Rio et al., 2007; Reddy et al., 2008), and its analogs, used as drugs for their anti-ulcer effects (Iwahi et al., 1991). Recently, the compound was successfully crystallized from 1-propanol, and the crystal structure is reported here. A first polymorph was X-ray characterized in space group P1 (Ren et al., 2011).

The asymmetric unit (Fig. 1) contains one independent molecule and one water molecule which are involved in the formation of hydrogen-bonded chains via, N—H···O and O—H···N hydrogen bonds. These chains further interact through O—H···N(pyridine) contacts (Fig. 2). The water molecule could thus be considered to be a hydrogen-bond bridge, which provides stability to the crystal lattice. The hydrogen bond characteristics and geometric parameters are given in Table 1. The geometry of the main molecule is close to that reported for analog systems (Hakim Al-arique et al., 2010; Swamy & Ravikumar, 2007).

For the role of the title compound in the synthesis of the anti-ulcer drug lansoprazole {systematic name: (RS)-2-([3-methyl-4-(2,2,2-trifluoroethoxy)pyridin-2-yl]methylsulfinyl)-1H-benzo[d]imidazole}, see: Del Rio et al. (2007); Reddy et al. (2008); Iwahi et al. (1991). For related structures, see: Swamy & Ravikumar (2007); Hakim Al-arique et al. (2010). For the triclinic polymorph of the title hydrate, see: Ren et al. (2011). For the structure of the propan-2-ol solvo-polymorph, see: Ma et al. (2012).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The content of the asymmetric unit of the title hydrate with displacement ellipsoids drawn at the 30% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. A packing diagram of the title compound. Supramolecular chains are running in the [100] direction, and dashed bonds indicate secondary hydrogen bonds connecting the chains in the crystal.
2-{[3-Methyl-4-(2,2,2-trifluoroethoxy)pyridin-2-yl]methylsulfanyl}- 1H-benzimidazole monohydrate top
Crystal data top
C16H14F3N3OS·H2OF(000) = 768
Mr = 371.39Dx = 1.481 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 2713 reflections
a = 7.3886 (15) Åθ = 3.5–67.0°
b = 25.497 (5) ŵ = 2.17 mm1
c = 8.8579 (18) ÅT = 296 K
β = 93.64 (3)°Column, colorless
V = 1665.4 (6) Å30.27 × 0.16 × 0.15 mm
Z = 4
Data collection top
Bruker SMART APEXII
diffractometer
2827 independent reflections
Radiation source: fine-focus sealed tube2713 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 0 pixels mm-1θmax = 67.0°, θmin = 3.5°
φ and ω scansh = 88
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 3029
Tmin = 0.592, Tmax = 0.737l = 910
7679 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.152 w = 1/[σ2(Fo2) + (0.0686P)2 + 1.4537P]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max = 0.001
2827 reflectionsΔρmax = 0.33 e Å3
227 parametersΔρmin = 0.54 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.0160 (11)
Primary atom site location: structure-invariant direct methods
Crystal data top
C16H14F3N3OS·H2OV = 1665.4 (6) Å3
Mr = 371.39Z = 4
Monoclinic, P21/cCu Kα radiation
a = 7.3886 (15) ŵ = 2.17 mm1
b = 25.497 (5) ÅT = 296 K
c = 8.8579 (18) Å0.27 × 0.16 × 0.15 mm
β = 93.64 (3)°
Data collection top
Bruker SMART APEXII
diffractometer
2827 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2713 reflections with I > 2σ(I)
Tmin = 0.592, Tmax = 0.737Rint = 0.021
7679 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.152H-atom parameters constrained
S = 1.15Δρmax = 0.33 e Å3
2827 reflectionsΔρmin = 0.54 e Å3
227 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.30666 (8)0.45480 (3)0.64708 (8)0.0437 (3)
O10.8564 (3)0.60957 (8)0.9928 (2)0.0480 (5)
O1'0.1360 (3)0.58511 (9)0.5422 (3)0.0625 (6)
H1'B0.22110.59630.49040.094*
H1'A0.18500.56060.59560.094*
N10.2125 (3)0.37523 (8)0.4607 (3)0.0403 (5)
H1A0.09980.38380.45970.048*
N20.5109 (3)0.37741 (9)0.5223 (3)0.0450 (6)
N30.3764 (3)0.54450 (10)0.8138 (3)0.0485 (6)
F11.1369 (3)0.62171 (9)1.1942 (3)0.0881 (8)
F21.0471 (3)0.69647 (9)1.2672 (3)0.0814 (7)
F31.1303 (3)0.68563 (10)1.0413 (3)0.0862 (7)
C10.2856 (3)0.33433 (10)0.3837 (3)0.0394 (6)
C20.2097 (4)0.29744 (11)0.2827 (4)0.0494 (7)
H2B0.08580.29670.25660.059*
C30.3268 (5)0.26218 (12)0.2231 (4)0.0567 (8)
H3B0.28110.23740.15390.068*
C40.5115 (5)0.26269 (13)0.2636 (4)0.0628 (9)
H4A0.58610.23790.22210.075*
C50.5867 (4)0.29905 (13)0.3639 (4)0.0593 (8)
H5A0.71040.29910.39100.071*
C60.4717 (4)0.33567 (11)0.4233 (3)0.0442 (6)
C70.3531 (3)0.39957 (10)0.5389 (3)0.0389 (6)
C80.5380 (3)0.47338 (11)0.7022 (3)0.0437 (6)
H8A0.59650.44570.76220.052*
H8B0.60510.47840.61270.052*
C90.5390 (3)0.52327 (10)0.7926 (3)0.0394 (6)
C100.3747 (4)0.58788 (13)0.8963 (4)0.0550 (8)
H10A0.26310.60340.91010.066*
C110.5275 (4)0.61143 (12)0.9630 (4)0.0504 (7)
H11A0.51920.64111.02330.060*
C120.6938 (4)0.58936 (10)0.9371 (3)0.0411 (6)
C130.7032 (3)0.54422 (10)0.8491 (3)0.0391 (6)
C140.8503 (4)0.65056 (11)1.1002 (4)0.0471 (7)
H14A0.78410.63941.18570.056*
H14B0.79050.68111.05490.056*
C151.0414 (4)0.66317 (12)1.1500 (4)0.0550 (8)
C160.8805 (4)0.51935 (12)0.8153 (4)0.0503 (7)
H16A0.97860.53920.86320.075*
H16B0.89180.51890.70790.075*
H16C0.88450.48410.85320.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0305 (4)0.0399 (4)0.0604 (5)0.0018 (2)0.0018 (3)0.0058 (3)
O10.0399 (10)0.0434 (11)0.0605 (13)0.0046 (8)0.0004 (9)0.0123 (9)
O1'0.0317 (10)0.0713 (15)0.0844 (16)0.0044 (10)0.0033 (10)0.0137 (12)
N10.0268 (10)0.0389 (12)0.0549 (14)0.0020 (9)0.0001 (9)0.0003 (10)
N20.0311 (11)0.0432 (13)0.0604 (15)0.0009 (9)0.0002 (10)0.0017 (11)
N30.0340 (12)0.0533 (15)0.0583 (15)0.0010 (10)0.0034 (11)0.0086 (11)
F10.0793 (15)0.0701 (14)0.1096 (18)0.0313 (11)0.0360 (13)0.0204 (12)
F20.0623 (12)0.0790 (14)0.1000 (17)0.0072 (10)0.0181 (11)0.0482 (13)
F30.0635 (13)0.0855 (16)0.1106 (18)0.0273 (12)0.0131 (12)0.0078 (14)
C10.0371 (14)0.0354 (13)0.0455 (14)0.0030 (10)0.0013 (11)0.0058 (11)
C20.0482 (16)0.0424 (15)0.0570 (18)0.0087 (12)0.0022 (13)0.0007 (13)
C30.069 (2)0.0429 (16)0.0582 (19)0.0049 (15)0.0002 (15)0.0058 (14)
C40.067 (2)0.0494 (18)0.073 (2)0.0103 (16)0.0083 (17)0.0107 (16)
C50.0447 (17)0.0555 (19)0.078 (2)0.0098 (14)0.0025 (15)0.0061 (16)
C60.0374 (14)0.0377 (14)0.0577 (17)0.0010 (11)0.0036 (12)0.0029 (12)
C70.0302 (12)0.0360 (13)0.0504 (15)0.0030 (10)0.0008 (11)0.0059 (11)
C80.0298 (13)0.0415 (14)0.0595 (17)0.0010 (11)0.0004 (11)0.0026 (12)
C90.0342 (13)0.0369 (13)0.0471 (15)0.0007 (10)0.0034 (11)0.0036 (11)
C100.0366 (15)0.0595 (19)0.069 (2)0.0064 (13)0.0065 (14)0.0149 (15)
C110.0450 (16)0.0470 (16)0.0594 (18)0.0022 (13)0.0052 (13)0.0100 (13)
C120.0380 (14)0.0381 (14)0.0468 (15)0.0045 (11)0.0007 (11)0.0026 (11)
C130.0347 (14)0.0347 (14)0.0481 (16)0.0005 (10)0.0029 (11)0.0046 (10)
C140.0461 (16)0.0379 (14)0.0569 (17)0.0021 (12)0.0008 (13)0.0065 (12)
C150.0499 (17)0.0446 (16)0.069 (2)0.0029 (13)0.0052 (15)0.0146 (14)
C160.0331 (14)0.0481 (16)0.069 (2)0.0004 (12)0.0021 (13)0.0076 (14)
Geometric parameters (Å, º) top
S1—C71.750 (3)C3—H3B0.9300
S1—C81.811 (3)C4—C51.376 (5)
O1—C121.370 (3)C4—H4A0.9300
O1—C141.416 (3)C5—C61.388 (4)
O1'—H1'B0.8499C5—H5A0.9300
O1'—H1'A0.8497C8—C91.503 (4)
N1—C71.361 (3)C8—H8A0.9700
N1—C11.375 (4)C8—H8B0.9700
N1—H1A0.8600C9—C131.390 (4)
N2—C71.312 (3)C10—C111.378 (4)
N2—C61.397 (4)C10—H10A0.9300
N3—C101.326 (4)C11—C121.383 (4)
N3—C91.342 (4)C11—H11A0.9300
F1—C151.317 (4)C12—C131.394 (4)
F2—C151.340 (4)C13—C161.502 (4)
F3—C151.329 (4)C14—C151.488 (4)
C1—C21.392 (4)C14—H14A0.9700
C1—C61.398 (4)C14—H14B0.9700
C2—C31.376 (5)C16—H16A0.9600
C2—H2B0.9300C16—H16B0.9600
C3—C41.389 (5)C16—H16C0.9600
C7—S1—C898.25 (13)H8A—C8—H8B108.2
C12—O1—C14117.0 (2)N3—C9—C13124.3 (3)
H1'B—O1'—H1'A104.1N3—C9—C8116.2 (2)
C7—N1—C1106.6 (2)C13—C9—C8119.5 (2)
C7—N1—H1A126.7N3—C10—C11124.3 (3)
C1—N1—H1A126.7N3—C10—H10A117.9
C7—N2—C6104.4 (2)C11—C10—H10A117.9
C10—N3—C9117.0 (3)C10—C11—C12117.6 (3)
N1—C1—C2132.6 (3)C10—C11—H11A121.2
N1—C1—C6105.6 (2)C12—C11—H11A121.2
C2—C1—C6121.9 (3)O1—C12—C11123.7 (3)
C3—C2—C1116.8 (3)O1—C12—C13116.0 (2)
C3—C2—H2B121.6C11—C12—C13120.3 (3)
C1—C2—H2B121.6C9—C13—C12116.4 (2)
C2—C3—C4121.8 (3)C9—C13—C16121.2 (2)
C2—C3—H3B119.1C12—C13—C16122.3 (2)
C4—C3—H3B119.1O1—C14—C15106.8 (2)
C5—C4—C3121.5 (3)O1—C14—H14A110.4
C5—C4—H4A119.2C15—C14—H14A110.4
C3—C4—H4A119.2O1—C14—H14B110.4
C4—C5—C6117.8 (3)C15—C14—H14B110.4
C4—C5—H5A121.1H14A—C14—H14B108.6
C6—C5—H5A121.1F1—C15—F3106.3 (3)
C5—C6—N2130.0 (3)F1—C15—F2106.8 (3)
C5—C6—C1120.3 (3)F3—C15—F2107.2 (3)
N2—C6—C1109.7 (2)F1—C15—C14113.3 (3)
N2—C7—N1113.7 (2)F3—C15—C14112.4 (3)
N2—C7—S1127.9 (2)F2—C15—C14110.5 (3)
N1—C7—S1118.38 (19)C13—C16—H16A109.5
C9—C8—S1109.75 (18)C13—C16—H16B109.5
C9—C8—H8A109.7H16A—C16—H16B109.5
S1—C8—H8A109.7C13—C16—H16C109.5
C9—C8—H8B109.7H16A—C16—H16C109.5
S1—C8—H8B109.7H16B—C16—H16C109.5
C7—N1—C1—C2177.4 (3)C10—N3—C9—C131.1 (4)
C7—N1—C1—C61.2 (3)C10—N3—C9—C8178.5 (3)
N1—C1—C2—C3178.3 (3)S1—C8—C9—N30.8 (3)
C6—C1—C2—C30.0 (4)S1—C8—C9—C13178.8 (2)
C1—C2—C3—C41.1 (5)C9—N3—C10—C111.3 (5)
C2—C3—C4—C50.9 (6)N3—C10—C11—C122.6 (5)
C3—C4—C5—C60.3 (5)C14—O1—C12—C119.6 (4)
C4—C5—C6—N2177.8 (3)C14—O1—C12—C13170.9 (2)
C4—C5—C6—C11.3 (5)C10—C11—C12—O1178.1 (3)
C7—N2—C6—C5179.0 (3)C10—C11—C12—C131.4 (4)
C7—N2—C6—C10.3 (3)N3—C9—C13—C122.1 (4)
N1—C1—C6—C5179.9 (3)C8—C9—C13—C12177.5 (2)
C2—C1—C6—C51.2 (4)N3—C9—C13—C16177.5 (3)
N1—C1—C6—N20.6 (3)C8—C9—C13—C163.0 (4)
C2—C1—C6—N2178.1 (3)O1—C12—C13—C9179.7 (2)
C6—N2—C7—N11.1 (3)C11—C12—C13—C90.7 (4)
C6—N2—C7—S1179.2 (2)O1—C12—C13—C160.7 (4)
C1—N1—C7—N21.5 (3)C11—C12—C13—C16178.8 (3)
C1—N1—C7—S1178.72 (18)C12—O1—C14—C15176.4 (2)
C8—S1—C7—N26.6 (3)O1—C14—C15—F151.6 (4)
C8—S1—C7—N1173.7 (2)O1—C14—C15—F369.0 (3)
C7—S1—C8—C9176.9 (2)O1—C14—C15—F2171.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···N2i0.852.102.869 (3)150
N1—H1A···O1ii0.861.912.765 (3)170
O1—H1A···N30.852.363.077 (4)143
O1—H1A···S10.852.873.653 (2)154
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC16H14F3N3OS·H2O
Mr371.39
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)7.3886 (15), 25.497 (5), 8.8579 (18)
β (°) 93.64 (3)
V3)1665.4 (6)
Z4
Radiation typeCu Kα
µ (mm1)2.17
Crystal size (mm)0.27 × 0.16 × 0.15
Data collection
DiffractometerBruker SMART APEXII
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.592, 0.737
No. of measured, independent and
observed [I > 2σ(I)] reflections
7679, 2827, 2713
Rint0.021
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.152, 1.15
No. of reflections2827
No. of parameters227
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.54

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1'—H1'B···N2i0.852.102.869 (3)150.1
N1—H1A···O1'ii0.861.912.765 (3)170.2
O1'—H1'A···N30.852.363.077 (4)142.8
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1.
 

Acknowledgements

This work was supported by the New Drug Innovation (2009ZX09301–007) project of the Ministry of Science and Technology of China and the National Natural Science Foundation of China (Nos. 81102391 and 21176102).

References

First citationBruker (2009). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDel Rio, R. E., Wang, B., Achab, S. & Bohé, L. (2007). Org. Lett. 9, 2265–2268.  Web of Science PubMed CAS Google Scholar
First citationHakim Al-arique, Q. N. M., Jasinski, J. P., Butcher, R. J., Yathirajan, H. S. & Narayana, B. (2010). Acta Cryst. E66, o1507–o1508.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationIwahi, T., Satoh, H., Nakao, M., Iwasaki, T., Yamazaki, T., Kubo, K., Tamura, T. & Imada, A. (1991). Antimicrob. Agents Chemother. 35, 490–496.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMa, J.-J., Qi, M.-H., Hong, M.-H., Lu, J. & Ren, G.-B. (2012). Acta Cryst. E68, o2017.  CSD CrossRef IUCr Journals Google Scholar
First citationReddy, G. M., Mukkanti, K., Kumar, T. L., Babu, J. M. & Reddy, P. P. (2008). Synth. Commun. 38, 3477–3489.  Web of Science CrossRef CAS Google Scholar
First citationRen, G.-B., Hong, M.-H., Zhong, J.-L., Yi, D.-X. & Xu, L.-H. (2011). Acta Cryst. E67, o270.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSwamy, G. Y. S. K. & Ravikumar, K. (2007). J. Struct. Chem. 48, 715–718.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds