organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

tert-Butyl (2R,4aR,5aR,11aS,12R,12aR)-8-[bis­­(tert-but­oxycarbon­yl)amino]-12-hy­droxy-2-meth­­oxy-2,10-dioxo-4,4a,5a,6,9,10,11,11a,12,12a-deca­hydro-2H-1,3,5-trioxa-6,7,9,11-tetra­aza-2λ5-phospha­tetra­cene-6-carboxyl­ate methanol monosolvate monohydrate

aCarbohydrate Chemistry Group, Industrial Research Limited, PO Box 31-310, Lower Hutt, New Zealand, bGlycosyn Group, Industrial Research Limited, PO Box 31-310, Lower Hutt, New Zealand, and cAlexion Pharmaceuticals Inc., 352 Knotter Drive, Cheshire, CT 06410, USA
*Correspondence e-mail: g.gainsford@irl.cri.nz

(Received 21 May 2012; accepted 24 June 2012; online 30 June 2012)

The title compound, C26H40N5O13P·CH3OH·H2O, crystallizes with one water and one methanol mol­ecule providing important crystal-binding inter­actions. The compound has the unusual feature of having two but­oxy­carbonyl groups bound to one N atom. The conventional attractive hydrogen bonds involving hy­droxy, amine and water donors include bifurcations at both donors and acceptors with novel R12(6) and R21(6) motifs. These are supplemented by C—H⋯O inter­actions between adjacent mol­ecules forming chain and R22(10) ring motifs.

Related literature

For related structures, see: Low et al. (1995[Low, J. N., Cadoret, E., Ferguson, G., López, M. D., Quijano, M. L., Sánchez, A. & Nogueras, M. (1995). Acta Cryst. C51, 2141-2143.], 1998[Low, J. N., Ferguson, G., Dolores, L. M., Luisa, Q. M., Sánchez, A., Nogueras, M. & Cobo, J. (1998). Acta Cryst. C54, IUC9800060.], 1999[Low, J. N., López, M. D., Quijano, M. L., Sánchez, A. & Nogueras, M. (1999). Acta Cryst. C55, 452-454.]). For background information, see: Veldman et al. (2010[Veldman, A., Santamaria-Araujo, J. A., Sollazzo, S., Pitt, J., Gianello, R., Yaplito-Lee, J., Wong, F., Ramsden, C. A., Reiss, J., Cook, I., Fairweather, J. & Schwarz, G. (2010). Pediatrics, 125, e1249-e1254.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For hydrogen-bonding graph-set nomenclature, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C26H40N5O13P·CH4O·H2O

  • Mr = 711.66

  • Orthorhombic, P 21 21 21

  • a = 10.6435 (4) Å

  • b = 15.9508 (13) Å

  • c = 21.1764 (8) Å

  • V = 3595.2 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.31 mm−1

  • T = 120 K

  • 0.51 × 0.05 × 0.04 mm

Data collection
  • Oxford Diffraction SuperNova, Dual, Cu at zero, Atlas diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.853, Tmax = 1.000

  • 20603 measured reflections

  • 6796 independent reflections

  • 6210 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.096

  • S = 1.04

  • 6796 reflections

  • 452 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.48 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2985 Friedel pairs

  • Flack parameter: −0.02 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N9—H9N⋯O14 0.88 1.84 2.718 (3) 179
O12—H12O⋯O7i 0.84 2.40 3.090 (2) 139
O12—H12O⋯O9i 0.84 2.32 2.997 (2) 138
O14—H14A⋯O15 0.84 (3) 1.97 (3) 2.792 (4) 167 (4)
O14—H14B⋯O13ii 0.83 (4) 1.97 (4) 2.780 (3) 165 (4)
O15—H15O⋯O10 0.84 1.96 2.775 (3) 162
C4—H4B⋯O4iii 0.99 2.31 3.142 (3) 141
C5A—H5A⋯O13iv 1.00 2.34 3.307 (3) 162
C12A—H12A⋯O4iii 1.00 2.38 3.200 (2) 138
C16—H16B⋯O7v 0.98 2.44 3.230 (4) 137
C18—H18B⋯O10vi 0.98 2.38 3.339 (4) 166
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+{\script{3\over 2}}, -y+1, z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (iv) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (v) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vi) x-1, y, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP in WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound is an intermediate required for the synthesis of cyclic pyranopterin monophosphate, a molecule whose absence in humans leads to a rare metabolic disorder known as molybdenum cofactor deficiency type A (Veldman et al., 2010).

The title compound crystallizes with one independent C26H40N5O13P molecule in the asymmetric unit with one water and one methanol molecule of crystallization (Fig. 1). This and related compounds that were prepared are prone to form merohedrally twinned crystals; this non-twinned structure is the only one successfully solved and refined to date. The absolute configuration was determined using the oxygen anomalous dispersion effect, with the Hooft y parameter value calculated as -0.012 (13) (Spek, 2009). This confirms the expected configurations at C4a (R), C5a (R), C11a (S), C12 (R) and C12a (R).

There are only three closely related structures in the Cambridge Structural Database, namely GODXEC (Low et al., 1999), PUVCIS (Low et al., 1998) and ZENSAM (Low et al., 1995) with none of these involving a fourth fused ring as found here (ring 1, atoms C4a, C12a, O1, P2, O3 & C4). A common feature of all the structures is the buckling of the fused rings progressively away from the near planar ring 4 (C6a, N7, C8, N9, C10 & C10a; see Fig. 1). A comparison of the ring parameters, and their conformational forms (Cremer & Pople, 1975) is given in Table 2 (Ring parameters) with rings 2 & 3 consisting of atoms C5a, C11a, C12, C12a, C4a, O5 and N6, C6a, C10a, N11, C11a, C5a respectively. The similarity of the dihedral angles between the planes for ZENSAM (with the same ring absolute configuration) and PUVCIS (with the inverted configuration) implies that addition of the fourth "capping" ring 1 in the stable chair conformation has not required significant conformational changes to the other rings (see Table 3: Angles between ring planes).

The binding of two BOC groups on nitrogen N8 was slightly unexpected, with the second group expected to bind to the ring nitrogen N9. Indeed, a CSD search (Version 5.33, with Feb. 2012 update) indicates that this occurrence has been reported only 19 times whereas structures with BOC single binding are numbered in the multiple 1000's.

The crystal packing consists of a set of conventional N—H···O(water) and O—H···O(methanol, P, water) hydrogen bonds (see Table 1) which include bifurcations at both donors and acceptors with novel R21(6) and R12(6) motifs. These are supplemented by C—H···O interactions between adjacent molecules forming chain and R22(10) ring motifs (Bernstein et al., 1995).

Related literature top

For related structures, see: Low et al. (1995, 1998, 1999). For background information, see: Veldman et al. (2010). For ring puckering parameters, see: Cremer & Pople (1975). For hydrogen-bonding graph-set nomenclature, see: Bernstein et al. (1995).

Experimental top

The details of the synthesis of the title compound will be published elsewhere in due course. The title compound was dissolved in methanol at ambient temperature and diethyl ether added. After 2 h the crystals were filtered off and washed with a little diethyl ether and dried at 15 Torr. The title compound was also crystallized from hot ethanol or hot ethanol and heptane mixtures followed by cooling to ambient temperature but the crystals produced in this way were twinned or were only weakly diffracting.

Refinement top

Seven outlier reflections identified by large delta/sigma ratios (> 4.8) were OMITted from the dataset. All methyl H atoms were constrained to an ideal geometry (C—H = 0.98 Å) with Uiso(H) = 1.5Ueq(C), but were allowed to rotate freely about the adjacent C—C bond. All other C bound H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances of 1.00 (methine) or 0.99 Å (methylene) and with Uiso(H) = 1.2Ueq(C). hydroxy H atoms on O12 & O15 were constrained to idealized tetrahedral positions with O—H = 0.84 Å, but were allowed to rotate freely about the C—O bond. H atoms on water atom O14 were refined from their difference Fourier map locations, but O—H bond lengths were constrained to 0.84 Å. All hydroxy H atoms were refined with Uiso(H) = 1.5Ueq(O). Finally, N—H bond lengths were fixed to 0.88 Å. A set of 2985 measured Friedel pairs was used to refine the Flack parameter (Flack, 1983).

Structure description top

The title compound is an intermediate required for the synthesis of cyclic pyranopterin monophosphate, a molecule whose absence in humans leads to a rare metabolic disorder known as molybdenum cofactor deficiency type A (Veldman et al., 2010).

The title compound crystallizes with one independent C26H40N5O13P molecule in the asymmetric unit with one water and one methanol molecule of crystallization (Fig. 1). This and related compounds that were prepared are prone to form merohedrally twinned crystals; this non-twinned structure is the only one successfully solved and refined to date. The absolute configuration was determined using the oxygen anomalous dispersion effect, with the Hooft y parameter value calculated as -0.012 (13) (Spek, 2009). This confirms the expected configurations at C4a (R), C5a (R), C11a (S), C12 (R) and C12a (R).

There are only three closely related structures in the Cambridge Structural Database, namely GODXEC (Low et al., 1999), PUVCIS (Low et al., 1998) and ZENSAM (Low et al., 1995) with none of these involving a fourth fused ring as found here (ring 1, atoms C4a, C12a, O1, P2, O3 & C4). A common feature of all the structures is the buckling of the fused rings progressively away from the near planar ring 4 (C6a, N7, C8, N9, C10 & C10a; see Fig. 1). A comparison of the ring parameters, and their conformational forms (Cremer & Pople, 1975) is given in Table 2 (Ring parameters) with rings 2 & 3 consisting of atoms C5a, C11a, C12, C12a, C4a, O5 and N6, C6a, C10a, N11, C11a, C5a respectively. The similarity of the dihedral angles between the planes for ZENSAM (with the same ring absolute configuration) and PUVCIS (with the inverted configuration) implies that addition of the fourth "capping" ring 1 in the stable chair conformation has not required significant conformational changes to the other rings (see Table 3: Angles between ring planes).

The binding of two BOC groups on nitrogen N8 was slightly unexpected, with the second group expected to bind to the ring nitrogen N9. Indeed, a CSD search (Version 5.33, with Feb. 2012 update) indicates that this occurrence has been reported only 19 times whereas structures with BOC single binding are numbered in the multiple 1000's.

The crystal packing consists of a set of conventional N—H···O(water) and O—H···O(methanol, P, water) hydrogen bonds (see Table 1) which include bifurcations at both donors and acceptors with novel R21(6) and R12(6) motifs. These are supplemented by C—H···O interactions between adjacent molecules forming chain and R22(10) ring motifs (Bernstein et al., 1995).

For related structures, see: Low et al. (1995, 1998, 1999). For background information, see: Veldman et al. (2010). For ring puckering parameters, see: Cremer & Pople (1975). For hydrogen-bonding graph-set nomenclature, see: Bernstein et al. (1995).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP in WinGX (Farrugia, 1999) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. ORTEP (Farrugia, 1999) view of the asymmetric unit atoms with 30% ellipsoid probabilities. H atoms are omitted for clarity.
[Figure 2] Fig. 2. Mercury (Macrae et al., 2008) cell contents view down the ab diagonal; contact atoms are shown as balls. Some intermolecular binding contacts are shown as purple dotted lines. Symmetry: (i) 1.5 - x,1 - y, z - 0.5 (ii) 1 - x, y - 0.5, 1.5 - z.
tert-Butyl (2R,4aR,5aR,11aS,12R, 12aR)-8-[bis(tert-butoxycarbonyl)amino]-12-hydroxy-2- methoxy-2,10-dioxo-4,4a,5a,6,9,10,11,11a,12,12a-decahydro-2H-1,3,5- trioxa-6,7,9,11-tetraaza-2λ5-phosphatetracene-6-carboxylate methanol monosolvate monohydrate top
Crystal data top
C26H40N5O13P·CH4O·H2OF(000) = 1512
Mr = 711.66Dx = 1.315 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2ac 2abCell parameters from 8356 reflections
a = 10.6435 (4) Åθ = 2.8–73.7°
b = 15.9508 (13) ŵ = 1.31 mm1
c = 21.1764 (8) ÅT = 120 K
V = 3595.2 (3) Å3Needle, colourless
Z = 40.51 × 0.05 × 0.04 mm
Data collection top
Oxford Diffraction SuperNova, Dual, Cu at zero, Atlas
diffractometer
6796 independent reflections
Radiation source: fine-focus sealed tube6210 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.040
Detector resolution: 10.6501 pixels mm-1θmax = 70.0°, θmin = 3.5°
ω scansh = 1212
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
k = 1919
Tmin = 0.853, Tmax = 1.000l = 2525
20603 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0524P)2 + 0.416P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.007
6796 reflectionsΔρmax = 0.41 e Å3
452 parametersΔρmin = 0.48 e Å3
2 restraintsAbsolute structure: Flack (1983), 2985 Friedel pairs
0 constraintsAbsolute structure parameter: 0.02 (2)
Primary atom site location: structure-invariant direct methods
Crystal data top
C26H40N5O13P·CH4O·H2OV = 3595.2 (3) Å3
Mr = 711.66Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 10.6435 (4) ŵ = 1.31 mm1
b = 15.9508 (13) ÅT = 120 K
c = 21.1764 (8) Å0.51 × 0.05 × 0.04 mm
Data collection top
Oxford Diffraction SuperNova, Dual, Cu at zero, Atlas
diffractometer
6796 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
6210 reflections with I > 2σ(I)
Tmin = 0.853, Tmax = 1.000Rint = 0.040
20603 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.096Δρmax = 0.41 e Å3
S = 1.04Δρmin = 0.48 e Å3
6796 reflectionsAbsolute structure: Flack (1983), 2985 Friedel pairs
452 parametersAbsolute structure parameter: 0.02 (2)
2 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P20.80446 (5)0.58835 (3)0.54460 (3)0.02445 (12)
O10.78734 (14)0.68097 (9)0.57026 (7)0.0244 (3)
O20.84799 (17)0.53670 (10)0.60281 (8)0.0340 (4)
O30.66670 (15)0.55698 (10)0.53112 (7)0.0270 (3)
O40.22697 (14)0.79511 (11)0.61522 (7)0.0297 (4)
O50.50882 (13)0.69304 (9)0.57972 (7)0.0219 (3)
O60.24587 (13)0.79463 (10)0.72208 (7)0.0246 (3)
O70.21893 (16)0.46434 (11)0.79895 (8)0.0340 (4)
O80.37798 (15)0.48589 (10)0.72995 (7)0.0285 (3)
O90.29577 (16)0.52087 (10)0.91740 (7)0.0307 (3)
O100.77295 (13)0.67374 (10)0.77704 (7)0.0256 (3)
O110.38713 (14)0.64782 (10)0.89850 (7)0.0253 (3)
O120.81909 (13)0.84935 (9)0.58518 (7)0.0239 (3)
H12O0.81400.89780.60060.036*
O130.89193 (15)0.57970 (11)0.49161 (8)0.0313 (3)
N60.41153 (16)0.76019 (11)0.66317 (8)0.0215 (3)
N70.39592 (15)0.66294 (11)0.74668 (8)0.0200 (3)
N80.38213 (16)0.55516 (11)0.82093 (8)0.0215 (3)
N90.57866 (16)0.61801 (11)0.79852 (8)0.0215 (3)
H9N0.61010.58470.82760.026*
N110.66929 (16)0.76924 (11)0.67840 (8)0.0227 (4)
H11N0.75090.77310.68450.027*
C40.5850 (2)0.61209 (14)0.49446 (10)0.0248 (4)
H4A0.49950.58790.49300.030*
H4B0.61680.61550.45060.030*
C4A0.57849 (19)0.69937 (14)0.52219 (9)0.0220 (4)
H4AA0.53110.73620.49230.026*
C5A0.48696 (18)0.77318 (13)0.60754 (9)0.0208 (4)
H5A0.44090.80990.57710.025*
C6A0.46909 (19)0.71540 (13)0.71201 (9)0.0200 (4)
C80.45310 (18)0.61650 (13)0.78714 (9)0.0194 (4)
C100.65855 (18)0.67069 (13)0.76551 (9)0.0201 (4)
C10A0.59833 (19)0.72028 (13)0.71732 (9)0.0200 (4)
C11A0.61092 (18)0.81506 (13)0.62689 (9)0.0199 (4)
H11A0.59220.87330.64170.024*
C120.69743 (19)0.82063 (12)0.56888 (9)0.0192 (4)
H120.66000.86250.53920.023*
C12A0.70849 (19)0.73790 (13)0.53355 (9)0.0212 (4)
H12A0.74960.74840.49180.025*
C130.7751 (4)0.5374 (2)0.66060 (13)0.0540 (8)
H13A0.70750.57880.65700.081*
H13B0.82980.55210.69620.081*
H13C0.73890.48170.66770.081*
C140.28548 (18)0.78421 (13)0.66324 (10)0.0219 (4)
C150.1099 (2)0.79637 (19)0.73616 (11)0.0344 (5)
C160.0540 (3)0.8768 (2)0.71126 (14)0.0550 (9)
H16A0.10500.92440.72530.082*
H16B0.03190.88300.72730.082*
H16C0.05240.87510.66500.082*
C170.1096 (3)0.7949 (2)0.80794 (12)0.0453 (7)
H17A0.15360.74470.82280.068*
H17B0.02270.79410.82330.068*
H17C0.15230.84500.82400.068*
C180.0484 (3)0.7190 (2)0.70969 (16)0.0552 (8)
H18A0.04650.72260.66350.083*
H18B0.03760.71480.72580.083*
H18C0.09630.66940.72250.083*
C190.3147 (2)0.49719 (13)0.78327 (10)0.0244 (4)
C200.3148 (3)0.45903 (14)0.67033 (11)0.0330 (5)
C210.4166 (3)0.4769 (2)0.62155 (12)0.0517 (8)
H21A0.43590.53700.62150.078*
H21B0.38680.46020.57960.078*
H21C0.49250.44510.63220.078*
C220.1987 (3)0.51106 (18)0.65935 (13)0.0475 (7)
H22A0.13490.49660.69090.071*
H22B0.16570.49970.61700.071*
H22C0.21990.57070.66300.071*
C230.2869 (3)0.36592 (15)0.67444 (12)0.0382 (6)
H23A0.36480.33520.68280.057*
H23B0.25060.34670.63440.057*
H23C0.22700.35570.70880.057*
C240.34876 (19)0.57038 (13)0.88421 (10)0.0227 (4)
C250.3793 (2)0.68166 (16)0.96382 (10)0.0301 (5)
C260.2439 (3)0.6844 (2)0.98517 (12)0.0409 (6)
H26A0.19180.70840.95150.061*
H26B0.23710.71931.02310.061*
H26C0.21510.62750.99470.061*
C270.4631 (3)0.6298 (2)1.00673 (12)0.0437 (6)
H27A0.43000.57261.00960.065*
H27B0.46500.65511.04890.065*
H27C0.54840.62830.98940.065*
C280.4294 (3)0.77006 (17)0.95447 (13)0.0410 (6)
H28A0.51390.76740.93620.061*
H28B0.43290.79890.99530.061*
H28C0.37360.80090.92590.061*
O140.6796 (2)0.51634 (16)0.88814 (11)0.0581 (6)
H14A0.742 (3)0.547 (2)0.895 (2)0.087*
H14B0.664 (5)0.480 (2)0.9153 (18)0.087*
O150.8836 (3)0.6263 (2)0.89018 (13)0.0791 (9)
H15O0.85750.65070.85760.119*
C290.9845 (6)0.5826 (3)0.8763 (3)0.0947 (17)
H29A1.01300.55230.91400.142*
H29B1.05110.62050.86190.142*
H29C0.96470.54240.84280.142*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P20.0273 (3)0.0234 (2)0.0227 (3)0.0025 (2)0.0006 (2)0.0004 (2)
O10.0240 (7)0.0249 (7)0.0243 (7)0.0034 (6)0.0025 (5)0.0016 (6)
O20.0429 (9)0.0303 (9)0.0288 (8)0.0091 (7)0.0041 (7)0.0011 (7)
O30.0305 (8)0.0234 (7)0.0271 (8)0.0025 (6)0.0028 (6)0.0003 (6)
O40.0209 (7)0.0494 (10)0.0187 (7)0.0034 (6)0.0031 (6)0.0043 (7)
O50.0214 (7)0.0267 (7)0.0177 (7)0.0032 (6)0.0028 (5)0.0018 (6)
O60.0173 (7)0.0369 (9)0.0195 (7)0.0043 (6)0.0020 (5)0.0023 (6)
O70.0318 (9)0.0413 (9)0.0288 (8)0.0155 (7)0.0027 (6)0.0010 (7)
O80.0324 (8)0.0334 (9)0.0197 (7)0.0061 (7)0.0017 (6)0.0031 (6)
O90.0401 (9)0.0298 (8)0.0222 (7)0.0066 (7)0.0066 (7)0.0043 (6)
O100.0180 (7)0.0355 (8)0.0233 (7)0.0013 (6)0.0010 (5)0.0048 (6)
O110.0312 (8)0.0300 (8)0.0147 (7)0.0061 (6)0.0038 (6)0.0010 (6)
O120.0206 (7)0.0257 (7)0.0252 (7)0.0036 (6)0.0039 (6)0.0030 (6)
O130.0320 (8)0.0292 (8)0.0326 (8)0.0029 (7)0.0046 (7)0.0019 (7)
N60.0163 (8)0.0308 (9)0.0175 (8)0.0020 (7)0.0015 (6)0.0044 (7)
N70.0171 (8)0.0264 (9)0.0164 (8)0.0012 (7)0.0028 (6)0.0012 (7)
N80.0226 (8)0.0232 (8)0.0186 (8)0.0042 (7)0.0025 (6)0.0028 (7)
N90.0187 (8)0.0273 (9)0.0184 (8)0.0005 (7)0.0006 (6)0.0048 (7)
N110.0180 (8)0.0331 (9)0.0171 (8)0.0026 (7)0.0006 (6)0.0042 (7)
C40.0258 (10)0.0300 (11)0.0185 (10)0.0035 (8)0.0003 (8)0.0001 (8)
C4A0.0206 (9)0.0302 (11)0.0153 (9)0.0009 (8)0.0007 (7)0.0017 (8)
C5A0.0196 (9)0.0259 (10)0.0169 (9)0.0015 (8)0.0031 (7)0.0025 (8)
C6A0.0180 (9)0.0271 (10)0.0148 (9)0.0004 (8)0.0016 (7)0.0019 (8)
C80.0176 (9)0.0252 (10)0.0154 (9)0.0018 (7)0.0023 (7)0.0005 (8)
C100.0167 (9)0.0262 (10)0.0175 (9)0.0011 (7)0.0010 (7)0.0008 (8)
C10A0.0187 (9)0.0257 (10)0.0157 (9)0.0011 (8)0.0011 (7)0.0009 (8)
C11A0.0196 (9)0.0234 (10)0.0165 (9)0.0015 (8)0.0033 (7)0.0012 (7)
C120.0183 (9)0.0214 (9)0.0178 (9)0.0019 (8)0.0023 (7)0.0027 (7)
C12A0.0218 (9)0.0254 (10)0.0165 (9)0.0019 (8)0.0035 (7)0.0026 (7)
C130.085 (2)0.0464 (16)0.0303 (14)0.0231 (16)0.0068 (14)0.0051 (12)
C140.0151 (9)0.0291 (10)0.0215 (10)0.0003 (8)0.0025 (7)0.0038 (8)
C150.0171 (10)0.0594 (16)0.0267 (11)0.0071 (10)0.0072 (8)0.0037 (11)
C160.0445 (16)0.085 (2)0.0358 (15)0.0371 (16)0.0060 (12)0.0046 (15)
C170.0351 (14)0.0730 (19)0.0277 (12)0.0121 (13)0.0130 (10)0.0063 (13)
C180.0316 (14)0.083 (2)0.0508 (17)0.0212 (14)0.0124 (12)0.0025 (16)
C190.0277 (10)0.0263 (10)0.0193 (10)0.0035 (9)0.0012 (8)0.0038 (8)
C200.0506 (14)0.0306 (11)0.0178 (10)0.0100 (11)0.0032 (10)0.0012 (9)
C210.082 (2)0.0490 (16)0.0245 (13)0.0280 (16)0.0135 (13)0.0056 (11)
C220.0617 (17)0.0460 (15)0.0350 (14)0.0003 (14)0.0203 (13)0.0022 (11)
C230.0573 (16)0.0320 (12)0.0255 (11)0.0112 (11)0.0005 (11)0.0010 (10)
C240.0211 (9)0.0281 (11)0.0190 (10)0.0004 (8)0.0007 (7)0.0019 (8)
C250.0361 (12)0.0379 (13)0.0162 (10)0.0013 (10)0.0030 (8)0.0055 (9)
C260.0391 (14)0.0532 (17)0.0304 (13)0.0011 (11)0.0105 (10)0.0082 (11)
C270.0549 (16)0.0520 (16)0.0240 (12)0.0032 (13)0.0065 (11)0.0012 (11)
C280.0504 (15)0.0407 (14)0.0318 (13)0.0084 (11)0.0015 (11)0.0098 (11)
O140.0417 (11)0.0749 (16)0.0576 (13)0.0065 (10)0.0128 (10)0.0422 (12)
O150.0619 (15)0.116 (2)0.0595 (15)0.0051 (16)0.0190 (13)0.0278 (16)
C290.131 (4)0.049 (2)0.104 (4)0.011 (3)0.042 (3)0.019 (2)
Geometric parameters (Å, º) top
P2—O131.4647 (17)C12A—H12A1.0000
P2—O21.5533 (17)C13—H13A0.9800
P2—O31.5755 (16)C13—H13B0.9800
P2—O11.5845 (16)C13—H13C0.9800
O1—C12A1.461 (2)C15—C181.505 (4)
O2—C131.449 (3)C15—C161.509 (4)
O3—C41.460 (3)C15—C171.520 (3)
O4—C141.205 (3)C16—H16A0.9800
O5—C5A1.427 (3)C16—H16B0.9800
O5—C4A1.430 (2)C16—H16C0.9800
O6—C141.326 (3)C17—H17A0.9800
O6—C151.478 (3)C17—H17B0.9800
O7—C191.193 (3)C17—H17C0.9800
O8—C191.327 (3)C18—H18A0.9800
O8—C201.493 (3)C18—H18B0.9800
O9—C241.198 (3)C18—H18C0.9800
O10—C101.243 (3)C20—C221.507 (4)
O11—C241.336 (3)C20—C231.517 (3)
O11—C251.487 (3)C20—C211.523 (4)
O12—C121.416 (3)C21—H21A0.9800
O12—H12O0.8400C21—H21B0.9800
N6—C141.395 (3)C21—H21C0.9800
N6—C6A1.398 (3)C22—H22A0.9800
N6—C5A1.441 (3)C22—H22B0.9800
N7—C81.286 (3)C22—H22C0.9800
N7—C6A1.359 (3)C23—H23A0.9800
N8—C241.407 (3)C23—H23B0.9800
N8—C191.416 (3)C23—H23C0.9800
N8—C81.428 (3)C25—C261.511 (3)
N9—C81.358 (3)C25—C271.518 (4)
N9—C101.385 (3)C25—C281.520 (4)
N9—H9N0.8800C26—H26A0.9800
N11—C10A1.364 (3)C26—H26B0.9800
N11—C11A1.453 (3)C26—H26C0.9800
N11—H11N0.8800C27—H27A0.9800
C4—C4A1.513 (3)C27—H27B0.9800
C4—H4A0.9900C27—H27C0.9800
C4—H4B0.9900C28—H28A0.9800
C4A—C12A1.533 (3)C28—H28B0.9800
C4A—H4AA1.0000C28—H28C0.9800
C5A—C11A1.535 (3)O14—H14A0.83 (2)
C5A—H5A1.0000O14—H14B0.829 (19)
C6A—C10A1.382 (3)O15—C291.313 (6)
C10—C10A1.442 (3)O15—H15O0.8400
C11A—C121.538 (2)C29—H29A0.9800
C11A—H11A1.0000C29—H29B0.9800
C12—C12A1.522 (3)C29—H29C0.9800
C12—H121.0000
O13—P2—O2111.63 (10)O6—C15—C16109.4 (2)
O13—P2—O3115.00 (9)C18—C15—C16113.2 (3)
O2—P2—O3104.65 (9)O6—C15—C17101.75 (18)
O13—P2—O1115.07 (9)C18—C15—C17111.1 (3)
O2—P2—O1104.88 (9)C16—C15—C17111.2 (2)
O3—P2—O1104.55 (9)C15—C16—H16A109.5
C12A—O1—P2117.60 (13)C15—C16—H16B109.5
C13—O2—P2120.45 (17)H16A—C16—H16B109.5
C4—O3—P2117.34 (13)C15—C16—H16C109.5
C5A—O5—C4A111.91 (15)H16A—C16—H16C109.5
C14—O6—C15120.22 (16)H16B—C16—H16C109.5
C19—O8—C20122.02 (18)C15—C17—H17A109.5
C24—O11—C25121.94 (17)C15—C17—H17B109.5
C12—O12—H12O109.5H17A—C17—H17B109.5
C14—N6—C6A124.11 (17)C15—C17—H17C109.5
C14—N6—C5A119.81 (17)H17A—C17—H17C109.5
C6A—N6—C5A115.74 (16)H17B—C17—H17C109.5
C8—N7—C6A116.33 (17)C15—C18—H18A109.5
C24—N8—C19121.39 (17)C15—C18—H18B109.5
C24—N8—C8119.50 (17)H18A—C18—H18B109.5
C19—N8—C8115.65 (16)C15—C18—H18C109.5
C8—N9—C10121.68 (18)H18A—C18—H18C109.5
C8—N9—H9N119.2H18B—C18—H18C109.5
C10—N9—H9N119.2O7—C19—O8127.6 (2)
C10A—N11—C11A120.34 (16)O7—C19—N8124.2 (2)
C10A—N11—H11N119.8O8—C19—N8108.11 (17)
C11A—N11—H11N119.8O8—C20—C22110.0 (2)
O3—C4—C4A112.04 (16)O8—C20—C23108.70 (19)
O3—C4—H4A109.2C22—C20—C23112.8 (2)
C4A—C4—H4A109.2O8—C20—C21101.5 (2)
O3—C4—H4B109.2C22—C20—C21112.0 (2)
C4A—C4—H4B109.2C23—C20—C21111.2 (2)
H4A—C4—H4B107.9C20—C21—H21A109.5
O5—C4A—C4106.84 (17)C20—C21—H21B109.5
O5—C4A—C12A111.27 (16)H21A—C21—H21B109.5
C4—C4A—C12A112.84 (17)C20—C21—H21C109.5
O5—C4A—H4AA108.6H21A—C21—H21C109.5
C4—C4A—H4AA108.6H21B—C21—H21C109.5
C12A—C4A—H4AA108.6C20—C22—H22A109.5
O5—C5A—N6107.44 (16)C20—C22—H22B109.5
O5—C5A—C11A111.11 (16)H22A—C22—H22B109.5
N6—C5A—C11A108.87 (16)C20—C22—H22C109.5
O5—C5A—H5A109.8H22A—C22—H22C109.5
N6—C5A—H5A109.8H22B—C22—H22C109.5
C11A—C5A—H5A109.8C20—C23—H23A109.5
N7—C6A—C10A124.14 (19)C20—C23—H23B109.5
N7—C6A—N6117.59 (18)H23A—C23—H23B109.5
C10A—C6A—N6117.86 (18)C20—C23—H23C109.5
N7—C8—N9125.02 (19)H23A—C23—H23C109.5
N7—C8—N8118.57 (18)H23B—C23—H23C109.5
N9—C8—N8116.33 (18)O9—C24—O11128.4 (2)
O10—C10—N9121.75 (19)O9—C24—N8124.3 (2)
O10—C10—C10A123.58 (19)O11—C24—N8107.33 (17)
N9—C10—C10A114.67 (17)O11—C25—C26110.04 (19)
N11—C10A—C6A122.29 (19)O11—C25—C27109.03 (19)
N11—C10A—C10119.73 (18)C26—C25—C27113.4 (2)
C6A—C10A—C10117.98 (19)O11—C25—C28101.29 (18)
N11—C11A—C5A110.44 (16)C26—C25—C28110.3 (2)
N11—C11A—C12111.89 (16)C27—C25—C28112.1 (2)
C5A—C11A—C12109.07 (16)C25—C26—H26A109.5
N11—C11A—H11A108.5C25—C26—H26B109.5
C5A—C11A—H11A108.5H26A—C26—H26B109.5
C12—C11A—H11A108.5C25—C26—H26C109.5
O12—C12—C12A109.25 (16)H26A—C26—H26C109.5
O12—C12—C11A111.80 (16)H26B—C26—H26C109.5
C12A—C12—C11A112.89 (16)C25—C27—H27A109.5
O12—C12—H12107.6C25—C27—H27B109.5
C12A—C12—H12107.6H27A—C27—H27B109.5
C11A—C12—H12107.6C25—C27—H27C109.5
O1—C12A—C12108.78 (15)H27A—C27—H27C109.5
O1—C12A—C4A110.67 (16)H27B—C27—H27C109.5
C12—C12A—C4A110.79 (17)C25—C28—H28A109.5
O1—C12A—H12A108.9C25—C28—H28B109.5
C12—C12A—H12A108.9H28A—C28—H28B109.5
C4A—C12A—H12A108.9C25—C28—H28C109.5
O2—C13—H13A109.5H28A—C28—H28C109.5
O2—C13—H13B109.5H28B—C28—H28C109.5
H13A—C13—H13B109.5H14A—O14—H14B117 (5)
O2—C13—H13C109.5C29—O15—H15O109.5
H13A—C13—H13C109.5O15—C29—H29A109.5
H13B—C13—H13C109.5O15—C29—H29B109.5
O4—C14—O6127.63 (18)H29A—C29—H29B109.5
O4—C14—N6122.40 (19)O15—C29—H29C109.5
O6—C14—N6109.94 (17)H29A—C29—H29C109.5
O6—C15—C18109.6 (2)H29B—C29—H29C109.5
O13—P2—O1—C12A77.02 (16)C10A—N11—C11A—C12145.40 (18)
O2—P2—O1—C12A159.94 (14)O5—C5A—C11A—N1167.4 (2)
O3—P2—O1—C12A50.11 (15)N6—C5A—C11A—N1150.7 (2)
O13—P2—O2—C13179.4 (2)O5—C5A—C11A—C1256.0 (2)
O3—P2—O2—C1355.6 (2)N6—C5A—C11A—C12174.10 (16)
O1—P2—O2—C1354.1 (2)N11—C11A—C12—O1250.3 (2)
O13—P2—O3—C478.07 (16)C5A—C11A—C12—O12172.83 (16)
O2—P2—O3—C4159.09 (14)N11—C11A—C12—C12A73.3 (2)
O1—P2—O3—C449.09 (16)C5A—C11A—C12—C12A49.2 (2)
P2—O3—C4—C4A53.3 (2)P2—O1—C12A—C12175.96 (12)
C5A—O5—C4A—C4174.89 (16)P2—O1—C12A—C4A54.02 (19)
C5A—O5—C4A—C12A61.5 (2)O12—C12—C12A—O151.19 (19)
O3—C4—C4A—O570.5 (2)C11A—C12—C12A—O173.9 (2)
O3—C4—C4A—C12A52.1 (2)O12—C12—C12A—C4A173.05 (15)
C4A—O5—C5A—N6177.32 (15)C11A—C12—C12A—C4A48.0 (2)
C4A—O5—C5A—C11A63.7 (2)O5—C4A—C12A—O167.9 (2)
C14—N6—C5A—O5107.9 (2)C4—C4A—C12A—O152.1 (2)
C6A—N6—C5A—O565.7 (2)O5—C4A—C12A—C1252.8 (2)
C14—N6—C5A—C11A131.70 (19)C4—C4A—C12A—C12172.90 (16)
C6A—N6—C5A—C11A54.7 (2)C15—O6—C14—O419.3 (4)
C8—N7—C6A—C10A0.9 (3)C15—O6—C14—N6162.6 (2)
C8—N7—C6A—N6173.44 (18)C6A—N6—C14—O4153.2 (2)
C14—N6—C6A—N728.9 (3)C5A—N6—C14—O419.8 (3)
C5A—N6—C6A—N7144.36 (18)C6A—N6—C14—O628.6 (3)
C14—N6—C6A—C10A158.1 (2)C5A—N6—C14—O6158.35 (18)
C5A—N6—C6A—C10A28.6 (3)C14—O6—C15—C1853.6 (3)
C6A—N7—C8—N91.9 (3)C14—O6—C15—C1671.1 (3)
C6A—N7—C8—N8174.69 (17)C14—O6—C15—C17171.2 (2)
C10—N9—C8—N71.1 (3)C20—O8—C19—O726.9 (3)
C10—N9—C8—N8175.53 (18)C20—O8—C19—N8154.39 (18)
C24—N8—C8—N7103.6 (2)C24—N8—C19—O78.5 (3)
C19—N8—C8—N755.7 (3)C8—N8—C19—O7150.5 (2)
C24—N8—C8—N979.5 (2)C24—N8—C19—O8170.32 (18)
C19—N8—C8—N9121.1 (2)C8—N8—C19—O830.8 (2)
C8—N9—C10—O10178.0 (2)C19—O8—C20—C2247.2 (3)
C8—N9—C10—C10A2.3 (3)C19—O8—C20—C2376.6 (3)
C11A—N11—C10A—C6A3.5 (3)C19—O8—C20—C21166.0 (2)
C11A—N11—C10A—C10175.77 (18)C25—O11—C24—O96.4 (3)
N7—C6A—C10A—N11175.01 (19)C25—O11—C24—N8173.45 (17)
N6—C6A—C10A—N112.5 (3)C19—N8—C24—O926.3 (3)
N7—C6A—C10A—C104.3 (3)C8—N8—C24—O9175.6 (2)
N6—C6A—C10A—C10176.77 (18)C19—N8—C24—O11153.78 (18)
O10—C10—C10A—N115.0 (3)C8—N8—C24—O114.4 (2)
N9—C10—C10A—N11174.64 (18)C24—O11—C25—C2661.7 (3)
O10—C10—C10A—C6A175.7 (2)C24—O11—C25—C2763.3 (3)
N9—C10—C10A—C6A4.7 (3)C24—O11—C25—C28178.3 (2)
C10A—N11—C11A—C5A23.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9—H9N···O140.881.842.718 (3)179
O12—H12O···O7i0.842.403.090 (2)139
O12—H12O···O9i0.842.322.997 (2)138
O14—H14A···O150.84 (3)1.97 (3)2.792 (4)167 (4)
O14—H14B···O13ii0.83 (4)1.97 (4)2.780 (3)165 (4)
O15—H15O···O100.841.962.775 (3)162
C4—H4B···O4iii0.992.313.142 (3)141
C5A—H5A···O13iv1.002.343.307 (3)162
C12A—H12A···O4iii1.002.383.200 (2)138
C16—H16B···O7v0.982.443.230 (4)137
C18—H18B···O10vi0.982.383.339 (4)166
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+3/2, y+1, z+1/2; (iii) x+1/2, y+3/2, z+1; (iv) x1/2, y+3/2, z+1; (v) x, y+1/2, z+3/2; (vi) x1, y, z.

Experimental details

Crystal data
Chemical formulaC26H40N5O13P·CH4O·H2O
Mr711.66
Crystal system, space groupOrthorhombic, P212121
Temperature (K)120
a, b, c (Å)10.6435 (4), 15.9508 (13), 21.1764 (8)
V3)3595.2 (3)
Z4
Radiation typeCu Kα
µ (mm1)1.31
Crystal size (mm)0.51 × 0.05 × 0.04
Data collection
DiffractometerOxford Diffraction SuperNova, Dual, Cu at zero, Atlas
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
Tmin, Tmax0.853, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
20603, 6796, 6210
Rint0.040
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.096, 1.04
No. of reflections6796
No. of parameters452
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.48
Absolute structureFlack (1983), 2985 Friedel pairs
Absolute structure parameter0.02 (2)

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), ORTEP in WinGX (Farrugia, 1999) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9—H9N···O140.881.842.718 (3)179
O12—H12O···O7i0.842.403.090 (2)139
O12—H12O···O9i0.842.322.997 (2)138
O14—H14A···O150.84 (3)1.97 (3)2.792 (4)167 (4)
O14—H14B···O13ii0.83 (4)1.97 (4)2.780 (3)165 (4)
O15—H15O···O100.841.962.775 (3)162
C4—H4B···O4iii0.992.313.142 (3)141
C5A—H5A···O13iv1.002.343.307 (3)162
C12A—H12A···O4iii1.002.383.200 (2)138
C16—H16B···O7v0.982.443.230 (4)137
C18—H18B···O10vi0.982.383.339 (4)166
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+3/2, y+1, z+1/2; (iii) x+1/2, y+3/2, z+1; (iv) x1/2, y+3/2, z+1; (v) x, y+1/2, z+3/2; (vi) x1, y, z.
Ring parameters (Å,°)a top
Ring No.bSourceQθφConformation
1here0.518 (2)0.0 (2)120 (11)Chair
2here0.554 (2)173.2 (2)159.7 (18)Chair
2PUVCIS0.505 (3)173.9 (3)237 (3)Chair
2ZENSAM0.504 (5)173.5 (6)174 (5)Chair
2GODXEC0.755 (3)89.8 (2)359.6 (3)Boat
3here0.460 (2)56.7 (2)59.1 (3)Envelope
3PUVCIS0.478 (3)54.7 (4)55.7 (4)Envelope
3ZENSAM0.481 (4)54.4 (5)256.6 (6)Envelope
3GODXEC0.538 (3)86.9 (3)0.5 (4)Boat
4herenanana(Planar)
4PUVCIS0.090 (3)70.9 (19)149.6 (19)Flat-Screw-boat
4ZENSAM0.093 (5)103 (3)324 (3)Flat-Twist-boat
a. For puckering parameters, see: Cremer & Pople (1975). b. Ring definitions given in text
Angles between ring planes (°)a top
SourcePlanes 1,2Planes 2,3Planes 1,3
here63.83 (9)13.74 (10)72.85 (10)
PUVCIS70.52 (13)16.62 (13)85.44 (13)
ZENSAM70.3 (2)17.0 (2)85.7 (2)
GODXEC47.72 (17)29.33 (15)76.55 (17)
a. Ring definitions given in text
 

Acknowledgements

We thank Dr C. Fitchett of the University of Canterbury, New Zealand, for the data collection.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLow, J. N., Cadoret, E., Ferguson, G., López, M. D., Quijano, M. L., Sánchez, A. & Nogueras, M. (1995). Acta Cryst. C51, 2141–2143.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLow, J. N., Ferguson, G., Dolores, L. M., Luisa, Q. M., Sánchez, A., Nogueras, M. & Cobo, J. (1998). Acta Cryst. C54, IUC9800060.  CrossRef IUCr Journals Google Scholar
First citationLow, J. N., López, M. D., Quijano, M. L., Sánchez, A. & Nogueras, M. (1999). Acta Cryst. C55, 452–454.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVeldman, A., Santamaria-Araujo, J. A., Sollazzo, S., Pitt, J., Gianello, R., Yaplito-Lee, J., Wong, F., Ramsden, C. A., Reiss, J., Cook, I., Fairweather, J. & Schwarz, G. (2010). Pediatrics, 125, e1249–e1254.  Web of Science CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds