metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[di­aqua­(1,10-phenan­thro­line)manganese]-μ-3-[3-(carboxyl­ato­meth­­oxy)phen­yl]acrylato] monohydrate]

aZhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China
*Correspondence e-mail: wyh@zjnu.edu.cn

(Received 10 May 2012; accepted 25 May 2012; online 16 June 2012)

The title compound, [Mn(C11H8O5)(C12H8N2)(H2O)2]·H2O, was obtained under hydro­thermal conditions. The coordination environment of the Mn(II) atom is a distorted MnN2O4 octa­hedron defined by two N atoms from 1,10-phenanthroline, two water O atoms and two carboxyl­ate O atoms from two acrylate anions. The bis-monodentate coordination mode of the anion leads to the formation of chains propagating in [010]. Inter­molecular O—H⋯O hydrogen bonds link the chains into a two-dimensional network parallel to (100). In the voids of this arrangement, disordered lattice water mol­ecules are present.

Related literature

For the study of metal-organic frameworks, see: Zhang et al. (2008[Zhang, R. B., Li, Z. J., Cheng, J. K., Qin, Y. Y., Zhang, J. & Yao, Y. G. (2008). Cryst. Growth Des. 8, 2562-2573.]); Zheng et al. (2010[Zheng, Z. B., Wu, R. T., Li, J. K., Sun, Y. F. & Han, Y. F. (2010). J. Mol. Struct. 964, 109-118.]); Wang et al. (2006[Wang, Z., Zhang, H. H., Chen, Y. P., Huang, C. C., Sun, R. Q., Cao, Y. N. & Yu, X. H. (2006). J. Solid State Chem. 179, 1536-1544.]); Yi et al. (2005[Yi, L., Yang, X. & Cheng, P. (2005). Cryst. Growth Des. 5, 1215-1219.]). For related structures, including 1,10-phenanthroline as a ligand, see: Chen et al. (2005[Chen, H. Y., Tagore, R., Das, S., Incarvito, C., Faller, J. W., Crabtree, R. H. & Brudvig, G. W. (2005). Inorg. Chem. 44, 7661-7670.]); Ma et al. (2005[Ma, C. B., Chen, C. N. & Liu, Q. T. (2005). CrystEngComm, 7, 650-655.]); For the coord­ination modes of carb­oxy­meth­oxy acids, see: Novitchi et al. (2005[Novitchi, G., Shova, S., Costes, J. P., Mamula, O. & Gdaniec, M. (2005). Inorg. Chem. 358, 4437-4442.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C11H8O5)(C12H8N2)(H2O)2]·H2O

  • Mr = 509.37

  • Monoclinic, P 21 /c

  • a = 12.8455 (4) Å

  • b = 21.5944 (7) Å

  • c = 8.2681 (3) Å

  • β = 93.712 (2)°

  • V = 2288.68 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.63 mm−1

  • T = 293 K

  • 0.52 × 0.32 × 0.06 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.79, Tmax = 0.96

  • 32833 measured reflections

  • 4749 independent reflections

  • 3716 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.116

  • S = 1.06

  • 4749 reflections

  • 314 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2W—H2WB⋯O3i 0.83 (2) 1.92 (2) 2.741 (2) 176 (3)
O2W—H2WA⋯O5ii 0.84 (2) 1.95 (2) 2.764 (2) 164 (3)
O1W—H1WB⋯O4iii 0.85 (2) 2.08 (2) 2.841 (3) 150 (3)
O1W—H1WA⋯O3iv 0.84 (2) 1.98 (2) 2.810 (2) 176 (3)
Symmetry codes: (i) -x+1, -y, -z; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Nowadays, the study of metal-orgnic fameworks (MOFs) has witnessed tremendous growth as one of the most crucial areas of material science (Zhang et al. (2008)). The rational design of these coordination polymers are of great interest in crystal engineering (Zheng et al.(2010)). Some valuable studied MOFs are based on carboxylate ligands because of their linking modes (Wang et al.(2006)). Using bridging ligands in assembly with metal cations of diverse geometries can induce complex structures and variable topologies (Yi et al.(2005)). Related information about carboxymethoxy acid and 1,10-phenanthroline can be obtained by these reports (Chen et al.(2005), Ma et al. (2005), Novitchi et al.(2005)). Herein we report the structure of the Mn title compound, [Mn(C11H8O5)(C12H8N2)(H2O)2].H2O.

As shown in Figure 1, the asymmetric unit of the title complex is composed of one Mn(II) atom, one 3-carboxymethoxy phenyclacrylate anion, one 1,10-phenanthroline ligand, two coordinating water molecules and one solvent water molecule. The six-coordinate Mn(II) ions is surrounded in form of a distorted octahedron by two N atoms from 1,10-phenanthroline, two O atoms from L ligands and two O atoms from water molecules. In the title complex, 1,10-phenanthroline is a terminal ligand and L plays the role of a bis-monodentate bridging ligand. Each manganese site is connected by two µ2-L ligands, forming a zigzag chain along the b axis (Figure 2). There are four kinds of hydrogen-bonding interactions in the compound (Table 1), but only three link the chains to each other, making up a two-dimensional supramolecular network parellel to (100) (Figure 3).

Related literature top

For the study of metal-organic frameworks, see: Zhang et al. (2008); Zheng et al.(2010); Wang et al. (2006); Yi et al. (2005). For related structures, including 1,10-phenanthroline, see: Chen et al. (2005); Ma et al. (2005); For the coordination modes of carboxymethoxy acids, see: Novitchi et al. (2005).

Experimental top

A mixture of MnAc2.4H2O (0.2451 g, 1 mmol), 3-carboxymethoxy phenylacrylic acid (0.2220 g, 1 mmol) and 1,10-phenanthroline (0.0991 g, 0.5 mmol) was dissolved in 20 ml EtOH/H2O (v/v, 1:9). The pH value was then adjusted to 7 by 2 mol/L NaOH solution. The mixture was then sealed in a 25 ml stainless steel reactor and heated to 433 K for 3 days. Then the reactant mixture was cooled to room temperature at the rate of 5 K per hour. After evaporation of the resulting solution for a few days, yellow crystals of the title compound were obtained.

Refinement top

The carbon-bound H-atoms were positioned geometrically and included in the refinement using a riding model [C—H 0.93 Å Uiso(H) = 1.2Ueq(C)]. Water H atoms were located in different maps and refined with distance restraints of O—H = 0.85 (2) Å and H—H = 1.35 Å, with displacement parameters set at 1.5Ueq(O). A solvent water molecule with a large displacement parameter is also present in the voids of the structure. It is disordered and has been refined only with an Uiso value and without its H atoms. The O···O contacts between the lattice water molecules are 2.525 Å.

Structure description top

Nowadays, the study of metal-orgnic fameworks (MOFs) has witnessed tremendous growth as one of the most crucial areas of material science (Zhang et al. (2008)). The rational design of these coordination polymers are of great interest in crystal engineering (Zheng et al.(2010)). Some valuable studied MOFs are based on carboxylate ligands because of their linking modes (Wang et al.(2006)). Using bridging ligands in assembly with metal cations of diverse geometries can induce complex structures and variable topologies (Yi et al.(2005)). Related information about carboxymethoxy acid and 1,10-phenanthroline can be obtained by these reports (Chen et al.(2005), Ma et al. (2005), Novitchi et al.(2005)). Herein we report the structure of the Mn title compound, [Mn(C11H8O5)(C12H8N2)(H2O)2].H2O.

As shown in Figure 1, the asymmetric unit of the title complex is composed of one Mn(II) atom, one 3-carboxymethoxy phenyclacrylate anion, one 1,10-phenanthroline ligand, two coordinating water molecules and one solvent water molecule. The six-coordinate Mn(II) ions is surrounded in form of a distorted octahedron by two N atoms from 1,10-phenanthroline, two O atoms from L ligands and two O atoms from water molecules. In the title complex, 1,10-phenanthroline is a terminal ligand and L plays the role of a bis-monodentate bridging ligand. Each manganese site is connected by two µ2-L ligands, forming a zigzag chain along the b axis (Figure 2). There are four kinds of hydrogen-bonding interactions in the compound (Table 1), but only three link the chains to each other, making up a two-dimensional supramolecular network parellel to (100) (Figure 3).

For the study of metal-organic frameworks, see: Zhang et al. (2008); Zheng et al.(2010); Wang et al. (2006); Yi et al. (2005). For related structures, including 1,10-phenanthroline, see: Chen et al. (2005); Ma et al. (2005); For the coordination modes of carboxymethoxy acids, see: Novitchi et al. (2005).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound. Displacement ellipsoids are drawn at the 50% probability level. The disordered lattice water molecule is shown with an arbitrary radius. [Symmetry code:(A) -x + 1,y - 1/2,-z + 1/2.]
[Figure 2] Fig. 2. The chain structure of the title compound along the b axis.
[Figure 3] Fig. 3. View of the supramolecular network connected by hydrogen-bonding interactions.
catena-Poly[[[diaqua(1,10-phenanthroline) manganese]-µ-3-[3-(carboxylatomethoxy)phenyl]acrylato] monohydrate] top
Crystal data top
[Mn(C11H8O5)(C12H8N2)(H2O)2]·H2OF(000) = 1052
Mr = 509.37Dx = 1.478 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9963 reflections
a = 12.8455 (4) Åθ = 1.6–26.5°
b = 21.5944 (7) ŵ = 0.63 mm1
c = 8.2681 (3) ÅT = 293 K
β = 93.712 (2)°Plate, yellow
V = 2288.68 (13) Å30.52 × 0.32 × 0.06 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
4749 independent reflections
Radiation source: fine-focus sealed tube3716 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω scansθmax = 26.5°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1616
Tmin = 0.79, Tmax = 0.96k = 2726
32833 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0567P)2 + 0.8384P]
where P = (Fo2 + 2Fc2)/3
4749 reflections(Δ/σ)max < 0.001
314 parametersΔρmax = 0.49 e Å3
6 restraintsΔρmin = 0.36 e Å3
Crystal data top
[Mn(C11H8O5)(C12H8N2)(H2O)2]·H2OV = 2288.68 (13) Å3
Mr = 509.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.8455 (4) ŵ = 0.63 mm1
b = 21.5944 (7) ÅT = 293 K
c = 8.2681 (3) Å0.52 × 0.32 × 0.06 mm
β = 93.712 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
4749 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3716 reflections with I > 2σ(I)
Tmin = 0.79, Tmax = 0.96Rint = 0.034
32833 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0406 restraints
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.49 e Å3
4749 reflectionsΔρmin = 0.36 e Å3
314 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.30225 (18)0.17206 (10)0.3731 (3)0.0475 (5)
C20.29999 (18)0.23603 (10)0.3655 (3)0.0476 (5)
H20.35160.25880.42260.057*
C30.22127 (18)0.26696 (10)0.2732 (3)0.0483 (5)
C40.1448 (2)0.23178 (13)0.1905 (3)0.0602 (6)
H40.09170.25130.12780.072*
C50.1469 (2)0.16794 (13)0.2007 (4)0.0679 (7)
H50.09420.14500.14650.081*
C60.2257 (2)0.13783 (11)0.2896 (3)0.0598 (6)
H60.22740.09480.29330.072*
C70.3846 (2)0.08228 (10)0.4912 (3)0.0551 (6)
H7A0.31420.06920.51050.066*
H7B0.42820.07330.58850.066*
C80.42315 (18)0.04390 (11)0.3518 (3)0.0481 (5)
C90.21649 (18)0.33439 (11)0.2639 (3)0.0510 (5)
H90.16810.35090.18720.061*
C100.27286 (19)0.37450 (11)0.3519 (3)0.0532 (6)
H100.32020.35980.43270.064*
C110.2635 (2)0.44275 (11)0.3265 (3)0.0532 (6)
C120.8386 (2)0.06615 (14)0.0461 (4)0.0743 (8)
H120.82770.02360.04360.089*
C130.9260 (3)0.08874 (17)0.1225 (4)0.0839 (9)
H130.97210.06170.16830.101*
C140.9410 (2)0.15085 (16)0.1275 (4)0.0753 (8)
H140.99830.16670.17710.090*
C150.87155 (19)0.19118 (13)0.0591 (3)0.0584 (6)
C160.78703 (17)0.16457 (11)0.0156 (3)0.0488 (5)
C170.8803 (2)0.25730 (14)0.0638 (3)0.0672 (7)
H170.93640.27500.11240.081*
C180.8103 (2)0.29410 (13)0.0002 (3)0.0664 (7)
H180.81840.33680.00560.080*
C190.72305 (19)0.26889 (11)0.0762 (3)0.0531 (6)
C200.71149 (17)0.20406 (10)0.0847 (3)0.0452 (5)
C210.6466 (2)0.30519 (11)0.1432 (3)0.0627 (7)
H210.65160.34810.14070.075*
C220.5655 (2)0.27787 (12)0.2118 (3)0.0638 (7)
H220.51410.30180.25560.077*
C230.5599 (2)0.21306 (11)0.2158 (3)0.0545 (6)
H230.50420.19470.26390.065*
Mn10.62539 (3)0.071726 (15)0.14801 (4)0.04754 (13)
N10.77147 (16)0.10253 (9)0.0220 (2)0.0554 (5)
N20.63039 (14)0.17695 (8)0.1542 (2)0.0465 (4)
O10.38426 (13)0.14746 (7)0.46548 (19)0.0546 (4)
O20.48009 (14)0.06992 (8)0.2560 (2)0.0619 (5)
O30.39735 (14)0.01191 (7)0.34978 (19)0.0587 (4)
O40.18729 (16)0.46409 (9)0.2449 (3)0.0775 (6)
O50.33793 (14)0.47531 (7)0.3879 (2)0.0547 (4)
O1W0.70675 (16)0.06432 (8)0.3947 (2)0.0615 (5)
H1WA0.674 (2)0.0477 (14)0.467 (3)0.092*
H1WB0.7569 (19)0.0409 (14)0.374 (4)0.092*
O2W0.53707 (14)0.07366 (7)0.0852 (2)0.0524 (4)
H2WA0.4737 (14)0.0643 (13)0.080 (4)0.079*
H2WB0.559 (2)0.0562 (13)0.165 (3)0.079*
O3W0.0161 (11)0.5474 (5)0.0875 (16)0.494 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0543 (13)0.0511 (12)0.0388 (12)0.0027 (10)0.0148 (10)0.0019 (9)
C20.0522 (12)0.0478 (12)0.0440 (12)0.0016 (10)0.0121 (10)0.0025 (9)
C30.0541 (13)0.0526 (12)0.0399 (12)0.0012 (10)0.0161 (10)0.0002 (9)
C40.0590 (15)0.0682 (16)0.0530 (15)0.0047 (12)0.0017 (12)0.0013 (12)
C50.0645 (16)0.0671 (16)0.0714 (18)0.0061 (13)0.0019 (14)0.0165 (14)
C60.0670 (16)0.0503 (13)0.0625 (16)0.0018 (11)0.0075 (13)0.0069 (11)
C70.0758 (16)0.0466 (12)0.0440 (13)0.0073 (11)0.0115 (11)0.0021 (10)
C80.0537 (13)0.0518 (13)0.0393 (12)0.0036 (10)0.0070 (10)0.0041 (10)
C90.0521 (13)0.0529 (13)0.0496 (13)0.0042 (10)0.0146 (10)0.0077 (10)
C100.0610 (14)0.0496 (12)0.0502 (14)0.0030 (11)0.0132 (11)0.0078 (10)
C110.0592 (14)0.0512 (13)0.0509 (14)0.0067 (11)0.0157 (11)0.0056 (11)
C120.0819 (19)0.0678 (17)0.076 (2)0.0031 (14)0.0293 (16)0.0045 (14)
C130.078 (2)0.098 (2)0.080 (2)0.0136 (18)0.0354 (17)0.0091 (18)
C140.0615 (17)0.094 (2)0.0725 (19)0.0057 (15)0.0185 (14)0.0217 (16)
C150.0479 (13)0.0779 (17)0.0488 (14)0.0080 (12)0.0006 (11)0.0162 (12)
C160.0492 (12)0.0584 (13)0.0380 (12)0.0090 (10)0.0028 (10)0.0082 (10)
C170.0588 (15)0.0775 (18)0.0646 (17)0.0234 (14)0.0025 (13)0.0241 (14)
C180.0718 (17)0.0603 (15)0.0657 (17)0.0182 (14)0.0071 (14)0.0180 (13)
C190.0627 (14)0.0505 (12)0.0443 (13)0.0125 (11)0.0107 (11)0.0095 (10)
C200.0491 (12)0.0507 (12)0.0348 (11)0.0075 (10)0.0055 (9)0.0061 (9)
C210.0886 (19)0.0417 (12)0.0569 (16)0.0027 (12)0.0032 (14)0.0038 (11)
C220.0814 (18)0.0524 (14)0.0577 (16)0.0066 (13)0.0061 (14)0.0009 (12)
C230.0629 (15)0.0512 (13)0.0504 (14)0.0013 (11)0.0104 (11)0.0004 (10)
Mn10.0605 (2)0.0416 (2)0.0417 (2)0.00718 (15)0.01285 (15)0.00287 (14)
N10.0597 (12)0.0562 (12)0.0518 (12)0.0008 (9)0.0161 (9)0.0028 (9)
N20.0546 (11)0.0461 (10)0.0387 (10)0.0064 (8)0.0030 (8)0.0005 (8)
O10.0657 (10)0.0470 (8)0.0511 (9)0.0031 (7)0.0034 (8)0.0002 (7)
O20.0706 (11)0.0645 (11)0.0533 (10)0.0061 (8)0.0242 (9)0.0011 (8)
O30.0816 (12)0.0501 (9)0.0460 (9)0.0035 (8)0.0173 (8)0.0021 (7)
O40.0698 (12)0.0597 (11)0.1015 (16)0.0120 (9)0.0055 (11)0.0033 (11)
O50.0661 (10)0.0442 (8)0.0543 (10)0.0009 (8)0.0075 (8)0.0054 (7)
O1W0.0820 (13)0.0525 (10)0.0502 (10)0.0099 (8)0.0055 (9)0.0012 (8)
O2W0.0640 (10)0.0531 (9)0.0410 (9)0.0064 (8)0.0106 (8)0.0053 (7)
Geometric parameters (Å, º) top
C1—O11.368 (3)C14—H140.9300
C1—C61.379 (3)C15—C161.406 (3)
C1—C21.383 (3)C15—C171.433 (4)
C2—C31.397 (3)C16—N11.356 (3)
C2—H20.9300C16—C201.438 (3)
C3—C41.386 (3)C17—C181.333 (4)
C3—C91.459 (3)C17—H170.9300
C4—C51.381 (4)C18—C191.429 (4)
C4—H40.9300C18—H180.9300
C5—C61.375 (4)C19—C211.398 (4)
C5—H50.9300C19—C201.410 (3)
C6—H60.9300C20—N21.355 (3)
C7—O11.423 (3)C21—C221.354 (4)
C7—C81.528 (3)C21—H210.9300
C7—H7A0.9700C22—C231.402 (3)
C7—H7B0.9700C22—H220.9300
C8—O21.247 (3)C23—N21.322 (3)
C8—O31.250 (3)C23—H230.9300
C9—C101.317 (3)Mn1—O22.1209 (17)
C9—H90.9300Mn1—O5i2.1594 (16)
C10—C111.493 (3)Mn1—O2W2.1731 (17)
C10—H100.9300Mn1—O1W2.2364 (19)
C11—O41.241 (3)Mn1—N22.2738 (18)
C11—O51.267 (3)Mn1—N12.303 (2)
C12—N11.319 (3)O5—Mn1ii2.1594 (16)
C12—C131.410 (4)O1W—H1WA0.835 (17)
C12—H120.9300O1W—H1WB0.845 (17)
C13—C141.356 (4)O2W—H2WA0.842 (16)
C13—H130.9300O2W—H2WB0.828 (16)
C14—C151.393 (4)
O1—C1—C6124.7 (2)C18—C17—C15121.8 (2)
O1—C1—C2115.3 (2)C18—C17—H17119.1
C6—C1—C2120.0 (2)C15—C17—H17119.1
C1—C2—C3121.0 (2)C17—C18—C19121.0 (2)
C1—C2—H2119.5C17—C18—H18119.5
C3—C2—H2119.5C19—C18—H18119.5
C4—C3—C2118.2 (2)C21—C19—C20117.3 (2)
C4—C3—C9119.7 (2)C21—C19—C18123.5 (2)
C2—C3—C9122.1 (2)C20—C19—C18119.2 (2)
C5—C4—C3120.4 (2)N2—C20—C19122.4 (2)
C5—C4—H4119.8N2—C20—C16118.01 (19)
C3—C4—H4119.8C19—C20—C16119.5 (2)
C6—C5—C4121.0 (2)C22—C21—C19120.1 (2)
C6—C5—H5119.5C22—C21—H21120.0
C4—C5—H5119.5C19—C21—H21120.0
C5—C6—C1119.4 (2)C21—C22—C23119.1 (3)
C5—C6—H6120.3C21—C22—H22120.4
C1—C6—H6120.3C23—C22—H22120.4
O1—C7—C8114.93 (19)N2—C23—C22122.9 (2)
O1—C7—H7A108.5N2—C23—H23118.6
C8—C7—H7A108.5C22—C23—H23118.6
O1—C7—H7B108.5O2—Mn1—O5i104.24 (7)
C8—C7—H7B108.5O2—Mn1—O2W87.18 (7)
H7A—C7—H7B107.5O5i—Mn1—O2W90.14 (6)
O2—C8—O3126.3 (2)O2—Mn1—O1W89.24 (7)
O2—C8—C7117.9 (2)O5i—Mn1—O1W87.90 (6)
O3—C8—C7115.8 (2)O2W—Mn1—O1W175.37 (7)
C10—C9—C3127.4 (2)O2—Mn1—N291.90 (7)
C10—C9—H9116.3O5i—Mn1—N2163.86 (7)
C3—C9—H9116.3O2W—Mn1—N290.76 (6)
C9—C10—C11122.4 (2)O1W—Mn1—N292.29 (6)
C9—C10—H10118.8O2—Mn1—N1163.93 (7)
C11—C10—H10118.8O5i—Mn1—N191.42 (7)
O4—C11—O5124.1 (2)O2W—Mn1—N189.25 (7)
O4—C11—C10119.8 (2)O1W—Mn1—N194.99 (7)
O5—C11—C10116.1 (2)N2—Mn1—N172.48 (7)
N1—C12—C13123.1 (3)C12—N1—C16118.0 (2)
N1—C12—H12118.4C12—N1—Mn1126.53 (18)
C13—C12—H12118.4C16—N1—Mn1115.43 (15)
C14—C13—C12118.4 (3)C23—N2—C20118.3 (2)
C14—C13—H13120.8C23—N2—Mn1125.40 (16)
C12—C13—H13120.8C20—N2—Mn1116.33 (15)
C13—C14—C15120.6 (3)C1—O1—C7117.52 (19)
C13—C14—H14119.7C8—O2—Mn1147.61 (17)
C15—C14—H14119.7C11—O5—Mn1ii130.24 (15)
C14—C15—C16117.1 (3)Mn1—O1W—H1WA117 (2)
C14—C15—C17124.0 (2)Mn1—O1W—H1WB100 (2)
C16—C15—C17118.9 (3)H1WA—O1W—H1WB108 (2)
N1—C16—C15122.7 (2)Mn1—O2W—H2WA114 (2)
N1—C16—C20117.7 (2)Mn1—O2W—H2WB121 (2)
C15—C16—C20119.5 (2)H2WA—O2W—H2WB108 (2)
O1—C1—C2—C3178.98 (19)C13—C12—N1—Mn1179.4 (2)
C6—C1—C2—C30.4 (3)C15—C16—N1—C120.5 (4)
C1—C2—C3—C40.6 (3)C20—C16—N1—C12177.7 (2)
C1—C2—C3—C9179.5 (2)C15—C16—N1—Mn1179.03 (17)
C2—C3—C4—C50.3 (4)C20—C16—N1—Mn10.8 (2)
C9—C3—C4—C5178.6 (2)O2—Mn1—N1—C12164.1 (3)
C3—C4—C5—C61.4 (4)O5i—Mn1—N1—C123.1 (2)
C4—C5—C6—C11.7 (4)O2W—Mn1—N1—C1287.0 (2)
O1—C1—C6—C5180.0 (2)O1W—Mn1—N1—C1291.1 (2)
C2—C1—C6—C50.8 (4)N2—Mn1—N1—C12178.1 (3)
O1—C7—C8—O222.3 (3)O2—Mn1—N1—C1614.3 (4)
O1—C7—C8—O3160.6 (2)O5i—Mn1—N1—C16178.49 (16)
C4—C3—C9—C10169.4 (2)O2W—Mn1—N1—C1691.39 (16)
C2—C3—C9—C109.5 (4)O1W—Mn1—N1—C1690.47 (16)
C3—C9—C10—C11177.6 (2)N2—Mn1—N1—C160.36 (15)
C9—C10—C11—O415.0 (4)C22—C23—N2—C200.2 (3)
C9—C10—C11—O5162.8 (2)C22—C23—N2—Mn1177.99 (18)
N1—C12—C13—C140.7 (5)C19—C20—N2—C230.1 (3)
C12—C13—C14—C150.2 (5)C16—C20—N2—C23179.0 (2)
C13—C14—C15—C160.6 (4)C19—C20—N2—Mn1178.38 (15)
C13—C14—C15—C17178.0 (3)C16—C20—N2—Mn10.7 (2)
C14—C15—C16—N10.3 (3)O2—Mn1—N2—C232.19 (19)
C17—C15—C16—N1178.4 (2)O5i—Mn1—N2—C23177.5 (2)
C14—C15—C16—C20178.5 (2)O2W—Mn1—N2—C2389.39 (18)
C17—C15—C16—C200.2 (3)O1W—Mn1—N2—C2387.13 (19)
C14—C15—C17—C18178.2 (3)N1—Mn1—N2—C23178.4 (2)
C16—C15—C17—C180.4 (4)O2—Mn1—N2—C20175.99 (15)
C15—C17—C18—C190.2 (4)O5i—Mn1—N2—C204.3 (3)
C17—C18—C19—C21179.2 (2)O2W—Mn1—N2—C2088.79 (15)
C17—C18—C19—C200.3 (4)O1W—Mn1—N2—C2094.69 (15)
C21—C19—C20—N20.1 (3)N1—Mn1—N2—C200.18 (14)
C18—C19—C20—N2179.5 (2)C6—C1—O1—C77.0 (3)
C21—C19—C20—C16179.1 (2)C2—C1—O1—C7173.64 (19)
C18—C19—C20—C160.5 (3)C8—C7—O1—C180.7 (3)
N1—C16—C20—N21.0 (3)O3—C8—O2—Mn154.9 (4)
C15—C16—C20—N2179.28 (19)C7—C8—O2—Mn1121.9 (3)
N1—C16—C20—C19178.06 (19)O5i—Mn1—O2—C837.3 (3)
C15—C16—C20—C190.2 (3)O2W—Mn1—O2—C8126.8 (3)
C20—C19—C21—C220.4 (3)O1W—Mn1—O2—C850.3 (3)
C18—C19—C21—C22179.1 (2)N2—Mn1—O2—C8142.6 (3)
C19—C21—C22—C230.6 (4)N1—Mn1—O2—C8155.9 (3)
C21—C22—C23—N20.5 (4)O4—C11—O5—Mn1ii9.6 (4)
C13—C12—N1—C161.0 (4)C10—C11—O5—Mn1ii168.14 (15)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—H2WB···O3iii0.83 (2)1.92 (2)2.741 (2)176 (3)
O2W—H2WA···O5iv0.84 (2)1.95 (2)2.764 (2)164 (3)
O1W—H1WB···O4i0.85 (2)2.08 (2)2.841 (3)150 (3)
O1W—H1WA···O3v0.84 (2)1.98 (2)2.810 (2)176 (3)
Symmetry codes: (i) x+1, y1/2, z+1/2; (iii) x+1, y, z; (iv) x, y+1/2, z1/2; (v) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Mn(C11H8O5)(C12H8N2)(H2O)2]·H2O
Mr509.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)12.8455 (4), 21.5944 (7), 8.2681 (3)
β (°) 93.712 (2)
V3)2288.68 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.63
Crystal size (mm)0.52 × 0.32 × 0.06
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.79, 0.96
No. of measured, independent and
observed [I > 2σ(I)] reflections
32833, 4749, 3716
Rint0.034
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.116, 1.06
No. of reflections4749
No. of parameters314
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.49, 0.36

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—H2WB···O3i0.828 (16)1.915 (17)2.741 (2)176 (3)
O2W—H2WA···O5ii0.842 (16)1.945 (19)2.764 (2)164 (3)
O1W—H1WB···O4iii0.845 (17)2.08 (2)2.841 (3)150 (3)
O1W—H1WA···O3iv0.835 (17)1.977 (17)2.810 (2)176 (3)
Symmetry codes: (i) x+1, y, z; (ii) x, y+1/2, z1/2; (iii) x+1, y1/2, z+1/2; (iv) x+1, y, z+1.
 

Acknowledgements

This work was supported financially by the Natural Science Foundation of Zhejiang Province (LY12B01002).

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, H. Y., Tagore, R., Das, S., Incarvito, C., Faller, J. W., Crabtree, R. H. & Brudvig, G. W. (2005). Inorg. Chem. 44, 7661–7670.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMa, C. B., Chen, C. N. & Liu, Q. T. (2005). CrystEngComm, 7, 650–655.  Web of Science CSD CrossRef CAS Google Scholar
First citationNovitchi, G., Shova, S., Costes, J. P., Mamula, O. & Gdaniec, M. (2005). Inorg. Chem. 358, 4437–4442.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Z., Zhang, H. H., Chen, Y. P., Huang, C. C., Sun, R. Q., Cao, Y. N. & Yu, X. H. (2006). J. Solid State Chem. 179, 1536–1544.  Web of Science CSD CrossRef CAS Google Scholar
First citationYi, L., Yang, X. & Cheng, P. (2005). Cryst. Growth Des. 5, 1215–1219.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, R. B., Li, Z. J., Cheng, J. K., Qin, Y. Y., Zhang, J. & Yao, Y. G. (2008). Cryst. Growth Des. 8, 2562–2573.  Web of Science CSD CrossRef CAS Google Scholar
First citationZheng, Z. B., Wu, R. T., Li, J. K., Sun, Y. F. & Han, Y. F. (2010). J. Mol. Struct. 964, 109–118.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds