organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Chloro­anilinium thio­cyanate

aSchool of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
*Correspondence e-mail: bohari@pkrisc.cc.ukm.my

(Received 23 May 2012; accepted 24 May 2012; online 2 June 2012)

In the title compound, C6H7ClN+·NCS, the benzene ring and the protonated amine and chloro substituents are nearly planar, with a maximum deviation of 0.002 (2) Å for the N atom. In the crystal, the mol­ecules are linked by N—H⋯N and N—H⋯S hydrogen bonds into a chain along the b axis.

Related literature

For bond-length data see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]) and for a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For related thio­cyanate structures, see: Salem et al. (2012[Salem, H. F., Hasbullah, S. A. & Yamin, B. M. (2012). Acta Cryst. E68, o1732.]); Selvakumaran et al. (2011[Selvakumaran, N., Karvembu, R., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2843.]); Khawar Rauf et al. (2008[Khawar Rauf, M., Ebihara, M., Imtiaz-ud-Din, & Badshah, A. (2008). Acta Cryst. E64, o366.]).

[Scheme 1]

Experimental

Crystal data
  • C6H7ClN+·NCS

  • Mr = 186.66

  • Orthorhombic, P b c a

  • a = 7.743 (2) Å

  • b = 7.199 (2) Å

  • c = 31.913 (10) Å

  • V = 1778.8 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.60 mm−1

  • T = 298 K

  • 0.50 × 0.43 × 0.30 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SABABS, SMART and SAINT, Bruker AXS Inc. Madison, Wisconsin, USA.]) Tmin = 0.754, Tmax = 0.841

  • 10422 measured reflections

  • 1846 independent reflections

  • 1628 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.108

  • S = 1.18

  • 1846 reflections

  • 112 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N2i 0.87 (2) 2.03 (1) 2.888 (2) 172 (2)
N1—H1B⋯N2ii 0.86 (1) 2.08 (1) 2.911 (3) 162 (2)
N1—H1C⋯S1iii 0.87 (2) 2.48 (3) 3.285 (2) 155 (2)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) -x+1, -y+1, -z+1; (iii) -x+1, -y, -z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SABABS, SMART and SAINT, Bruker AXS Inc. Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SABABS, SMART and SAINT, Bruker AXS Inc. Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound (Fig. 1) is an organic thiocyanate similar to dicylohexylammonium thiocyanate (Khawar Rauf et al., 2008; Selvakumaran et al., 2011) and recently 2-cyclohexan-1-iminium thiocyanate (Salem et al., 2012). The para-anilinium cation is planar except the hydrogen atoms of the ammonium moiety. The maximum deviation is 0.002 (2) Å for N1 atom from the least square plane. The thiocyanate ion is linear with N2–C7–S1 bond angle of 179.5 (2)°. The bond lengths and angles are in normal range (Allen et al., 1987; 2002). In the crystal structure, the molecules are linked by the intermolecular hydrogen bonds between the hydrogen atoms of the ammonium moiety with the nitrogen and sulfur atoms of the thiocynato anion (Table 1) to form one-dimensional chain along the b axis (Fig. 2).

Related literature top

For bond-length data see: Allen et al. (1987) and for a description of the Cambridge Structural Database, see: Allen (2002). For related thiocyanate structures, see: Salem et al. (2012); Selvakumaran et al. (2011); Khawar Rauf et al. (2008).

Experimental top

All solvents and chemicals were of analytical grade and were used without purification. The title compound was prepared by mixing ammonium thiocyanate (0.76 g, 0.01 mol) and para-chloroaniline (1.27 g, 0.01 mol) in the presence of HCl. The mixture was refluxed for 1 h. Single crystals were obtained from the solution after one day of evaporation. Yield 85%; m.p: 390.5–393.2 K.

Refinement top

After their location in the difference map, the H-atoms attached to the C were fixed geometrically at ideal positions and allowed to ride on the parent atoms with C—H = 0.93 Å, with Uiso(H)=1.2Ueq(C,) However, the protonated amino hydrogen atoms were located from the Fourier map and refined isotropically.

Structure description top

The title compound (Fig. 1) is an organic thiocyanate similar to dicylohexylammonium thiocyanate (Khawar Rauf et al., 2008; Selvakumaran et al., 2011) and recently 2-cyclohexan-1-iminium thiocyanate (Salem et al., 2012). The para-anilinium cation is planar except the hydrogen atoms of the ammonium moiety. The maximum deviation is 0.002 (2) Å for N1 atom from the least square plane. The thiocyanate ion is linear with N2–C7–S1 bond angle of 179.5 (2)°. The bond lengths and angles are in normal range (Allen et al., 1987; 2002). In the crystal structure, the molecules are linked by the intermolecular hydrogen bonds between the hydrogen atoms of the ammonium moiety with the nitrogen and sulfur atoms of the thiocynato anion (Table 1) to form one-dimensional chain along the b axis (Fig. 2).

For bond-length data see: Allen et al. (1987) and for a description of the Cambridge Structural Database, see: Allen (2002). For related thiocyanate structures, see: Salem et al. (2012); Selvakumaran et al. (2011); Khawar Rauf et al. (2008).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. : Molecular structure of the title compound, (I), with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. : Packing diagram of (I), viewed down b axis. The dashed lines denote hydrogen bonds.
4-Chloroanilinium thiocyanate top
Crystal data top
C6H7ClN+·NCSF(000) = 768
Mr = 186.66Dx = 1.394 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4443 reflections
a = 7.743 (2) Åθ = 1.2–26.5°
b = 7.199 (2) ŵ = 0.60 mm1
c = 31.913 (10) ÅT = 298 K
V = 1778.8 (10) Å3Slab, colourless
Z = 80.50 × 0.43 × 0.30 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1846 independent reflections
Radiation source: fine-focus sealed tube1628 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 83.66 pixels mm-1θmax = 26.5°, θmin = 1.2°
ω scanh = 59
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
k = 98
Tmin = 0.754, Tmax = 0.841l = 3840
10422 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.18 w = 1/[σ2(Fo2) + (0.0501P)2 + 0.6879P]
where P = (Fo2 + 2Fc2)/3
1846 reflections(Δ/σ)max < 0.002
112 parametersΔρmax = 0.31 e Å3
3 restraintsΔρmin = 0.19 e Å3
Crystal data top
C6H7ClN+·NCSV = 1778.8 (10) Å3
Mr = 186.66Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 7.743 (2) ŵ = 0.60 mm1
b = 7.199 (2) ÅT = 298 K
c = 31.913 (10) Å0.50 × 0.43 × 0.30 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1846 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1628 reflections with I > 2σ(I)
Tmin = 0.754, Tmax = 0.841Rint = 0.024
10422 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0393 restraints
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.18Δρmax = 0.31 e Å3
1846 reflectionsΔρmin = 0.19 e Å3
112 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.41886 (10)0.01916 (11)0.749321 (18)0.0681 (2)
S10.66687 (7)0.20120 (7)0.468838 (17)0.04316 (18)
N10.5614 (2)0.1442 (3)0.56935 (6)0.0404 (4)
H1A0.6668 (16)0.111 (4)0.5642 (7)0.048 (7)*
H1B0.550 (3)0.2589 (17)0.5623 (8)0.062 (8)*
H1C0.490 (3)0.082 (4)0.5539 (7)0.068 (8)*
N20.4214 (2)0.4537 (3)0.43930 (7)0.0510 (5)
C10.4128 (3)0.2283 (4)0.63414 (7)0.0581 (6)
H10.35760.32410.61990.070*
C20.3805 (4)0.1992 (4)0.67630 (8)0.0638 (7)
H20.30380.27570.69060.077*
C30.4620 (3)0.0576 (3)0.69664 (6)0.0446 (5)
C40.5754 (3)0.0562 (3)0.67624 (7)0.0561 (6)
H40.63010.15240.69040.067*
C50.6076 (3)0.0262 (3)0.63414 (7)0.0526 (6)
H50.68470.10230.61980.063*
C60.5263 (2)0.1152 (3)0.61366 (6)0.0363 (4)
C70.5235 (3)0.3494 (3)0.45172 (6)0.0367 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0875 (5)0.0781 (5)0.0387 (3)0.0028 (4)0.0118 (3)0.0012 (3)
S10.0390 (3)0.0415 (3)0.0490 (3)0.0027 (2)0.0001 (2)0.0058 (2)
N10.0408 (10)0.0419 (10)0.0387 (9)0.0012 (8)0.0013 (8)0.0028 (7)
N20.0441 (10)0.0450 (10)0.0639 (12)0.0019 (9)0.0057 (9)0.0067 (9)
C10.0664 (16)0.0605 (14)0.0473 (13)0.0269 (13)0.0001 (11)0.0027 (11)
C20.0710 (16)0.0712 (16)0.0491 (13)0.0305 (14)0.0105 (12)0.0039 (12)
C30.0497 (12)0.0505 (12)0.0338 (9)0.0063 (10)0.0016 (9)0.0028 (9)
C40.0690 (16)0.0528 (13)0.0465 (12)0.0168 (12)0.0043 (11)0.0104 (10)
C50.0606 (14)0.0531 (13)0.0440 (12)0.0189 (11)0.0098 (10)0.0047 (10)
C60.0354 (9)0.0366 (10)0.0368 (10)0.0023 (8)0.0018 (8)0.0012 (7)
C70.0372 (10)0.0338 (9)0.0392 (10)0.0066 (8)0.0024 (8)0.0005 (8)
Geometric parameters (Å, º) top
Cl1—C31.736 (2)C1—H10.9300
S1—C71.634 (2)C2—C31.363 (3)
N1—C61.455 (3)C2—H20.9300
N1—H1A0.866 (10)C3—C41.365 (3)
N1—H1B0.860 (10)C4—C51.384 (3)
N1—H1C0.868 (10)C4—H40.9300
N2—C71.160 (3)C5—C61.364 (3)
C1—C61.365 (3)C5—H50.9300
C1—C21.385 (4)
C6—N1—H1A108.8 (16)C2—C3—Cl1119.39 (18)
C6—N1—H1B111.9 (19)C4—C3—Cl1119.33 (18)
H1A—N1—H1B108 (3)C3—C4—C5119.0 (2)
C6—N1—H1C110.9 (19)C3—C4—H4120.5
H1A—N1—H1C111 (3)C5—C4—H4120.5
H1B—N1—H1C107 (3)C6—C5—C4119.9 (2)
C6—C1—C2119.4 (2)C6—C5—H5120.1
C6—C1—H1120.3C4—C5—H5120.1
C2—C1—H1120.3C5—C6—C1120.9 (2)
C3—C2—C1119.5 (2)C5—C6—N1119.10 (18)
C3—C2—H2120.3C1—C6—N1120.02 (19)
C1—C2—H2120.3N2—C7—S1179.5 (2)
C2—C3—C4121.3 (2)
C6—C1—C2—C30.3 (4)C3—C4—C5—C60.1 (4)
C1—C2—C3—C40.2 (4)C4—C5—C6—C10.0 (4)
C1—C2—C3—Cl1179.0 (2)C4—C5—C6—N1179.8 (2)
C2—C3—C4—C50.1 (4)C2—C1—C6—C50.2 (4)
Cl1—C3—C4—C5179.2 (2)C2—C1—C6—N1180.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N2i0.87 (2)2.03 (1)2.888 (2)172 (2)
N1—H1B···N2ii0.86 (1)2.08 (1)2.911 (3)162 (2)
N1—H1C···S1iii0.87 (2)2.48 (3)3.285 (2)155 (2)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC6H7ClN+·NCS
Mr186.66
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)7.743 (2), 7.199 (2), 31.913 (10)
V3)1778.8 (10)
Z8
Radiation typeMo Kα
µ (mm1)0.60
Crystal size (mm)0.50 × 0.43 × 0.30
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.754, 0.841
No. of measured, independent and
observed [I > 2σ(I)] reflections
10422, 1846, 1628
Rint0.024
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.108, 1.18
No. of reflections1846
No. of parameters112
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.19

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N2i0.866 (15)2.029 (14)2.888 (2)172 (2)
N1—H1B···N2ii0.860 (14)2.081 (13)2.911 (3)162 (2)
N1—H1C···S1iii0.87 (2)2.48 (3)3.285 (2)155 (2)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y, z+1.
 

Acknowledgements

The authors would like to thank the Malaysian Government and Universiti Kebangsaan Malaysia for the research grants UKM-GUP-NBT-68–27–110.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2000). SABABS, SMART and SAINT, Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationKhawar Rauf, M., Ebihara, M., Imtiaz-ud-Din, & Badshah, A. (2008). Acta Cryst. E64, o366.  Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSalem, H. F., Hasbullah, S. A. & Yamin, B. M. (2012). Acta Cryst. E68, o1732.  CSD CrossRef IUCr Journals Google Scholar
First citationSelvakumaran, N., Karvembu, R., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2843.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds