metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[(5,5,7,12,12,14-hexa­methyl-1,4,8,11-tetra­aza­cyclo­tetra­deca-1,7-diene)copper(II)]-μ-chlorido-[di­chloro­cuprate(II)]-μ-chlorido]

aLow Carbon Economy Research Group, School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, UKM 43600 Bangi Selangor, Malaysia, bSchool of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, UKM 43600 Bangi Selangor, Malaysia, and cLaboratoire de Chimie de Coordination, UPR5241, 205 Route de Narbonne 31077, Toulouse Cedex 04, France
*Correspondence e-mail: bohari@ukm.my

(Received 28 May 2012; accepted 31 May 2012; online 13 June 2012)

In the title compound, [Cu2Cl4(C16H32N4)]n, the central CuII anion of the macrocyclic complex cation is weakly linked to two Cl atoms of the tetrachloridocuprate anion with Cu—Cl distances of 3.008 (3) and 3.220 (3) Å, respectively, forming a chain parallel to [10-1]. The geometry of the Cu–macrocyclic complex is distorted octa­hedral with the bridging Cl atoms occupying the axial position at an angle of 173.44 (7)° about the central CuII atom. The tetrachloridocuprate anion adopts a distorted tetra­hedral geometry. In the crystal, the chain is stabilized by intra- and inter­molecular N—H⋯Cl hydrogen bonds.

Related literature

For related crystal structures, see: Shi & He (2011[Shi, F.-F. & He, X.-L. (2011). Acta Cryst. E67, m607.]); Lu et al. (1981[Lu, T. H., Lee, T. J., Liang, B. F. & Chung, C. S. (1981). J. Inorg. Nucl. Chem. 43, 2333-2336.]); Podberezskaya et al. (1986[Podberezskaya, N. V., Pervukhina, N. V. & Myachina, L. I. (1986). J. Struct. Chem. 27, 110-114.]). For the preparation, see: Curtis & Hay (1966[Curtis, N. F. & Hay, R. W. (1966). J. Chem. Soc. Chem. Commun. pp. 524-525.]); Curtis et al. (1975[Curtis, N. F., Hay, R. W. & Lawrance, G. A. (1975). J. Chem. Soc. Perkin Trans. 1, pp. 591-593]). For bond-length and angle data, see: Allen et al. (2003[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (2003). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]); Orpen et al. (1989[Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1-83.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2Cl4(C16H32N4)]

  • Mr = 549.34

  • Monoclinic, P 21 /n

  • a = 9.660 (3) Å

  • b = 15.039 (4) Å

  • c = 16.160 (5) Å

  • β = 102.424 (7)°

  • V = 2292.6 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.33 mm−1

  • T = 298 K

  • 0.50 × 0.49 × 0.19 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.389, Tmax = 0.666

  • 11336 measured reflections

  • 3956 independent reflections

  • 2763 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.188

  • S = 1.06

  • 3952 reflections

  • 241 parameters

  • H-atom parameters constrained

  • Δρmax = 0.93 e Å−3

  • Δρmin = −0.80 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl3i 0.91 2.62 3.498 (6) 163
N1—H1⋯Cl4i 0.91 2.94 3.527 (5) 123
N3—H3⋯Cl1 0.91 2.62 3.479 (6) 159
N3—H3⋯Cl2 0.91 2.84 3.394 (5) 121
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL, ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The 14-membered macrocyclic ring 5,7,7,12,14,14,-hexamethyl-1,4,8,11-tetra azacyclotetradeca-4,11-diene (L) formed complexes with copper in a variety of coordination modes depending on the copper salts used and other reagents. The salt type complexes such as [CuBr(L)]Br.2H2O (Shi & He, 2011),[Cu(L)] ClO4 (Lu et al., 1981) and [CuI(L)]IH2O (Podberezskaya et al., 1986) are common examples when the ligand was reacted with CuBr2, Cu(ClO4)2, and CuI2, respectively. In contrast, a one-dimensional polymeric chain, [Cu(L)CuCl4]n, was obtained when ammonium tetrachlorocuprate(II) was employed to react with the ligand (Fig.1). The Cu1 atom is coordinated to the opposite pair of amino (N1 and N3) and imino (N2 and N4) nitrogen atoms in the same way as in the examples. However, the central Cu1 atom is connected to the Cl2 atom of the tetrachlorocuprate(II) and also to the symmetrically related Cl4i with Cu1—Cl2 and Cu1—Cl4i distances of 3.008 (3) and 3.220 (3) Å, respectively (Fig. 1). As the result, the Cu1 atom formed a distorted octahedral geometry with Cl2 and Cl4i occupy the axial position at an angle about the Cu1 atom of 173.44 (7)°. The bridging angle of Cu1—Cl2—Cu2 and Cu1—Cl4i—Cu2i are 105.62 (9)° and 102.43 (8)°, respectively. The tetrachlorocuprate has a distorted tetrahedral geometry with angles about the Cu2 atom between 94.39 (9)° and 139.23 (10)°. The bond lengths and angles are in normal ranges (Allen et al., 2003; Orpen et al., 1989) and comparable to those in the example complexes. In the crystal structure, the molecular chain is also stabilized by intramolecular and intramolecular hydrogen bonds (symmetry codes as in Table 2).

Related literature top

For related crystal structures, see: Shi & He (2011); Lu et al. (1981); Podberezskaya et al. (1986). For the preparation, see: Curtis & Hay (1966); Curtis et al. (1975). For bond-length and angles data, see: Allen et al. (2003); Orpen et al. (1989).

Experimental top

All solvent and chemicals were of analytical grade and were used without purification. The macrocylic compound was prepared according to the literature methods (Curtis & Hay, 1966; Curtis et al., 1975). Equimolar amount of the macrocylic ligand (81 mg) and NH4CuCl4 (52 mg) was mixed with ethanol and stirred for about 20 minutes. Some single crystals were obtained from the solution after one week of evaporation (yield 61%, m.p 670.3–671.0 K).

Refinement top

H atoms on the parent carbon atoms were positioned geometrically with C—H= 0.96–0.98 Å and constrained to ride on their parent atoms with Uiso(H)= xUeq(parent atom) where x=1.5 for CH3 group and 1.2 for CH2 and CH groups. The H atom attached to nitrogen were located on difference Fourier but introduced in calculated positions and treated as riding with N—H= 0.91 Å and Uiso(H)= 1.2Ueq(N). A rotating group model was applied to the methyl group.

Structure description top

The 14-membered macrocyclic ring 5,7,7,12,14,14,-hexamethyl-1,4,8,11-tetra azacyclotetradeca-4,11-diene (L) formed complexes with copper in a variety of coordination modes depending on the copper salts used and other reagents. The salt type complexes such as [CuBr(L)]Br.2H2O (Shi & He, 2011),[Cu(L)] ClO4 (Lu et al., 1981) and [CuI(L)]IH2O (Podberezskaya et al., 1986) are common examples when the ligand was reacted with CuBr2, Cu(ClO4)2, and CuI2, respectively. In contrast, a one-dimensional polymeric chain, [Cu(L)CuCl4]n, was obtained when ammonium tetrachlorocuprate(II) was employed to react with the ligand (Fig.1). The Cu1 atom is coordinated to the opposite pair of amino (N1 and N3) and imino (N2 and N4) nitrogen atoms in the same way as in the examples. However, the central Cu1 atom is connected to the Cl2 atom of the tetrachlorocuprate(II) and also to the symmetrically related Cl4i with Cu1—Cl2 and Cu1—Cl4i distances of 3.008 (3) and 3.220 (3) Å, respectively (Fig. 1). As the result, the Cu1 atom formed a distorted octahedral geometry with Cl2 and Cl4i occupy the axial position at an angle about the Cu1 atom of 173.44 (7)°. The bridging angle of Cu1—Cl2—Cu2 and Cu1—Cl4i—Cu2i are 105.62 (9)° and 102.43 (8)°, respectively. The tetrachlorocuprate has a distorted tetrahedral geometry with angles about the Cu2 atom between 94.39 (9)° and 139.23 (10)°. The bond lengths and angles are in normal ranges (Allen et al., 2003; Orpen et al., 1989) and comparable to those in the example complexes. In the crystal structure, the molecular chain is also stabilized by intramolecular and intramolecular hydrogen bonds (symmetry codes as in Table 2).

For related crystal structures, see: Shi & He (2011); Lu et al. (1981); Podberezskaya et al. (1986). For the preparation, see: Curtis & Hay (1966); Curtis et al. (1975). For bond-length and angles data, see: Allen et al. (2003); Orpen et al. (1989).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. The long Cu—Cl interactions are shown as dashed lines. (i): 1/2+x,1/2-y,1/2+z.
catena-Poly[[(5,5,7,12,12,14-hexamethyl-1,4,8,11- tetraazacycylotetradeca-1,7-diene)copper(II)]-µ-chlorido- [dichlorocuprate(II)]-µ-chlorido] top
Crystal data top
[Cu2Cl4(C16H32N4)]F(000) = 1128
Mr = 549.34Dx = 1.592 Mg m3
Monoclinic, P21/nMelting point = 671.0–670.3 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 9.660 (3) ÅCell parameters from 4236 reflections
b = 15.039 (4) Åθ = 1.8–25.0°
c = 16.160 (5) ŵ = 2.33 mm1
β = 102.424 (7)°T = 298 K
V = 2292.6 (12) Å3Block, violet
Z = 40.50 × 0.49 × 0.19 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3956 independent reflections
Radiation source: fine-focus sealed tube2763 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
Detector resolution: 83.66 pixels mm-1θmax = 25.0°, θmin = 1.8°
ω scanh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
k = 1716
Tmin = 0.389, Tmax = 0.666l = 1519
11336 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.188H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0821P)2 + 7.8527P]
where P = (Fo2 + 2Fc2)/3
3952 reflections(Δ/σ)max < 0.001
241 parametersΔρmax = 0.93 e Å3
0 restraintsΔρmin = 0.80 e Å3
Crystal data top
[Cu2Cl4(C16H32N4)]V = 2292.6 (12) Å3
Mr = 549.34Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.660 (3) ŵ = 2.33 mm1
b = 15.039 (4) ÅT = 298 K
c = 16.160 (5) Å0.50 × 0.49 × 0.19 mm
β = 102.424 (7)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3956 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2763 reflections with I > 2σ(I)
Tmin = 0.389, Tmax = 0.666Rint = 0.051
11336 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.188H-atom parameters constrained
S = 1.06Δρmax = 0.93 e Å3
3952 reflectionsΔρmin = 0.80 e Å3
241 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7323 (8)0.0580 (5)0.6317 (5)0.0544 (18)
H1A0.80870.01530.64730.065*
H1B0.67110.03860.57910.065*
C20.6497 (8)0.0638 (5)0.7001 (5)0.058 (2)
H2A0.59630.00940.70170.069*
H2B0.71390.07140.75480.069*
C30.4362 (8)0.1404 (5)0.7048 (5)0.0529 (18)
C40.3344 (8)0.2171 (5)0.6825 (6)0.062 (2)
H4A0.26520.21320.71780.074*
H4B0.28380.20950.62420.074*
C50.3984 (8)0.3118 (5)0.6917 (5)0.057 (2)
C60.5430 (8)0.4094 (4)0.6161 (5)0.0547 (19)
H6A0.60650.42420.66930.066*
H6B0.46950.45440.60380.066*
C70.6230 (8)0.4061 (4)0.5466 (5)0.0537 (19)
H7A0.55730.40320.49200.064*
H7B0.68020.45930.54790.064*
C80.8332 (8)0.3265 (5)0.5371 (4)0.0542 (19)
C90.9336 (8)0.2487 (5)0.5576 (6)0.062 (2)
H9A0.98990.25820.61420.075*
H9B0.99810.25150.51920.075*
C100.8769 (8)0.1547 (5)0.5543 (5)0.061 (2)
C110.3854 (11)0.0643 (7)0.7509 (7)0.097 (4)
H11A0.46540.03050.78010.146*
H11B0.32420.02680.71090.146*
H11C0.33430.08710.79110.146*
C120.2761 (10)0.3782 (7)0.6769 (7)0.094 (3)
H12A0.22610.37530.61870.141*
H12B0.31260.43710.68940.141*
H12C0.21240.36390.71310.141*
C130.4937 (10)0.3250 (7)0.7790 (5)0.075 (3)
H13A0.57870.29070.78320.113*
H13B0.44480.30590.82160.113*
H13C0.51770.38680.78710.113*
C140.8869 (11)0.4047 (7)0.4960 (7)0.098 (4)
H14A0.89250.45560.53250.146*
H14B0.82330.41720.44290.146*
H14C0.97930.39150.48630.146*
C151.0026 (10)0.0905 (6)0.5757 (7)0.086 (3)
H15A0.96820.03050.57350.128*
H15B1.05650.10300.63170.128*
H15C1.06180.09780.53550.128*
C160.7851 (10)0.1329 (7)0.4671 (5)0.083 (3)
H16A0.74820.07360.46770.124*
H16B0.84150.13690.42510.124*
H16C0.70800.17440.45390.124*
N10.7908 (6)0.1469 (3)0.6206 (3)0.0406 (12)
H10.85300.15800.67040.049*
N20.5521 (6)0.1404 (3)0.6823 (3)0.0417 (13)
N30.4791 (5)0.3212 (3)0.6221 (3)0.0374 (12)
H30.41390.31400.57280.045*
N40.7147 (6)0.3268 (3)0.5588 (3)0.0390 (12)
Cl10.2531 (2)0.35472 (13)0.42578 (14)0.0632 (5)
Cl20.4140 (3)0.15858 (13)0.47320 (12)0.0673 (6)
Cl30.5249 (2)0.36196 (14)0.31834 (14)0.0662 (6)
Cl40.3711 (3)0.17021 (12)0.25925 (12)0.0684 (6)
Cu10.63166 (8)0.23288 (5)0.61849 (5)0.0404 (3)
Cu20.39080 (9)0.26064 (5)0.36943 (5)0.0452 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.065 (5)0.033 (4)0.063 (5)0.009 (3)0.011 (4)0.007 (3)
C20.068 (5)0.033 (4)0.072 (5)0.006 (3)0.015 (4)0.025 (4)
C30.059 (5)0.050 (4)0.056 (4)0.011 (4)0.028 (4)0.012 (3)
C40.049 (4)0.067 (5)0.080 (6)0.002 (4)0.037 (4)0.009 (4)
C50.055 (4)0.057 (5)0.070 (5)0.010 (4)0.037 (4)0.008 (4)
C60.067 (5)0.030 (4)0.064 (5)0.009 (3)0.007 (4)0.003 (3)
C70.067 (5)0.030 (4)0.063 (5)0.009 (3)0.011 (4)0.012 (3)
C80.060 (5)0.063 (5)0.041 (4)0.019 (4)0.015 (4)0.005 (3)
C90.055 (5)0.064 (5)0.078 (6)0.001 (4)0.037 (4)0.004 (4)
C100.058 (5)0.064 (5)0.072 (5)0.003 (4)0.035 (4)0.017 (4)
C110.087 (7)0.087 (7)0.131 (9)0.009 (6)0.052 (7)0.052 (7)
C120.079 (7)0.075 (7)0.142 (10)0.024 (5)0.055 (7)0.012 (6)
C130.082 (6)0.092 (7)0.060 (5)0.002 (5)0.034 (5)0.020 (5)
C140.085 (7)0.096 (8)0.124 (9)0.017 (6)0.051 (7)0.045 (7)
C150.073 (6)0.070 (6)0.128 (9)0.015 (5)0.054 (6)0.023 (6)
C160.090 (7)0.104 (8)0.061 (5)0.005 (6)0.033 (5)0.020 (5)
N10.048 (3)0.037 (3)0.035 (3)0.004 (2)0.005 (2)0.004 (2)
N20.058 (4)0.027 (3)0.042 (3)0.002 (2)0.015 (3)0.007 (2)
N30.043 (3)0.028 (3)0.039 (3)0.004 (2)0.003 (2)0.002 (2)
N40.051 (3)0.033 (3)0.032 (3)0.004 (2)0.007 (2)0.007 (2)
Cl10.0649 (12)0.0523 (11)0.0735 (13)0.0108 (9)0.0173 (10)0.0089 (9)
Cl20.1047 (17)0.0421 (10)0.0533 (11)0.0027 (10)0.0129 (11)0.0037 (8)
Cl30.0785 (14)0.0529 (12)0.0718 (13)0.0212 (10)0.0261 (11)0.0083 (9)
Cl40.1169 (18)0.0369 (10)0.0491 (10)0.0053 (10)0.0125 (11)0.0054 (8)
Cu10.0538 (5)0.0234 (4)0.0523 (5)0.0064 (3)0.0297 (4)0.0089 (3)
Cu20.0550 (6)0.0330 (5)0.0470 (5)0.0004 (4)0.0099 (4)0.0036 (3)
Geometric parameters (Å, º) top
C1—N11.477 (8)C10—C161.529 (12)
C1—C21.499 (10)C10—C151.531 (12)
C1—H1A0.9700C11—H11A0.9600
C1—H1B0.9700C11—H11B0.9600
C2—N21.478 (8)C11—H11C0.9600
C2—H2A0.9700C12—H12A0.9600
C2—H2B0.9700C12—H12B0.9600
C3—N21.250 (9)C12—H12C0.9600
C3—C111.504 (10)C13—H13A0.9600
C3—C41.508 (11)C13—H13B0.9600
C4—C51.547 (11)C13—H13C0.9600
C4—H4A0.9700C14—H14A0.9600
C4—H4B0.9700C14—H14B0.9600
C5—N31.507 (8)C14—H14C0.9600
C5—C131.521 (12)C15—H15A0.9600
C5—C121.526 (11)C15—H15B0.9600
C6—N31.473 (8)C15—H15C0.9600
C6—C71.495 (10)C16—H16A0.9600
C6—H6A0.9700C16—H16B0.9600
C6—H6B0.9700C16—H16C0.9600
C7—N41.474 (9)N1—Cu12.003 (5)
C7—H7A0.9700N1—H10.9100
C7—H7B0.9700N2—Cu11.982 (5)
C8—N41.268 (9)N3—Cu11.994 (5)
C8—C141.497 (10)N3—H30.9100
C8—C91.510 (11)N4—Cu11.975 (5)
C9—C101.513 (11)Cl1—Cu22.263 (2)
C9—H9A0.9700Cl2—Cu22.249 (2)
C9—H9B0.9700Cl3—Cu22.267 (2)
C10—N11.496 (9)Cl4—Cu22.216 (2)
N1—C1—C2108.4 (6)C5—C12—H12A109.5
N1—C1—H1A110.0C5—C12—H12B109.5
C2—C1—H1A110.0H12A—C12—H12B109.5
N1—C1—H1B110.0C5—C12—H12C109.5
C2—C1—H1B110.0H12A—C12—H12C109.5
H1A—C1—H1B108.4H12B—C12—H12C109.5
N2—C2—C1108.7 (5)C5—C13—H13A109.5
N2—C2—H2A110.0C5—C13—H13B109.5
C1—C2—H2A110.0H13A—C13—H13B109.5
N2—C2—H2B110.0C5—C13—H13C109.5
C1—C2—H2B110.0H13A—C13—H13C109.5
H2A—C2—H2B108.3H13B—C13—H13C109.5
N2—C3—C11123.5 (7)C8—C14—H14A109.5
N2—C3—C4120.6 (6)C8—C14—H14B109.5
C11—C3—C4115.8 (7)H14A—C14—H14B109.5
C3—C4—C5117.1 (6)C8—C14—H14C109.5
C3—C4—H4A108.0H14A—C14—H14C109.5
C5—C4—H4A108.0H14B—C14—H14C109.5
C3—C4—H4B108.0C10—C15—H15A109.5
C5—C4—H4B108.0C10—C15—H15B109.5
H4A—C4—H4B107.3H15A—C15—H15B109.5
N3—C5—C13111.9 (6)C10—C15—H15C109.5
N3—C5—C12109.1 (7)H15A—C15—H15C109.5
C13—C5—C12110.7 (7)H15B—C15—H15C109.5
N3—C5—C4105.9 (6)C10—C16—H16A109.5
C13—C5—C4111.1 (7)C10—C16—H16B109.5
C12—C5—C4107.9 (7)H16A—C16—H16B109.5
N3—C6—C7108.2 (5)C10—C16—H16C109.5
N3—C6—H6A110.1H16A—C16—H16C109.5
C7—C6—H6A110.1H16B—C16—H16C109.5
N3—C6—H6B110.1C1—N1—C10116.3 (5)
C7—C6—H6B110.1C1—N1—Cu1105.9 (4)
H6A—C6—H6B108.4C10—N1—Cu1118.7 (4)
N4—C7—C6108.6 (5)C1—N1—H1104.8
N4—C7—H7A110.0C10—N1—H1104.8
C6—C7—H7A110.0Cu1—N1—H1104.8
N4—C7—H7B110.0C3—N2—C2121.1 (6)
C6—C7—H7B110.0C3—N2—Cu1128.6 (5)
H7A—C7—H7B108.4C2—N2—Cu1110.3 (4)
N4—C8—C14122.7 (8)C6—N3—C5115.1 (5)
N4—C8—C9121.2 (6)C6—N3—Cu1106.0 (4)
C14—C8—C9116.0 (7)C5—N3—Cu1117.6 (4)
C8—C9—C10120.4 (7)C6—N3—H3105.7
C8—C9—H9A107.2C5—N3—H3105.7
C10—C9—H9A107.2Cu1—N3—H3105.7
C8—C9—H9B107.2C8—N4—C7121.2 (6)
C10—C9—H9B107.2C8—N4—Cu1128.2 (5)
H9A—C9—H9B106.9C7—N4—Cu1110.4 (4)
N1—C10—C9107.5 (6)N4—Cu1—N2178.0 (2)
N1—C10—C16110.0 (6)N4—Cu1—N385.3 (2)
C9—C10—C16111.5 (8)N2—Cu1—N394.6 (2)
N1—C10—C15108.9 (7)N4—Cu1—N194.5 (2)
C9—C10—C15108.5 (7)N2—Cu1—N185.4 (2)
C16—C10—C15110.4 (7)N3—Cu1—N1177.0 (2)
C3—C11—H11A109.5Cl4—Cu2—Cl299.08 (8)
C3—C11—H11B109.5Cl4—Cu2—Cl1138.65 (9)
H11A—C11—H11B109.5Cl2—Cu2—Cl195.72 (9)
C3—C11—H11C109.5Cl4—Cu2—Cl394.41 (8)
H11A—C11—H11C109.5Cl2—Cu2—Cl3139.22 (10)
H11B—C11—H11C109.5Cl1—Cu2—Cl399.06 (9)
N1—C1—C2—N249.3 (8)C13—C5—N3—C662.1 (8)
N2—C3—C4—C542.2 (11)C12—C5—N3—C660.8 (9)
C11—C3—C4—C5140.7 (8)C4—C5—N3—C6176.7 (6)
C3—C4—C5—N370.3 (9)C13—C5—N3—Cu163.9 (7)
C3—C4—C5—C1351.4 (9)C12—C5—N3—Cu1173.2 (6)
C3—C4—C5—C12172.9 (7)C4—C5—N3—Cu157.2 (7)
N3—C6—C7—N449.2 (8)C14—C8—N4—C71.5 (11)
N4—C8—C9—C1036.9 (12)C9—C8—N4—C7173.8 (7)
C14—C8—C9—C10147.5 (8)C14—C8—N4—Cu1176.6 (7)
C8—C9—C10—N163.7 (10)C9—C8—N4—Cu11.3 (10)
C8—C9—C10—C1656.8 (10)C6—C7—N4—C8147.9 (6)
C8—C9—C10—C15178.6 (7)C6—C7—N4—Cu127.9 (7)
C2—C1—N1—C10179.8 (6)C8—N4—Cu1—N3173.5 (6)
C2—C1—N1—Cu145.5 (6)C7—N4—Cu1—N31.9 (4)
C9—C10—N1—C1176.4 (6)C8—N4—Cu1—N13.4 (6)
C16—C10—N1—C162.1 (9)C7—N4—Cu1—N1178.9 (4)
C15—C10—N1—C159.0 (8)C3—N2—Cu1—N37.4 (7)
C9—C10—N1—Cu155.3 (8)C2—N2—Cu1—N3174.3 (5)
C16—C10—N1—Cu166.2 (8)C3—N2—Cu1—N1175.6 (7)
C15—C10—N1—Cu1172.7 (5)C2—N2—Cu1—N12.6 (5)
C11—C3—N2—C20.1 (12)C6—N3—Cu1—N424.4 (4)
C4—C3—N2—C2177.0 (7)C5—N3—Cu1—N4154.8 (5)
C11—C3—N2—Cu1177.9 (7)C6—N3—Cu1—N2153.5 (4)
C4—C3—N2—Cu11.1 (11)C5—N3—Cu1—N223.1 (5)
C1—C2—N2—C3149.9 (7)C1—N1—Cu1—N4158.3 (4)
C1—C2—N2—Cu128.5 (7)C10—N1—Cu1—N425.3 (5)
C7—C6—N3—C5177.8 (6)C1—N1—Cu1—N223.8 (4)
C7—C6—N3—Cu146.0 (6)C10—N1—Cu1—N2156.7 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl3i0.912.623.498 (6)163
N1—H1···Cl4i0.912.943.527 (5)123
N3—H3···Cl10.912.623.479 (6)159
N3—H3···Cl20.912.843.394 (5)121
Symmetry code: (i) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu2Cl4(C16H32N4)]
Mr549.34
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)9.660 (3), 15.039 (4), 16.160 (5)
β (°) 102.424 (7)
V3)2292.6 (12)
Z4
Radiation typeMo Kα
µ (mm1)2.33
Crystal size (mm)0.50 × 0.49 × 0.19
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.389, 0.666
No. of measured, independent and
observed [I > 2σ(I)] reflections
11336, 3956, 2763
Rint0.051
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.188, 1.06
No. of reflections3952
No. of parameters241
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.93, 0.80

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl3i0.912.623.498 (6)162.7
N1—H1···Cl4i0.912.943.527 (5)123.4
N3—H3···Cl10.912.623.479 (6)158.6
N3—H3···Cl20.912.843.394 (5)120.7
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the Ministry of Higher Education, Malaysia, and Universiti Kebangsaan Malaysia for research grant No. LRGS/BU/2011/USM-UKM/PG/02. The NSF scholarship awarded to one of us (WI) by the Ministry of Science and Technology and Innovation (MOSTI) is very much appreciated.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (2003). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationCurtis, N. F. & Hay, R. W. (1966). J. Chem. Soc. Chem. Commun. pp. 524–525.  Google Scholar
First citationCurtis, N. F., Hay, R. W. & Lawrance, G. A. (1975). J. Chem. Soc. Perkin Trans. 1, pp. 591–593  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLu, T. H., Lee, T. J., Liang, B. F. & Chung, C. S. (1981). J. Inorg. Nucl. Chem. 43, 2333–2336.  CSD CrossRef CAS Web of Science Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationOrpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1–83.  CrossRef Web of Science Google Scholar
First citationPodberezskaya, N. V., Pervukhina, N. V. & Myachina, L. I. (1986). J. Struct. Chem. 27, 110–114.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, F.-F. & He, X.-L. (2011). Acta Cryst. E67, m607.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds