metal-organic compounds
catena-Poly[[(5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-1,7-diene)copper(II)]-μ-chlorido-[dichlorocuprate(II)]-μ-chlorido]
aLow Carbon Economy Research Group, School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, UKM 43600 Bangi Selangor, Malaysia, bSchool of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, UKM 43600 Bangi Selangor, Malaysia, and cLaboratoire de Chimie de Coordination, UPR5241, 205 Route de Narbonne 31077, Toulouse Cedex 04, France
*Correspondence e-mail: bohari@ukm.my
In the title compound, [Cu2Cl4(C16H32N4)]n, the central CuII anion of the macrocyclic complex cation is weakly linked to two Cl atoms of the tetrachloridocuprate anion with Cu—Cl distances of 3.008 (3) and 3.220 (3) Å, respectively, forming a chain parallel to [10-1]. The geometry of the Cu–macrocyclic complex is distorted octahedral with the bridging Cl atoms occupying the axial position at an angle of 173.44 (7)° about the central CuII atom. The tetrachloridocuprate anion adopts a distorted tetrahedral geometry. In the crystal, the chain is stabilized by intra- and intermolecular N—H⋯Cl hydrogen bonds.
Related literature
For related crystal structures, see: Shi & He (2011); Lu et al. (1981); Podberezskaya et al. (1986). For the preparation, see: Curtis & Hay (1966); Curtis et al. (1975). For bond-length and angle data, see: Allen et al. (2003); Orpen et al. (1989).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2000); cell SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL, ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536812024932/bq2363sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812024932/bq2363Isup2.hkl
All solvent and chemicals were of analytical grade and were used without purification. The macrocylic compound was prepared according to the literature methods (Curtis & Hay, 1966; Curtis et al., 1975). Equimolar amount of the macrocylic ligand (81 mg) and NH4CuCl4 (52 mg) was mixed with ethanol and stirred for about 20 minutes. Some single crystals were obtained from the solution after one week of evaporation (yield 61%, m.p 670.3–671.0 K).
H atoms on the parent carbon atoms were positioned geometrically with C—H= 0.96–0.98 Å and constrained to ride on their parent atoms with Uiso(H)= xUeq(parent atom) where x=1.5 for CH3 group and 1.2 for CH2 and CH groups. The H atom attached to nitrogen were located on difference Fourier but introduced in calculated positions and treated as riding with N—H= 0.91 Å and Uiso(H)= 1.2Ueq(N). A rotating group model was applied to the methyl group.
The 14-membered macrocyclic ring 5,7,7,12,14,14,-hexamethyl-1,4,8,11-tetra azacyclotetradeca-4,11-diene (L) formed complexes with copper in a variety of coordination modes depending on the copper salts used and other reagents. The salt type complexes such as [CuBr(L)]Br.2H2O (Shi & He, 2011),[Cu(L)] ClO4 (Lu et al., 1981) and [CuI(L)]IH2O (Podberezskaya et al., 1986) are common examples when the ligand was reacted with CuBr2, Cu(ClO4)2, and CuI2, respectively. In contrast, a one-dimensional polymeric chain, [Cu(L)CuCl4]n, was obtained when ammonium tetrachlorocuprate(II) was employed to react with the ligand (Fig.1). The Cu1 atom is coordinated to the opposite pair of amino (N1 and N3) and imino (N2 and N4) nitrogen atoms in the same way as in the examples. However, the central Cu1 atom is connected to the Cl2 atom of the tetrachlorocuprate(II) and also to the symmetrically related Cl4i with Cu1—Cl2 and Cu1—Cl4i distances of 3.008 (3) and 3.220 (3) Å, respectively (Fig. 1). As the result, the Cu1 atom formed a distorted octahedral geometry with Cl2 and Cl4i occupy the axial position at an angle about the Cu1 atom of 173.44 (7)°. The bridging angle of Cu1—Cl2—Cu2 and Cu1—Cl4i—Cu2i are 105.62 (9)° and 102.43 (8)°, respectively. The tetrachlorocuprate has a distorted tetrahedral geometry with angles about the Cu2 atom between 94.39 (9)° and 139.23 (10)°. The bond lengths and angles are in normal ranges (Allen et al., 2003; Orpen et al., 1989) and comparable to those in the example complexes. In the
the molecular chain is also stabilized by intramolecular and intramolecular hydrogen bonds (symmetry codes as in Table 2).For related crystal structures, see: Shi & He (2011); Lu et al. (1981); Podberezskaya et al. (1986). For the preparation, see: Curtis & Hay (1966); Curtis et al. (1975). For bond-length and angles data, see: Allen et al. (2003); Orpen et al. (1989).
Data collection: SMART (Bruker, 2000); cell
SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).[Cu2Cl4(C16H32N4)] | F(000) = 1128 |
Mr = 549.34 | Dx = 1.592 Mg m−3 |
Monoclinic, P21/n | Melting point = 671.0–670.3 K |
Hall symbol: -P 2yn | Mo Kα radiation, λ = 0.71073 Å |
a = 9.660 (3) Å | Cell parameters from 4236 reflections |
b = 15.039 (4) Å | θ = 1.8–25.0° |
c = 16.160 (5) Å | µ = 2.33 mm−1 |
β = 102.424 (7)° | T = 298 K |
V = 2292.6 (12) Å3 | Block, violet |
Z = 4 | 0.50 × 0.49 × 0.19 mm |
Bruker SMART APEX CCD area-detector diffractometer | 3956 independent reflections |
Radiation source: fine-focus sealed tube | 2763 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.051 |
Detector resolution: 83.66 pixels mm-1 | θmax = 25.0°, θmin = 1.8° |
ω scan | h = −11→11 |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | k = −17→16 |
Tmin = 0.389, Tmax = 0.666 | l = −15→19 |
11336 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.056 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.188 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0821P)2 + 7.8527P] where P = (Fo2 + 2Fc2)/3 |
3952 reflections | (Δ/σ)max < 0.001 |
241 parameters | Δρmax = 0.93 e Å−3 |
0 restraints | Δρmin = −0.80 e Å−3 |
[Cu2Cl4(C16H32N4)] | V = 2292.6 (12) Å3 |
Mr = 549.34 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 9.660 (3) Å | µ = 2.33 mm−1 |
b = 15.039 (4) Å | T = 298 K |
c = 16.160 (5) Å | 0.50 × 0.49 × 0.19 mm |
β = 102.424 (7)° |
Bruker SMART APEX CCD area-detector diffractometer | 3956 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | 2763 reflections with I > 2σ(I) |
Tmin = 0.389, Tmax = 0.666 | Rint = 0.051 |
11336 measured reflections |
R[F2 > 2σ(F2)] = 0.056 | 0 restraints |
wR(F2) = 0.188 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.93 e Å−3 |
3952 reflections | Δρmin = −0.80 e Å−3 |
241 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.7323 (8) | 0.0580 (5) | 0.6317 (5) | 0.0544 (18) | |
H1A | 0.8087 | 0.0153 | 0.6473 | 0.065* | |
H1B | 0.6711 | 0.0386 | 0.5791 | 0.065* | |
C2 | 0.6497 (8) | 0.0638 (5) | 0.7001 (5) | 0.058 (2) | |
H2A | 0.5963 | 0.0094 | 0.7017 | 0.069* | |
H2B | 0.7139 | 0.0714 | 0.7548 | 0.069* | |
C3 | 0.4362 (8) | 0.1404 (5) | 0.7048 (5) | 0.0529 (18) | |
C4 | 0.3344 (8) | 0.2171 (5) | 0.6825 (6) | 0.062 (2) | |
H4A | 0.2652 | 0.2132 | 0.7178 | 0.074* | |
H4B | 0.2838 | 0.2095 | 0.6242 | 0.074* | |
C5 | 0.3984 (8) | 0.3118 (5) | 0.6917 (5) | 0.057 (2) | |
C6 | 0.5430 (8) | 0.4094 (4) | 0.6161 (5) | 0.0547 (19) | |
H6A | 0.6065 | 0.4242 | 0.6693 | 0.066* | |
H6B | 0.4695 | 0.4544 | 0.6038 | 0.066* | |
C7 | 0.6230 (8) | 0.4061 (4) | 0.5466 (5) | 0.0537 (19) | |
H7A | 0.5573 | 0.4032 | 0.4920 | 0.064* | |
H7B | 0.6802 | 0.4593 | 0.5479 | 0.064* | |
C8 | 0.8332 (8) | 0.3265 (5) | 0.5371 (4) | 0.0542 (19) | |
C9 | 0.9336 (8) | 0.2487 (5) | 0.5576 (6) | 0.062 (2) | |
H9A | 0.9899 | 0.2582 | 0.6142 | 0.075* | |
H9B | 0.9981 | 0.2515 | 0.5192 | 0.075* | |
C10 | 0.8769 (8) | 0.1547 (5) | 0.5543 (5) | 0.061 (2) | |
C11 | 0.3854 (11) | 0.0643 (7) | 0.7509 (7) | 0.097 (4) | |
H11A | 0.4654 | 0.0305 | 0.7801 | 0.146* | |
H11B | 0.3242 | 0.0268 | 0.7109 | 0.146* | |
H11C | 0.3343 | 0.0871 | 0.7911 | 0.146* | |
C12 | 0.2761 (10) | 0.3782 (7) | 0.6769 (7) | 0.094 (3) | |
H12A | 0.2261 | 0.3753 | 0.6187 | 0.141* | |
H12B | 0.3126 | 0.4371 | 0.6894 | 0.141* | |
H12C | 0.2124 | 0.3639 | 0.7131 | 0.141* | |
C13 | 0.4937 (10) | 0.3250 (7) | 0.7790 (5) | 0.075 (3) | |
H13A | 0.5787 | 0.2907 | 0.7832 | 0.113* | |
H13B | 0.4448 | 0.3059 | 0.8216 | 0.113* | |
H13C | 0.5177 | 0.3868 | 0.7871 | 0.113* | |
C14 | 0.8869 (11) | 0.4047 (7) | 0.4960 (7) | 0.098 (4) | |
H14A | 0.8925 | 0.4556 | 0.5325 | 0.146* | |
H14B | 0.8233 | 0.4172 | 0.4429 | 0.146* | |
H14C | 0.9793 | 0.3915 | 0.4863 | 0.146* | |
C15 | 1.0026 (10) | 0.0905 (6) | 0.5757 (7) | 0.086 (3) | |
H15A | 0.9682 | 0.0305 | 0.5735 | 0.128* | |
H15B | 1.0565 | 0.1030 | 0.6317 | 0.128* | |
H15C | 1.0618 | 0.0978 | 0.5355 | 0.128* | |
C16 | 0.7851 (10) | 0.1329 (7) | 0.4671 (5) | 0.083 (3) | |
H16A | 0.7482 | 0.0736 | 0.4677 | 0.124* | |
H16B | 0.8415 | 0.1369 | 0.4251 | 0.124* | |
H16C | 0.7080 | 0.1744 | 0.4539 | 0.124* | |
N1 | 0.7908 (6) | 0.1469 (3) | 0.6206 (3) | 0.0406 (12) | |
H1 | 0.8530 | 0.1580 | 0.6704 | 0.049* | |
N2 | 0.5521 (6) | 0.1404 (3) | 0.6823 (3) | 0.0417 (13) | |
N3 | 0.4791 (5) | 0.3212 (3) | 0.6221 (3) | 0.0374 (12) | |
H3 | 0.4139 | 0.3140 | 0.5728 | 0.045* | |
N4 | 0.7147 (6) | 0.3268 (3) | 0.5588 (3) | 0.0390 (12) | |
Cl1 | 0.2531 (2) | 0.35472 (13) | 0.42578 (14) | 0.0632 (5) | |
Cl2 | 0.4140 (3) | 0.15858 (13) | 0.47320 (12) | 0.0673 (6) | |
Cl3 | 0.5249 (2) | 0.36196 (14) | 0.31834 (14) | 0.0662 (6) | |
Cl4 | 0.3711 (3) | 0.17021 (12) | 0.25925 (12) | 0.0684 (6) | |
Cu1 | 0.63166 (8) | 0.23288 (5) | 0.61849 (5) | 0.0404 (3) | |
Cu2 | 0.39080 (9) | 0.26064 (5) | 0.36943 (5) | 0.0452 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.065 (5) | 0.033 (4) | 0.063 (5) | 0.009 (3) | 0.011 (4) | 0.007 (3) |
C2 | 0.068 (5) | 0.033 (4) | 0.072 (5) | 0.006 (3) | 0.015 (4) | 0.025 (4) |
C3 | 0.059 (5) | 0.050 (4) | 0.056 (4) | −0.011 (4) | 0.028 (4) | 0.012 (3) |
C4 | 0.049 (4) | 0.067 (5) | 0.080 (6) | −0.002 (4) | 0.037 (4) | 0.009 (4) |
C5 | 0.055 (4) | 0.057 (5) | 0.070 (5) | 0.010 (4) | 0.037 (4) | −0.008 (4) |
C6 | 0.067 (5) | 0.030 (4) | 0.064 (5) | 0.009 (3) | 0.007 (4) | 0.003 (3) |
C7 | 0.067 (5) | 0.030 (4) | 0.063 (5) | −0.009 (3) | 0.011 (4) | 0.012 (3) |
C8 | 0.060 (5) | 0.063 (5) | 0.041 (4) | −0.019 (4) | 0.015 (4) | 0.005 (3) |
C9 | 0.055 (5) | 0.064 (5) | 0.078 (6) | −0.001 (4) | 0.037 (4) | 0.004 (4) |
C10 | 0.058 (5) | 0.064 (5) | 0.072 (5) | 0.003 (4) | 0.035 (4) | −0.017 (4) |
C11 | 0.087 (7) | 0.087 (7) | 0.131 (9) | −0.009 (6) | 0.052 (7) | 0.052 (7) |
C12 | 0.079 (7) | 0.075 (7) | 0.142 (10) | 0.024 (5) | 0.055 (7) | −0.012 (6) |
C13 | 0.082 (6) | 0.092 (7) | 0.060 (5) | −0.002 (5) | 0.034 (5) | −0.020 (5) |
C14 | 0.085 (7) | 0.096 (8) | 0.124 (9) | −0.017 (6) | 0.051 (7) | 0.045 (7) |
C15 | 0.073 (6) | 0.070 (6) | 0.128 (9) | 0.015 (5) | 0.054 (6) | −0.023 (6) |
C16 | 0.090 (7) | 0.104 (8) | 0.061 (5) | −0.005 (6) | 0.033 (5) | −0.020 (5) |
N1 | 0.048 (3) | 0.037 (3) | 0.035 (3) | 0.004 (2) | 0.005 (2) | −0.004 (2) |
N2 | 0.058 (4) | 0.027 (3) | 0.042 (3) | 0.002 (2) | 0.015 (3) | 0.007 (2) |
N3 | 0.043 (3) | 0.028 (3) | 0.039 (3) | 0.004 (2) | 0.003 (2) | −0.002 (2) |
N4 | 0.051 (3) | 0.033 (3) | 0.032 (3) | −0.004 (2) | 0.007 (2) | 0.007 (2) |
Cl1 | 0.0649 (12) | 0.0523 (11) | 0.0735 (13) | 0.0108 (9) | 0.0173 (10) | −0.0089 (9) |
Cl2 | 0.1047 (17) | 0.0421 (10) | 0.0533 (11) | −0.0027 (10) | 0.0129 (11) | 0.0037 (8) |
Cl3 | 0.0785 (14) | 0.0529 (12) | 0.0718 (13) | −0.0212 (10) | 0.0261 (11) | −0.0083 (9) |
Cl4 | 0.1169 (18) | 0.0369 (10) | 0.0491 (10) | −0.0053 (10) | 0.0125 (11) | −0.0054 (8) |
Cu1 | 0.0538 (5) | 0.0234 (4) | 0.0523 (5) | 0.0064 (3) | 0.0297 (4) | 0.0089 (3) |
Cu2 | 0.0550 (6) | 0.0330 (5) | 0.0470 (5) | −0.0004 (4) | 0.0099 (4) | −0.0036 (3) |
C1—N1 | 1.477 (8) | C10—C16 | 1.529 (12) |
C1—C2 | 1.499 (10) | C10—C15 | 1.531 (12) |
C1—H1A | 0.9700 | C11—H11A | 0.9600 |
C1—H1B | 0.9700 | C11—H11B | 0.9600 |
C2—N2 | 1.478 (8) | C11—H11C | 0.9600 |
C2—H2A | 0.9700 | C12—H12A | 0.9600 |
C2—H2B | 0.9700 | C12—H12B | 0.9600 |
C3—N2 | 1.250 (9) | C12—H12C | 0.9600 |
C3—C11 | 1.504 (10) | C13—H13A | 0.9600 |
C3—C4 | 1.508 (11) | C13—H13B | 0.9600 |
C4—C5 | 1.547 (11) | C13—H13C | 0.9600 |
C4—H4A | 0.9700 | C14—H14A | 0.9600 |
C4—H4B | 0.9700 | C14—H14B | 0.9600 |
C5—N3 | 1.507 (8) | C14—H14C | 0.9600 |
C5—C13 | 1.521 (12) | C15—H15A | 0.9600 |
C5—C12 | 1.526 (11) | C15—H15B | 0.9600 |
C6—N3 | 1.473 (8) | C15—H15C | 0.9600 |
C6—C7 | 1.495 (10) | C16—H16A | 0.9600 |
C6—H6A | 0.9700 | C16—H16B | 0.9600 |
C6—H6B | 0.9700 | C16—H16C | 0.9600 |
C7—N4 | 1.474 (9) | N1—Cu1 | 2.003 (5) |
C7—H7A | 0.9700 | N1—H1 | 0.9100 |
C7—H7B | 0.9700 | N2—Cu1 | 1.982 (5) |
C8—N4 | 1.268 (9) | N3—Cu1 | 1.994 (5) |
C8—C14 | 1.497 (10) | N3—H3 | 0.9100 |
C8—C9 | 1.510 (11) | N4—Cu1 | 1.975 (5) |
C9—C10 | 1.513 (11) | Cl1—Cu2 | 2.263 (2) |
C9—H9A | 0.9700 | Cl2—Cu2 | 2.249 (2) |
C9—H9B | 0.9700 | Cl3—Cu2 | 2.267 (2) |
C10—N1 | 1.496 (9) | Cl4—Cu2 | 2.216 (2) |
N1—C1—C2 | 108.4 (6) | C5—C12—H12A | 109.5 |
N1—C1—H1A | 110.0 | C5—C12—H12B | 109.5 |
C2—C1—H1A | 110.0 | H12A—C12—H12B | 109.5 |
N1—C1—H1B | 110.0 | C5—C12—H12C | 109.5 |
C2—C1—H1B | 110.0 | H12A—C12—H12C | 109.5 |
H1A—C1—H1B | 108.4 | H12B—C12—H12C | 109.5 |
N2—C2—C1 | 108.7 (5) | C5—C13—H13A | 109.5 |
N2—C2—H2A | 110.0 | C5—C13—H13B | 109.5 |
C1—C2—H2A | 110.0 | H13A—C13—H13B | 109.5 |
N2—C2—H2B | 110.0 | C5—C13—H13C | 109.5 |
C1—C2—H2B | 110.0 | H13A—C13—H13C | 109.5 |
H2A—C2—H2B | 108.3 | H13B—C13—H13C | 109.5 |
N2—C3—C11 | 123.5 (7) | C8—C14—H14A | 109.5 |
N2—C3—C4 | 120.6 (6) | C8—C14—H14B | 109.5 |
C11—C3—C4 | 115.8 (7) | H14A—C14—H14B | 109.5 |
C3—C4—C5 | 117.1 (6) | C8—C14—H14C | 109.5 |
C3—C4—H4A | 108.0 | H14A—C14—H14C | 109.5 |
C5—C4—H4A | 108.0 | H14B—C14—H14C | 109.5 |
C3—C4—H4B | 108.0 | C10—C15—H15A | 109.5 |
C5—C4—H4B | 108.0 | C10—C15—H15B | 109.5 |
H4A—C4—H4B | 107.3 | H15A—C15—H15B | 109.5 |
N3—C5—C13 | 111.9 (6) | C10—C15—H15C | 109.5 |
N3—C5—C12 | 109.1 (7) | H15A—C15—H15C | 109.5 |
C13—C5—C12 | 110.7 (7) | H15B—C15—H15C | 109.5 |
N3—C5—C4 | 105.9 (6) | C10—C16—H16A | 109.5 |
C13—C5—C4 | 111.1 (7) | C10—C16—H16B | 109.5 |
C12—C5—C4 | 107.9 (7) | H16A—C16—H16B | 109.5 |
N3—C6—C7 | 108.2 (5) | C10—C16—H16C | 109.5 |
N3—C6—H6A | 110.1 | H16A—C16—H16C | 109.5 |
C7—C6—H6A | 110.1 | H16B—C16—H16C | 109.5 |
N3—C6—H6B | 110.1 | C1—N1—C10 | 116.3 (5) |
C7—C6—H6B | 110.1 | C1—N1—Cu1 | 105.9 (4) |
H6A—C6—H6B | 108.4 | C10—N1—Cu1 | 118.7 (4) |
N4—C7—C6 | 108.6 (5) | C1—N1—H1 | 104.8 |
N4—C7—H7A | 110.0 | C10—N1—H1 | 104.8 |
C6—C7—H7A | 110.0 | Cu1—N1—H1 | 104.8 |
N4—C7—H7B | 110.0 | C3—N2—C2 | 121.1 (6) |
C6—C7—H7B | 110.0 | C3—N2—Cu1 | 128.6 (5) |
H7A—C7—H7B | 108.4 | C2—N2—Cu1 | 110.3 (4) |
N4—C8—C14 | 122.7 (8) | C6—N3—C5 | 115.1 (5) |
N4—C8—C9 | 121.2 (6) | C6—N3—Cu1 | 106.0 (4) |
C14—C8—C9 | 116.0 (7) | C5—N3—Cu1 | 117.6 (4) |
C8—C9—C10 | 120.4 (7) | C6—N3—H3 | 105.7 |
C8—C9—H9A | 107.2 | C5—N3—H3 | 105.7 |
C10—C9—H9A | 107.2 | Cu1—N3—H3 | 105.7 |
C8—C9—H9B | 107.2 | C8—N4—C7 | 121.2 (6) |
C10—C9—H9B | 107.2 | C8—N4—Cu1 | 128.2 (5) |
H9A—C9—H9B | 106.9 | C7—N4—Cu1 | 110.4 (4) |
N1—C10—C9 | 107.5 (6) | N4—Cu1—N2 | 178.0 (2) |
N1—C10—C16 | 110.0 (6) | N4—Cu1—N3 | 85.3 (2) |
C9—C10—C16 | 111.5 (8) | N2—Cu1—N3 | 94.6 (2) |
N1—C10—C15 | 108.9 (7) | N4—Cu1—N1 | 94.5 (2) |
C9—C10—C15 | 108.5 (7) | N2—Cu1—N1 | 85.4 (2) |
C16—C10—C15 | 110.4 (7) | N3—Cu1—N1 | 177.0 (2) |
C3—C11—H11A | 109.5 | Cl4—Cu2—Cl2 | 99.08 (8) |
C3—C11—H11B | 109.5 | Cl4—Cu2—Cl1 | 138.65 (9) |
H11A—C11—H11B | 109.5 | Cl2—Cu2—Cl1 | 95.72 (9) |
C3—C11—H11C | 109.5 | Cl4—Cu2—Cl3 | 94.41 (8) |
H11A—C11—H11C | 109.5 | Cl2—Cu2—Cl3 | 139.22 (10) |
H11B—C11—H11C | 109.5 | Cl1—Cu2—Cl3 | 99.06 (9) |
N1—C1—C2—N2 | 49.3 (8) | C13—C5—N3—C6 | −62.1 (8) |
N2—C3—C4—C5 | −42.2 (11) | C12—C5—N3—C6 | 60.8 (9) |
C11—C3—C4—C5 | 140.7 (8) | C4—C5—N3—C6 | 176.7 (6) |
C3—C4—C5—N3 | 70.3 (9) | C13—C5—N3—Cu1 | 63.9 (7) |
C3—C4—C5—C13 | −51.4 (9) | C12—C5—N3—Cu1 | −173.2 (6) |
C3—C4—C5—C12 | −172.9 (7) | C4—C5—N3—Cu1 | −57.2 (7) |
N3—C6—C7—N4 | −49.2 (8) | C14—C8—N4—C7 | −1.5 (11) |
N4—C8—C9—C10 | 36.9 (12) | C9—C8—N4—C7 | 173.8 (7) |
C14—C8—C9—C10 | −147.5 (8) | C14—C8—N4—Cu1 | −176.6 (7) |
C8—C9—C10—N1 | −63.7 (10) | C9—C8—N4—Cu1 | −1.3 (10) |
C8—C9—C10—C16 | 56.8 (10) | C6—C7—N4—C8 | −147.9 (6) |
C8—C9—C10—C15 | 178.6 (7) | C6—C7—N4—Cu1 | 27.9 (7) |
C2—C1—N1—C10 | −179.8 (6) | C8—N4—Cu1—N3 | 173.5 (6) |
C2—C1—N1—Cu1 | −45.5 (6) | C7—N4—Cu1—N3 | −1.9 (4) |
C9—C10—N1—C1 | −176.4 (6) | C8—N4—Cu1—N1 | −3.4 (6) |
C16—C10—N1—C1 | 62.1 (9) | C7—N4—Cu1—N1 | −178.9 (4) |
C15—C10—N1—C1 | −59.0 (8) | C3—N2—Cu1—N3 | 7.4 (7) |
C9—C10—N1—Cu1 | 55.3 (8) | C2—N2—Cu1—N3 | −174.3 (5) |
C16—C10—N1—Cu1 | −66.2 (8) | C3—N2—Cu1—N1 | −175.6 (7) |
C15—C10—N1—Cu1 | 172.7 (5) | C2—N2—Cu1—N1 | 2.6 (5) |
C11—C3—N2—C2 | −0.1 (12) | C6—N3—Cu1—N4 | −24.4 (4) |
C4—C3—N2—C2 | −177.0 (7) | C5—N3—Cu1—N4 | −154.8 (5) |
C11—C3—N2—Cu1 | 177.9 (7) | C6—N3—Cu1—N2 | 153.5 (4) |
C4—C3—N2—Cu1 | 1.1 (11) | C5—N3—Cu1—N2 | 23.1 (5) |
C1—C2—N2—C3 | 149.9 (7) | C1—N1—Cu1—N4 | −158.3 (4) |
C1—C2—N2—Cu1 | −28.5 (7) | C10—N1—Cu1—N4 | −25.3 (5) |
C7—C6—N3—C5 | 177.8 (6) | C1—N1—Cu1—N2 | 23.8 (4) |
C7—C6—N3—Cu1 | 46.0 (6) | C10—N1—Cu1—N2 | 156.7 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···Cl3i | 0.91 | 2.62 | 3.498 (6) | 163 |
N1—H1···Cl4i | 0.91 | 2.94 | 3.527 (5) | 123 |
N3—H3···Cl1 | 0.91 | 2.62 | 3.479 (6) | 159 |
N3—H3···Cl2 | 0.91 | 2.84 | 3.394 (5) | 121 |
Symmetry code: (i) x+1/2, −y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Cu2Cl4(C16H32N4)] |
Mr | 549.34 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 298 |
a, b, c (Å) | 9.660 (3), 15.039 (4), 16.160 (5) |
β (°) | 102.424 (7) |
V (Å3) | 2292.6 (12) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 2.33 |
Crystal size (mm) | 0.50 × 0.49 × 0.19 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD area-detector |
Absorption correction | Multi-scan (SADABS; Bruker, 2000) |
Tmin, Tmax | 0.389, 0.666 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11336, 3956, 2763 |
Rint | 0.051 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.056, 0.188, 1.06 |
No. of reflections | 3952 |
No. of parameters | 241 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.93, −0.80 |
Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997), PARST (Nardelli, 1995) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···Cl3i | 0.91 | 2.62 | 3.498 (6) | 162.7 |
N1—H1···Cl4i | 0.91 | 2.94 | 3.527 (5) | 123.4 |
N3—H3···Cl1 | 0.91 | 2.62 | 3.479 (6) | 158.6 |
N3—H3···Cl2 | 0.91 | 2.84 | 3.394 (5) | 120.7 |
Symmetry code: (i) x+1/2, −y+1/2, z+1/2. |
Acknowledgements
The authors thank the Ministry of Higher Education, Malaysia, and Universiti Kebangsaan Malaysia for research grant No. LRGS/BU/2011/USM-UKM/PG/02. The NSF scholarship awarded to one of us (WI) by the Ministry of Science and Technology and Innovation (MOSTI) is very much appreciated.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (2003). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. Google Scholar
Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Curtis, N. F. & Hay, R. W. (1966). J. Chem. Soc. Chem. Commun. pp. 524–525. Google Scholar
Curtis, N. F., Hay, R. W. & Lawrance, G. A. (1975). J. Chem. Soc. Perkin Trans. 1, pp. 591–593 Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Lu, T. H., Lee, T. J., Liang, B. F. & Chung, C. S. (1981). J. Inorg. Nucl. Chem. 43, 2333–2336. CSD CrossRef CAS Web of Science Google Scholar
Nardelli, M. (1995). J. Appl. Cryst. 28, 659. CrossRef IUCr Journals Google Scholar
Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1–83. CrossRef Web of Science Google Scholar
Podberezskaya, N. V., Pervukhina, N. V. & Myachina, L. I. (1986). J. Struct. Chem. 27, 110–114. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shi, F.-F. & He, X.-L. (2011). Acta Cryst. E67, m607. Web of Science CSD CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The 14-membered macrocyclic ring 5,7,7,12,14,14,-hexamethyl-1,4,8,11-tetra azacyclotetradeca-4,11-diene (L) formed complexes with copper in a variety of coordination modes depending on the copper salts used and other reagents. The salt type complexes such as [CuBr(L)]Br.2H2O (Shi & He, 2011),[Cu(L)] ClO4 (Lu et al., 1981) and [CuI(L)]IH2O (Podberezskaya et al., 1986) are common examples when the ligand was reacted with CuBr2, Cu(ClO4)2, and CuI2, respectively. In contrast, a one-dimensional polymeric chain, [Cu(L)CuCl4]n, was obtained when ammonium tetrachlorocuprate(II) was employed to react with the ligand (Fig.1). The Cu1 atom is coordinated to the opposite pair of amino (N1 and N3) and imino (N2 and N4) nitrogen atoms in the same way as in the examples. However, the central Cu1 atom is connected to the Cl2 atom of the tetrachlorocuprate(II) and also to the symmetrically related Cl4i with Cu1—Cl2 and Cu1—Cl4i distances of 3.008 (3) and 3.220 (3) Å, respectively (Fig. 1). As the result, the Cu1 atom formed a distorted octahedral geometry with Cl2 and Cl4i occupy the axial position at an angle about the Cu1 atom of 173.44 (7)°. The bridging angle of Cu1—Cl2—Cu2 and Cu1—Cl4i—Cu2i are 105.62 (9)° and 102.43 (8)°, respectively. The tetrachlorocuprate has a distorted tetrahedral geometry with angles about the Cu2 atom between 94.39 (9)° and 139.23 (10)°. The bond lengths and angles are in normal ranges (Allen et al., 2003; Orpen et al., 1989) and comparable to those in the example complexes. In the crystal structure, the molecular chain is also stabilized by intramolecular and intramolecular hydrogen bonds (symmetry codes as in Table 2).