organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E)-2-(4-Hy­dr­oxy-3-meth­­oxy­benzyl­­idene)hydrazinecarboxamide

aDepartment of Physics, University of Sargodha, Sargodha, Pakistan, bDepartment of Chemistry, University of Malakand, Pakistan, cDepartment of Chemistry, University of Sargodha, Pakistan, and dDepartment of Chemistry, Government Post Graduate College, Gojra, Punjab, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 1 June 2012; accepted 4 June 2012; online 13 June 2012)

In the title compound, C9H11N3O3, two mol­ecules are present in the asymmetric unit in which the 4-hy­droxy-3-meth­oxy­benzaldehyde and hydrazinecarboxamide units are almost planar [with r.m.s. deviations 0.0212 and 0.0066 Å, respectively, in one mol­ecule and 0.0346 and 0.0095 Å, respectively, in the other] and are oriented at dihedral angles of 9.7 (3) and 16.6 (3)°. In both mol­ecules, two S(5) ring motifs are present due to N—H⋯N and O—H⋯O hydrogen bonds. In the crystal, the mol­ecules are dimerized with each other due to pairs of N—H⋯O hydrogen bonds, forming an R22(8) ring motif. O—H⋯O hydrogen bonds lead to the formation of a three-dimensional network.

Related literature

For a related structure, see: Tahir et al. (2012[Tahir, M. N., Umar, M. N., Ali, A. & Shad, H. A. (2012). Acta Cryst. E68, o1724.]). For graph–set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C9H11N3O3

  • Mr = 209.21

  • Orthorhombic, P c a 21

  • a = 13.9945 (14) Å

  • b = 5.0440 (4) Å

  • c = 27.286 (2) Å

  • V = 1926.0 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.30 × 0.16 × 0.14 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.957, Tmax = 0.966

  • 8297 measured reflections

  • 1931 independent reflections

  • 1046 reflections with I > 2σ(I)

  • Rint = 0.081

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.113

  • S = 0.98

  • 1931 reflections

  • 275 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O1 0.82 2.17 2.627 (6) 115
O2—H2A⋯O5i 0.82 2.34 3.108 (7) 156
N2—H2B⋯O6ii 0.86 2.11 2.923 (7) 158
N3—H3A⋯O6iii 0.86 2.16 2.987 (7) 162
N3—H3B⋯N1 0.86 2.31 2.674 (8) 106
O5—H5A⋯O4 0.82 2.18 2.632 (6) 115
N5—H5B⋯O3iv 0.86 2.08 2.909 (7) 161
N6—H6A⋯O3v 0.86 2.13 2.965 (7) 164
N6—H6B⋯N4 0.86 2.32 2.677 (7) 105
Symmetry codes: (i) [-x, -y, z+{\script{1\over 2}}]; (ii) x, y+1, z; (iii) [x-{\script{1\over 2}}, -y, z]; (iv) x, y-1, z; (v) [x+{\script{1\over 2}}, -y+1, z].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON).

Supporting information


Comment top

The title compound (I), (Fig. 1) has been synthesized as a derivative. Recently we have reported the crystal structure of (2E)-2-(3,4-dimethoxybenzylidene)hydrazinecarboxamide (Tahir et al., 2012) which is related to the title compound.

In (I), two molecules are present in the asymmetric unit, which differ slightly from each other geometrically. In one molecule, the parts of 4-hydroxy-3-methoxybenzaldehyde and hydrazinecarboxamide A (C1—C8/O1/O2) and B (N1/N2/C9/N3/O3), are almost planar with r.m.s. deviations of 0.0212 Å and 0.0066 Å, respectively. The dihedral angle between A/B is 16.57 (26)°. In the second molecule, the similar groups C (C10—C17/O4/O5) and D (N4/N5/C18/N6/O6) are also planar with r.m.s. deviations of 0.0346 Å and 0.0095 Å, respectively, and the dihedral angle between C/D is 9.74 (28)°. In both molecules two S(5) ring motifs (Bernstein et al., 1995) are present due to H–bonding of N—H···N and O—H···O types (Table 1, Fig. 1). The molecules are dimerized with each other due to N—H···O type of H-bondings and form R22(8) ring motifs (Table 1, Fig. 2). The molecules are stabilized in the form of three-dimensional polymeric network.

Related literature top

For a related structure, see: Tahir et al. (2012). For graph–set notation, see: Bernstein et al. (1995).

Experimental top

Equimolar quantities of 4-hydroxy-3-methoxybenzaldehyde and hydrazinecarboxamide were refluxed in methanol along with few drops of acetic acid as catalyst for 45 min resulting in light orange solution. The solution was kept at room temperature which afforded light orange needles after few days.

Refinement top

In the absence of anomalous scattering all Friedel pairs were merged. The H-atoms were positioned geometrically (C–H = 0.93—0.96 Å, N—H = 0.86 Å, O—H = 0.82 Å) and refined as riding with Uiso(H) = xUeq(C, N, O), where x = 1.5 for hydroxy and methyl and x = 1.2 for other H-atoms.

Structure description top

The title compound (I), (Fig. 1) has been synthesized as a derivative. Recently we have reported the crystal structure of (2E)-2-(3,4-dimethoxybenzylidene)hydrazinecarboxamide (Tahir et al., 2012) which is related to the title compound.

In (I), two molecules are present in the asymmetric unit, which differ slightly from each other geometrically. In one molecule, the parts of 4-hydroxy-3-methoxybenzaldehyde and hydrazinecarboxamide A (C1—C8/O1/O2) and B (N1/N2/C9/N3/O3), are almost planar with r.m.s. deviations of 0.0212 Å and 0.0066 Å, respectively. The dihedral angle between A/B is 16.57 (26)°. In the second molecule, the similar groups C (C10—C17/O4/O5) and D (N4/N5/C18/N6/O6) are also planar with r.m.s. deviations of 0.0346 Å and 0.0095 Å, respectively, and the dihedral angle between C/D is 9.74 (28)°. In both molecules two S(5) ring motifs (Bernstein et al., 1995) are present due to H–bonding of N—H···N and O—H···O types (Table 1, Fig. 1). The molecules are dimerized with each other due to N—H···O type of H-bondings and form R22(8) ring motifs (Table 1, Fig. 2). The molecules are stabilized in the form of three-dimensional polymeric network.

For a related structure, see: Tahir et al. (2012). For graph–set notation, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The partial packing (PLATON; Spek, 2009) which shows that molecules form ring motifs in three-dimensional polymeric network.
(2E)-2-(4-Hydroxy-3-methoxybenzylidene)hydrazinecarboxamide top
Crystal data top
C9H11N3O3F(000) = 880
Mr = 209.21Dx = 1.443 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 2704 reflections
a = 13.9945 (14) Åθ = 1.8–26.0°
b = 5.0440 (4) ŵ = 0.11 mm1
c = 27.286 (2) ÅT = 296 K
V = 1926.0 (3) Å3Needle, colorless
Z = 80.30 × 0.16 × 0.14 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1931 independent reflections
Radiation source: fine-focus sealed tube1046 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.081
Detector resolution: 8.00 pixels mm-1θmax = 26.0°, θmin = 2.9°
ω scansh = 1717
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 36
Tmin = 0.957, Tmax = 0.966l = 3333
8297 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.039P)2]
where P = (Fo2 + 2Fc2)/3
1931 reflections(Δ/σ)max < 0.001
275 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C9H11N3O3V = 1926.0 (3) Å3
Mr = 209.21Z = 8
Orthorhombic, Pca21Mo Kα radiation
a = 13.9945 (14) ŵ = 0.11 mm1
b = 5.0440 (4) ÅT = 296 K
c = 27.286 (2) Å0.30 × 0.16 × 0.14 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1931 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1046 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.966Rint = 0.081
8297 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 0.98Δρmax = 0.22 e Å3
1931 reflectionsΔρmin = 0.25 e Å3
275 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1256 (3)0.4282 (10)0.51673 (17)0.051 (2)
O20.3120 (3)0.4570 (10)0.52664 (17)0.0437 (19)
O30.0668 (3)0.7125 (10)0.3095 (2)0.0423 (16)
N10.0730 (4)0.3033 (11)0.38554 (19)0.035 (2)
N20.0463 (3)0.5085 (12)0.3552 (2)0.041 (2)
N30.1032 (4)0.3268 (12)0.3479 (2)0.048 (2)
C10.1988 (4)0.0965 (14)0.4299 (2)0.031 (3)
C20.1392 (5)0.0745 (13)0.4553 (3)0.035 (3)
C30.1765 (4)0.2580 (13)0.4879 (2)0.031 (3)
C40.2739 (5)0.2735 (12)0.4950 (2)0.031 (2)
C50.3343 (4)0.1063 (13)0.4703 (2)0.039 (3)
C60.2965 (4)0.0792 (13)0.4384 (2)0.037 (3)
C70.0252 (4)0.4398 (15)0.5100 (3)0.049 (3)
C80.1602 (5)0.2916 (13)0.3966 (2)0.032 (2)
C90.0445 (4)0.5255 (14)0.3362 (2)0.031 (2)
O40.0199 (3)0.9504 (9)0.10503 (17)0.0413 (16)
O50.2032 (3)0.8811 (10)0.08760 (18)0.049 (2)
O60.2021 (3)0.1888 (9)0.31097 (17)0.0430 (17)
N40.0595 (3)0.2198 (10)0.23612 (18)0.0307 (17)
N50.0884 (4)0.0189 (11)0.2668 (2)0.040 (2)
N60.2384 (4)0.1926 (10)0.2705 (2)0.044 (2)
C100.0733 (4)0.4019 (13)0.1914 (2)0.031 (2)
C110.0188 (4)0.5961 (13)0.1670 (2)0.029 (2)
C120.0626 (5)0.7582 (13)0.1326 (2)0.030 (2)
C130.1603 (4)0.7257 (13)0.1226 (2)0.032 (3)
C140.2137 (5)0.5398 (14)0.1471 (3)0.038 (3)
C150.1697 (4)0.3796 (13)0.1809 (2)0.035 (2)
C160.0808 (4)0.9841 (14)0.1099 (3)0.045 (3)
C170.0297 (4)0.2151 (12)0.2254 (2)0.030 (2)
C180.1785 (5)0.0009 (15)0.2845 (2)0.033 (2)
H20.073520.065910.450480.0424*
H2A0.268840.545910.538600.0649*
H2B0.087470.628920.347950.0490*
H3A0.160590.324390.336560.0569*
H3B0.083720.201240.366680.0569*
H50.400010.117470.474860.0464*
H60.337400.195150.422240.0444*
H7A0.011360.490860.476850.0593*
H7B0.002070.268640.516420.0593*
H7C0.001590.567600.532130.0593*
H80.201660.414330.382650.0377*
H5A0.166230.998470.079090.0729*
H5B0.047500.100200.275100.0479*
H6A0.297090.189080.279880.0534*
H6B0.218350.319470.252170.0534*
H110.045950.615460.173850.0351*
H140.278770.522690.140880.0458*
H150.205770.252490.197300.0421*
H16A0.112460.819830.102660.0675*
H16B0.095611.037010.142840.0675*
H16C0.102261.118260.087490.0675*
H170.068190.087110.239960.0368*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.028 (3)0.070 (4)0.055 (4)0.003 (3)0.004 (3)0.032 (3)
O20.030 (3)0.052 (4)0.049 (3)0.005 (2)0.003 (2)0.013 (3)
O30.028 (2)0.039 (3)0.060 (3)0.000 (2)0.011 (2)0.016 (3)
N10.031 (3)0.031 (4)0.042 (4)0.001 (3)0.010 (3)0.012 (3)
N20.024 (3)0.036 (4)0.062 (4)0.005 (3)0.013 (3)0.013 (3)
N30.026 (3)0.055 (5)0.062 (4)0.003 (3)0.010 (3)0.020 (4)
C10.025 (4)0.038 (5)0.030 (4)0.000 (3)0.001 (3)0.005 (3)
C20.029 (4)0.037 (5)0.040 (4)0.007 (4)0.007 (3)0.001 (4)
C30.029 (4)0.039 (5)0.026 (4)0.000 (3)0.003 (3)0.003 (3)
C40.036 (4)0.033 (4)0.023 (4)0.010 (4)0.005 (3)0.002 (3)
C50.024 (4)0.039 (5)0.054 (5)0.001 (3)0.004 (3)0.007 (4)
C60.029 (4)0.033 (5)0.049 (5)0.002 (3)0.003 (3)0.007 (4)
C70.027 (4)0.074 (6)0.047 (5)0.009 (4)0.003 (4)0.006 (4)
C80.033 (4)0.032 (4)0.030 (4)0.005 (4)0.003 (3)0.000 (3)
C90.023 (4)0.032 (4)0.038 (4)0.001 (3)0.002 (3)0.005 (4)
O40.026 (2)0.045 (3)0.053 (3)0.002 (2)0.004 (2)0.018 (3)
O50.036 (3)0.056 (4)0.054 (4)0.008 (3)0.008 (3)0.023 (3)
O60.037 (3)0.037 (3)0.055 (3)0.006 (2)0.013 (3)0.016 (3)
N40.033 (3)0.032 (3)0.027 (3)0.001 (3)0.003 (2)0.008 (3)
N50.037 (3)0.035 (4)0.048 (4)0.008 (3)0.009 (3)0.019 (3)
N60.028 (3)0.041 (4)0.064 (5)0.004 (3)0.007 (3)0.011 (3)
C100.035 (4)0.033 (4)0.024 (4)0.001 (4)0.006 (3)0.004 (3)
C110.023 (3)0.038 (4)0.027 (4)0.001 (3)0.003 (3)0.001 (4)
C120.031 (4)0.025 (4)0.035 (4)0.002 (3)0.001 (3)0.002 (3)
C130.029 (4)0.040 (5)0.027 (4)0.006 (4)0.002 (3)0.005 (4)
C140.022 (3)0.050 (5)0.043 (5)0.000 (4)0.005 (3)0.001 (4)
C150.026 (3)0.039 (4)0.041 (4)0.006 (4)0.001 (3)0.012 (4)
C160.027 (4)0.052 (5)0.056 (6)0.008 (4)0.000 (4)0.005 (4)
C170.027 (4)0.031 (4)0.033 (4)0.004 (3)0.007 (3)0.004 (3)
C180.030 (4)0.032 (4)0.038 (4)0.004 (4)0.002 (3)0.005 (4)
Geometric parameters (Å, º) top
O1—C31.365 (8)C1—C81.444 (9)
O1—C71.418 (7)C2—C31.386 (9)
O2—C41.373 (8)C3—C41.379 (9)
O3—C91.232 (8)C4—C51.371 (9)
O2—H2A0.8200C5—C61.383 (8)
O4—C121.365 (8)C2—H20.9300
O4—C161.426 (7)C5—H50.9300
O5—C131.374 (8)C6—H60.9300
O6—C181.244 (8)C7—H7C0.9600
O5—H5A0.8200C7—H7A0.9600
N1—C81.259 (9)C7—H7B0.9600
N1—N21.377 (8)C8—H80.9300
N2—C91.375 (7)C10—C111.409 (9)
N3—C91.335 (9)C10—C151.384 (8)
N2—H2B0.8600C10—C171.456 (8)
N3—H3B0.8600C11—C121.388 (9)
N3—H3A0.8600C12—C131.404 (9)
N4—N51.375 (7)C13—C141.373 (9)
N4—C171.282 (7)C14—C151.372 (10)
N5—C181.353 (9)C11—H110.9300
N6—C181.336 (9)C14—H140.9300
N5—H5B0.8600C15—H150.9300
N6—H6B0.8600C16—H16A0.9600
N6—H6A0.8600C16—H16B0.9600
C1—C21.386 (9)C16—H16C0.9600
C1—C61.390 (8)C17—H170.9300
C3—O1—C7117.9 (5)C5—C6—H6119.00
C4—O2—H2A109.00H7A—C7—H7C109.00
C12—O4—C16117.8 (5)H7A—C7—H7B109.00
C13—O5—H5A109.00O1—C7—H7B109.00
N2—N1—C8116.3 (5)O1—C7—H7C109.00
N1—N2—C9121.6 (5)O1—C7—H7A109.00
C9—N2—H2B119.00H7B—C7—H7C110.00
N1—N2—H2B119.00C1—C8—H8119.00
C9—N3—H3A120.00N1—C8—H8118.00
H3A—N3—H3B120.00C11—C10—C15119.1 (5)
C9—N3—H3B120.00C15—C10—C17119.2 (5)
N5—N4—C17114.3 (5)C11—C10—C17121.6 (5)
N4—N5—C18122.7 (5)C10—C11—C12119.4 (5)
C18—N5—H5B119.00C11—C12—C13119.5 (6)
N4—N5—H5B119.00O4—C12—C11126.7 (6)
H6A—N6—H6B120.00O4—C12—C13113.7 (5)
C18—N6—H6A120.00O5—C13—C14119.4 (5)
C18—N6—H6B120.00O5—C13—C12119.6 (5)
C2—C1—C6118.0 (6)C12—C13—C14121.0 (6)
C2—C1—C8120.9 (6)C13—C14—C15119.0 (6)
C6—C1—C8121.1 (6)C10—C15—C14121.9 (6)
C1—C2—C3120.7 (6)N4—C17—C10122.8 (5)
O1—C3—C2126.4 (5)N5—C18—N6115.7 (6)
C2—C3—C4120.0 (6)O6—C18—N5120.4 (6)
O1—C3—C4113.5 (5)O6—C18—N6123.8 (6)
O2—C4—C5119.0 (6)C10—C11—H11120.00
O2—C4—C3120.7 (6)C12—C11—H11120.00
C3—C4—C5120.4 (6)C13—C14—H14120.00
C4—C5—C6119.3 (5)C15—C14—H14120.00
C1—C6—C5121.6 (6)C10—C15—H15119.00
N1—C8—C1123.1 (6)C14—C15—H15119.00
O3—C9—N2120.3 (6)O4—C16—H16A110.00
N2—C9—N3115.6 (6)O4—C16—H16B109.00
O3—C9—N3124.1 (5)O4—C16—H16C110.00
C3—C2—H2120.00H16A—C16—H16B109.00
C1—C2—H2120.00H16A—C16—H16C109.00
C6—C5—H5120.00H16B—C16—H16C109.00
C4—C5—H5120.00N4—C17—H17119.00
C1—C6—H6119.00C10—C17—H17119.00
C7—O1—C3—C26.5 (9)O1—C3—C4—O23.3 (8)
C7—O1—C3—C4176.1 (6)O1—C3—C4—C5177.0 (5)
C16—O4—C12—C112.9 (9)C2—C3—C4—C50.6 (9)
C16—O4—C12—C13175.3 (6)C3—C4—C5—C60.4 (9)
C8—N1—N2—C9172.7 (6)O2—C4—C5—C6180.0 (5)
N2—N1—C8—C1176.9 (5)C4—C5—C6—C11.5 (9)
N1—N2—C9—N32.0 (8)C15—C10—C11—C120.8 (9)
N1—N2—C9—O3179.3 (6)C17—C10—C11—C12175.9 (6)
C17—N4—N5—C18175.8 (6)C11—C10—C15—C140.5 (9)
N5—N4—C17—C10176.6 (5)C17—C10—C15—C14176.2 (6)
N4—N5—C18—O6177.8 (5)C11—C10—C17—N41.8 (9)
N4—N5—C18—N60.3 (9)C15—C10—C17—N4178.5 (6)
C6—C1—C8—N1175.4 (6)C10—C11—C12—O4178.3 (6)
C2—C1—C6—C51.5 (9)C10—C11—C12—C130.2 (9)
C6—C1—C2—C30.4 (10)O4—C12—C13—O50.2 (8)
C8—C1—C2—C3178.8 (6)O4—C12—C13—C14179.8 (6)
C8—C1—C6—C5179.8 (6)C11—C12—C13—O5178.2 (5)
C2—C1—C8—N16.3 (10)C11—C12—C13—C141.4 (9)
C1—C2—C3—C40.6 (10)O5—C13—C14—C15178.0 (6)
C1—C2—C3—O1176.7 (6)C12—C13—C14—C151.7 (10)
C2—C3—C4—O2179.0 (6)C13—C14—C15—C100.7 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O10.822.172.627 (6)115
O2—H2A···O5i0.822.343.108 (7)156
N2—H2B···O6ii0.862.112.923 (7)158
N3—H3A···O6iii0.862.162.987 (7)162
N3—H3B···N10.862.312.674 (8)106
O5—H5A···O40.822.182.632 (6)115
N5—H5B···O3iv0.862.082.909 (7)161
N6—H6A···O3v0.862.132.965 (7)164
N6—H6B···N40.862.322.677 (7)105
Symmetry codes: (i) x, y, z+1/2; (ii) x, y+1, z; (iii) x1/2, y, z; (iv) x, y1, z; (v) x+1/2, y+1, z.

Experimental details

Crystal data
Chemical formulaC9H11N3O3
Mr209.21
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)296
a, b, c (Å)13.9945 (14), 5.0440 (4), 27.286 (2)
V3)1926.0 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.30 × 0.16 × 0.14
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.957, 0.966
No. of measured, independent and
observed [I > 2σ(I)] reflections
8297, 1931, 1046
Rint0.081
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.113, 0.98
No. of reflections1931
No. of parameters275
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.25

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O10.822.172.627 (6)115
O2—H2A···O5i0.822.343.108 (7)156
N2—H2B···O6ii0.862.112.923 (7)158
N3—H3A···O6iii0.862.162.987 (7)162
N3—H3B···N10.862.312.674 (8)106
O5—H5A···O40.822.182.632 (6)115
N5—H5B···O3iv0.862.082.909 (7)161
N6—H6A···O3v0.862.132.965 (7)164
N6—H6B···N40.862.322.677 (7)105
Symmetry codes: (i) x, y, z+1/2; (ii) x, y+1, z; (iii) x1/2, y, z; (iv) x, y1, z; (v) x+1/2, y+1, z.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of a diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTahir, M. N., Umar, M. N., Ali, A. & Shad, H. A. (2012). Acta Cryst. E68, o1724.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds