organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Amino­pyridinium 5-carb­­oxy­penta­noate monohydrate

aDepartment of Physics, St. Josephs College (Autonomous), Tiruchirappalli 620 002, India, and bSophisticated Analytical Instruments Facility, Indian Institute of Technology Madras, Chennai 600 036, TamilNadu, India
*Correspondence e-mail: sac63raj@gmail.com

(Received 9 April 2012; accepted 18 June 2012; online 23 June 2012)

In the title hydrated salt, C5H7N2+·C6H9O4·H2O, the carb­oxy H atom is disordered over two positions with equal occupancy. In the crystal, O atoms of the 5-carb­oxy­penta­noate anion link the 4-amino­pyridinium cations and water mol­ecules into a three-dimensional network via N—H⋯O hydrogen bonds. The crystal structure is further consolidated by O—H⋯O hydrogen bonds involving the anion and the solvent water mol­ecule.

Related literature

For the biological activity of 4-amino­pyridine, see: Judge & Bever (2006[Judge, S. & Bever, C. (2006). Pharmacol. Ther. 111, 224-259.]); Schwid et al. (1997[Schwid, S. B., Petrie, M. D., McDermott, M. P., Tierney, D. S., Mason, D. H. & Goodman, A. D. (1997). Neurology, 48, 817-821.]); Strupp et al. (2004[Strupp, M., Kalla, R., Dichgans, M., Fraitinger, T., Glasauer, S. & Brandt, T. (2004). Neurology, 62, 1623-1625.]). For related structures, see: Anderson et al. (2005[Anderson, F. P., Gallagher, J. F., Kenny, P. T. M. & Lough, A. J. (2005). Acta Cryst. E61, o1350-o1353.]); Chao & Schempp (1977[Chao, M. & Schempp, E. (1977). Acta Cryst. B33, 1557-1564.]); Goswami & Ghosh (1997[Goswami, S. & Ghosh, K. (1997). Tetrahedron Lett. 38, 4503-4506.]).

[Scheme 1]

Experimental

Crystal data
  • C5H7N2+·C6H9O4·H2O

  • Mr = 258.27

  • Monoclinic, P 21 /c

  • a = 11.9874 (6) Å

  • b = 5.1197 (2) Å

  • c = 21.5045 (9) Å

  • β = 96.498 (2)°

  • V = 1311.29 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.970, Tmax = 0.980

  • 21231 measured reflections

  • 3232 independent reflections

  • 2737 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.110

  • S = 1.04

  • 3232 reflections

  • 184 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2C⋯O2i 0.82 1.63 2.4493 (18) 173
N1—H1A⋯O1i 0.88 (1) 1.93 (1) 2.7694 (15) 159 (2)
O4—H4C⋯O4ii 0.82 1.62 2.4320 (15) 168
N2—H2A⋯O3ii 0.88 (1) 1.96 (1) 2.8433 (13) 173 (1)
O1S—H1S⋯O1iii 0.85 (2) 1.98 (2) 2.8060 (16) 163 (2)
O1S—H2S⋯O1Siv 0.85 (2) 1.97 (2) 2.8180 (11) 174 (2)
N2—H2B⋯O3v 0.88 (1) 2.07 (1) 2.9122 (13) 161 (1)
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x, -y, -z+1; (iii) -x+1, -y+1, -z+1; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

4-Aminopyridine (Fampridine) is clinically used in the treatment of Lambert-Eaton myasthenic syndrome and multiple sclerosis. It prolongs action potentials by blocking potassium channels, thereby increases transmitter release at the neuromuscular junction (Judge & Bever, 2006; Schwid et al., 1997; Strupp et al., 2004). Hydrogen bonding plays a key role in the molecular recognition (Goswami & Ghosh, 1997).

The asymmetric unit of the title compound C5H7N2,C6H9O4,H2O contains one 4-aminopyridinium cation, one hydrogen adipate anion and one water molecule. In the hydrogen adipate anion the hydrogen atom of the COOH group is equally disordered (50:50) over two atomic sites. Figure 1 shows the asymmetric unit of the title compound C5H7N2,C6H9O4,H2O, showing 30% displacement ellipsoid probability and the atom numbering scheme. Cation link the oxygen ends of two adjacent carboxylate of anions. Bonding of the H atom to both pyridine ring N atom and amine group N atom of 4-aminopyridinium gives an ion to give the resonance structure.

The bond lengths and angles of 4-aminopyridinium cation agree with those previously reported (Chao & Schempp, 1977; Anderson et al., 2005). A decrease in the C1–N2 bond length 1.3243 (17) Å is observed. Protonation of N1 of the 4-aminopyridinium results in widening of the C4–N1–C3, 120.41 (13)° which is 115.25 (3)° in the neutral 4-aminopyridinium molecule (Chao & Schempp, 1977; Anderson et al., 2005).

In the molecular packing the title compound is mainly decided by N—H···O and O—H···O hydrogen bonds. The 4-aminopyridinium cations and hydrogen adipate anions are linked through two N—H···O and O—H···O hydrogen bonds (Table 1) forming an infinite molecular chain built from R44(23) motif. The adjacent lattice water molecules in the crystal is linked through O1S—H2S···O1 hydrogen bond forming an infinite water chain extending along the [0 1 0] direction and the water chains connects the adjacent anionic-cationic chain building up a three dimensional network thus stabilizing the crystalline solid. The hydrogen bonded network is shown in Figure 2

Related literature top

For the biological activity of 4-aminopyridine, see: Judge & Bever (2006); Schwid et al. (1997); Strupp et al. (2004). For related structures, see: Anderson et al. (2005); Chao & Schempp (1977); Goswami & Ghosh (1997).

Experimental top

All the reagents used for the preparation of sample are analytical grade and the solutions are prepared using pure deionized water. Solutions of 4 aminopyridine and adipic acid in water (20 ml) each are mixed in molar ratio of one isto two. The solution was uniformly stirred for 30 min and heated at 303 K for 2 h. The resulting solution was allowed to cool slowly to room temperature. Colorless crystals were obtained by slow evaporation after a period of two weeks.

Refinement top

The hydrogen atom of the carboxyl group, which is disordered over two sites with equal occupancy, was located in a difference electron density map and allowed to ride on the parent O atom with d(O–H) = 0.82 Å and Uiso(H) = 1.5 Ueq(O). The water H atoms and the H atoms bonded to N atoms were isotropically refined with distance restraints of d(O–H)=0.86 (2) Å and d(N–H)=0.88 (1) Å, respectively. The H···H distance in the water molecule was restrained to 1.36 (4)Å. The carbon H atoms were positioned geometrically and refined using a riding model with C–H = 0.93–0.97 Å and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl groups.

Structure description top

4-Aminopyridine (Fampridine) is clinically used in the treatment of Lambert-Eaton myasthenic syndrome and multiple sclerosis. It prolongs action potentials by blocking potassium channels, thereby increases transmitter release at the neuromuscular junction (Judge & Bever, 2006; Schwid et al., 1997; Strupp et al., 2004). Hydrogen bonding plays a key role in the molecular recognition (Goswami & Ghosh, 1997).

The asymmetric unit of the title compound C5H7N2,C6H9O4,H2O contains one 4-aminopyridinium cation, one hydrogen adipate anion and one water molecule. In the hydrogen adipate anion the hydrogen atom of the COOH group is equally disordered (50:50) over two atomic sites. Figure 1 shows the asymmetric unit of the title compound C5H7N2,C6H9O4,H2O, showing 30% displacement ellipsoid probability and the atom numbering scheme. Cation link the oxygen ends of two adjacent carboxylate of anions. Bonding of the H atom to both pyridine ring N atom and amine group N atom of 4-aminopyridinium gives an ion to give the resonance structure.

The bond lengths and angles of 4-aminopyridinium cation agree with those previously reported (Chao & Schempp, 1977; Anderson et al., 2005). A decrease in the C1–N2 bond length 1.3243 (17) Å is observed. Protonation of N1 of the 4-aminopyridinium results in widening of the C4–N1–C3, 120.41 (13)° which is 115.25 (3)° in the neutral 4-aminopyridinium molecule (Chao & Schempp, 1977; Anderson et al., 2005).

In the molecular packing the title compound is mainly decided by N—H···O and O—H···O hydrogen bonds. The 4-aminopyridinium cations and hydrogen adipate anions are linked through two N—H···O and O—H···O hydrogen bonds (Table 1) forming an infinite molecular chain built from R44(23) motif. The adjacent lattice water molecules in the crystal is linked through O1S—H2S···O1 hydrogen bond forming an infinite water chain extending along the [0 1 0] direction and the water chains connects the adjacent anionic-cationic chain building up a three dimensional network thus stabilizing the crystalline solid. The hydrogen bonded network is shown in Figure 2

For the biological activity of 4-aminopyridine, see: Judge & Bever (2006); Schwid et al. (1997); Strupp et al. (2004). For related structures, see: Anderson et al. (2005); Chao & Schempp (1977); Goswami & Ghosh (1997).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. : The asymmetric unit of the title compound showing 30% probability displacement ellipsoids and the atomic numbering.
[Figure 2] Fig. 2. : The crystal packing of the title compound, viewed approximately down b axis. Hydrogen bonds are shown as dashed lines.
4-Aminopyridinium 5-carboxypentanoate monohydrate top
Crystal data top
C5H7N2+·C6H9O4·H2OF(000) = 552
Mr = 258.27Dx = 1.308 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9976 reflections
a = 11.9874 (6) Åθ = 4.8–56.6°
b = 5.1197 (2) ŵ = 0.10 mm1
c = 21.5045 (9) ÅT = 296 K
β = 96.498 (2)°Block, colourless
V = 1311.29 (10) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3232 independent reflections
Radiation source: fine-focus sealed tube2737 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω and φ scanθmax = 28.4°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1515
Tmin = 0.970, Tmax = 0.980k = 66
21231 measured reflectionsl = 2828
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0506P)2 + 0.3091P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3232 reflectionsΔρmax = 0.24 e Å3
184 parametersΔρmin = 0.17 e Å3
6 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.038 (3)
Crystal data top
C5H7N2+·C6H9O4·H2OV = 1311.29 (10) Å3
Mr = 258.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.9874 (6) ŵ = 0.10 mm1
b = 5.1197 (2) ÅT = 296 K
c = 21.5045 (9) Å0.30 × 0.20 × 0.20 mm
β = 96.498 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3232 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2737 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.980Rint = 0.025
21231 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0386 restraints
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.24 e Å3
3232 reflectionsΔρmin = 0.17 e Å3
184 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.15377 (9)0.4793 (2)0.31363 (5)0.0355 (2)
C20.17198 (10)0.4887 (3)0.37922 (5)0.0471 (3)
H20.13380.37480.40310.057*
C30.24500 (12)0.6634 (3)0.40748 (6)0.0583 (4)
H30.25670.66870.45100.070*
C40.28575 (11)0.8266 (3)0.31185 (7)0.0540 (3)
H40.32510.94390.28950.065*
C50.21437 (10)0.6572 (3)0.28057 (6)0.0456 (3)
H50.20500.65760.23700.055*
C60.05042 (9)0.0846 (2)0.59628 (5)0.0365 (2)
C70.12933 (10)0.2870 (2)0.57471 (5)0.0399 (3)
H7A0.17930.20270.54850.048*
H7B0.08570.41580.54930.048*
C80.19886 (11)0.4250 (3)0.62766 (6)0.0484 (3)
H8A0.24100.29580.65370.058*
H8B0.14890.51310.65330.058*
C90.28055 (11)0.6242 (3)0.60591 (6)0.0497 (3)
H9A0.24080.73320.57380.060*
H9B0.30700.73600.64090.060*
C100.38119 (10)0.5025 (2)0.58006 (6)0.0451 (3)
H10A0.41970.38610.61100.054*
H10B0.35630.40100.54300.054*
C110.46060 (10)0.7138 (2)0.56373 (6)0.0428 (3)
N10.30125 (10)0.8299 (3)0.37434 (6)0.0569 (3)
N20.08259 (9)0.3108 (2)0.28417 (5)0.0453 (3)
O10.54037 (8)0.7786 (2)0.60138 (4)0.0611 (3)
O20.43660 (8)0.8222 (2)0.51080 (4)0.0612 (3)
H2C0.48210.93850.50650.092*0.50
O30.04538 (8)0.04862 (19)0.65223 (3)0.0499 (2)
O40.00945 (8)0.04767 (19)0.55455 (4)0.0529 (3)
H4C0.00360.00020.51970.079*0.50
O1S0.46992 (12)0.2870 (2)0.26985 (6)0.0725 (3)
H1S0.4605 (19)0.299 (4)0.3083 (8)0.097 (7)*
H2S0.4831 (18)0.439 (3)0.2567 (9)0.086 (6)*
H2A0.0462 (12)0.203 (3)0.3067 (6)0.053 (4)*
H2B0.0745 (12)0.313 (3)0.2430 (4)0.053 (4)*
H1A0.3493 (14)0.946 (3)0.3920 (9)0.086 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0339 (5)0.0370 (5)0.0351 (5)0.0015 (4)0.0027 (4)0.0036 (4)
C20.0455 (6)0.0604 (8)0.0347 (5)0.0141 (6)0.0012 (4)0.0058 (5)
C30.0531 (7)0.0773 (10)0.0425 (6)0.0154 (7)0.0037 (5)0.0034 (6)
C40.0480 (7)0.0489 (7)0.0664 (8)0.0129 (6)0.0120 (6)0.0056 (6)
C50.0490 (6)0.0471 (7)0.0417 (6)0.0078 (5)0.0100 (5)0.0066 (5)
C60.0401 (5)0.0407 (6)0.0288 (5)0.0098 (4)0.0043 (4)0.0018 (4)
C70.0452 (6)0.0423 (6)0.0328 (5)0.0134 (5)0.0065 (4)0.0032 (4)
C80.0515 (7)0.0563 (7)0.0397 (6)0.0230 (6)0.0153 (5)0.0117 (5)
C90.0516 (7)0.0442 (7)0.0563 (7)0.0187 (5)0.0188 (5)0.0135 (6)
C100.0440 (6)0.0410 (6)0.0514 (6)0.0128 (5)0.0099 (5)0.0018 (5)
C110.0400 (6)0.0465 (6)0.0432 (6)0.0132 (5)0.0102 (5)0.0047 (5)
N10.0461 (6)0.0573 (7)0.0655 (7)0.0173 (5)0.0017 (5)0.0092 (6)
N20.0523 (6)0.0483 (6)0.0341 (5)0.0157 (5)0.0001 (4)0.0034 (4)
O10.0579 (6)0.0719 (7)0.0512 (5)0.0319 (5)0.0036 (4)0.0079 (5)
O20.0593 (6)0.0768 (7)0.0457 (5)0.0360 (5)0.0023 (4)0.0098 (5)
O30.0613 (5)0.0607 (6)0.0280 (4)0.0249 (4)0.0064 (3)0.0027 (4)
O40.0644 (6)0.0639 (6)0.0303 (4)0.0343 (5)0.0050 (4)0.0007 (4)
O1S0.1089 (10)0.0509 (6)0.0616 (7)0.0080 (6)0.0267 (7)0.0044 (5)
Geometric parameters (Å, º) top
C1—N21.3234 (15)C8—H8A0.9700
C1—C21.4036 (15)C8—H8B0.9700
C1—C51.4070 (15)C9—C101.5179 (18)
C2—C31.3475 (19)C9—H9A0.9700
C2—H20.9300C9—H9B0.9700
C3—N11.3407 (19)C10—C111.5085 (16)
C3—H30.9300C10—H10A0.9700
C4—N11.3357 (19)C10—H10B0.9700
C4—C51.3440 (19)C11—O11.2266 (15)
C4—H40.9300C11—O21.2697 (16)
C5—H50.9300N1—H1A0.882 (9)
C6—O31.2255 (12)N2—H2A0.883 (9)
C6—O41.2778 (13)N2—H2B0.879 (9)
C6—C71.5110 (14)O2—H2C0.8200
C7—C81.5084 (16)O4—H4C0.8200
C7—H7A0.9700O1S—H1S0.850 (15)
C7—H7B0.9700O1S—H2S0.850 (15)
C8—C91.5236 (16)
N2—C1—C2121.45 (10)C7—C8—H8B108.8
N2—C1—C5121.47 (10)C9—C8—H8B108.8
C2—C1—C5117.08 (10)H8A—C8—H8B107.7
C3—C2—C1119.67 (11)C10—C9—C8113.76 (11)
C3—C2—H2120.2C10—C9—H9A108.8
C1—C2—H2120.2C8—C9—H9A108.8
N1—C3—C2121.50 (12)C10—C9—H9B108.8
N1—C3—H3119.3C8—C9—H9B108.8
C2—C3—H3119.3H9A—C9—H9B107.7
N1—C4—C5121.32 (12)C11—C10—C9109.86 (10)
N1—C4—H4119.3C11—C10—H10A109.7
C5—C4—H4119.3C9—C10—H10A109.7
C4—C5—C1120.05 (12)C11—C10—H10B109.7
C4—C5—H5120.0C9—C10—H10B109.7
C1—C5—H5120.0H10A—C10—H10B108.2
O3—C6—O4121.58 (10)O1—C11—O2123.65 (11)
O3—C6—C7120.43 (10)O1—C11—C10120.38 (11)
O4—C6—C7117.98 (9)O2—C11—C10115.92 (10)
C8—C7—C6113.65 (9)C4—N1—C3120.38 (11)
C8—C7—H7A108.8C4—N1—H1A116.8 (13)
C6—C7—H7A108.8C3—N1—H1A122.8 (13)
C8—C7—H7B108.8C1—N2—H2A118.6 (10)
C6—C7—H7B108.8C1—N2—H2B117.6 (10)
H7A—C7—H7B107.7H2A—N2—H2B123.8 (14)
C7—C8—C9113.65 (10)C11—O2—H2C109.5
C7—C8—H8A108.8C6—O4—H4C109.5
C9—C8—H8A108.8H1S—O1S—H2S108 (2)
N2—C1—C2—C3179.88 (13)C6—C7—C8—C9178.54 (11)
C5—C1—C2—C30.02 (19)C7—C8—C9—C1073.66 (16)
C1—C2—C3—N10.0 (2)C8—C9—C10—C11176.35 (11)
N1—C4—C5—C10.3 (2)C9—C10—C11—O194.81 (15)
N2—C1—C5—C4179.76 (13)C9—C10—C11—O282.64 (15)
C2—C1—C5—C40.14 (18)C5—C4—N1—C30.3 (2)
O3—C6—C7—C81.47 (17)C2—C3—N1—C40.2 (2)
O4—C6—C7—C8177.95 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2C···O2i0.821.632.4493 (18)173
N1—H1A···O1i0.88 (1)1.93 (1)2.7694 (15)159 (2)
O4—H4C···O4ii0.821.622.4320 (15)168
N2—H2A···O3ii0.88 (1)1.96 (1)2.8433 (13)173 (1)
O1S—H1S···O1iii0.85 (2)1.98 (2)2.8060 (16)163 (2)
O1S—H2S···O1Siv0.85 (2)1.97 (2)2.8180 (11)174 (2)
N2—H2B···O3v0.88 (1)2.07 (1)2.9122 (13)161 (1)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y+1/2, z+1/2; (v) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC5H7N2+·C6H9O4·H2O
Mr258.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)11.9874 (6), 5.1197 (2), 21.5045 (9)
β (°) 96.498 (2)
V3)1311.29 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.970, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
21231, 3232, 2737
Rint0.025
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.110, 1.04
No. of reflections3232
No. of parameters184
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.17

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2C···O2i0.821.632.4493 (18)172.7
N1—H1A···O1i0.882 (9)1.928 (11)2.7694 (15)158.9 (18)
O4—H4C···O4ii0.821.622.4320 (15)167.6
N2—H2A···O3ii0.883 (9)1.964 (9)2.8433 (13)173.4 (14)
O1S—H1S···O1iii0.850 (15)1.983 (16)2.8060 (16)163 (2)
O1S—H2S···O1Siv0.850 (15)1.972 (15)2.8180 (11)174 (2)
N2—H2B···O3v0.879 (9)2.069 (10)2.9122 (13)160.5 (14)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y+1/2, z+1/2; (v) x, y+1/2, z1/2.
 

Acknowledgements

The authors thank the Director, Sophisticated Test and Instrumention Center, Cochin University, Kerala, India, for the data collection and the Head of the Department of Physics, St Josephs College, Tamil Nadu, India, for his encouragement.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAnderson, F. P., Gallagher, J. F., Kenny, P. T. M. & Lough, A. J. (2005). Acta Cryst. E61, o1350–o1353.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChao, M. & Schempp, E. (1977). Acta Cryst. B33, 1557–1564.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGoswami, S. & Ghosh, K. (1997). Tetrahedron Lett. 38, 4503–4506.  CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJudge, S. & Bever, C. (2006). Pharmacol. Ther. 111, 224–259.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSchwid, S. B., Petrie, M. D., McDermott, M. P., Tierney, D. S., Mason, D. H. & Goodman, A. D. (1997). Neurology, 48, 817–821.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStrupp, M., Kalla, R., Dichgans, M., Fraitinger, T., Glasauer, S. & Brandt, T. (2004). Neurology, 62, 1623–1625.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds