organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-(2-Nitro­benzyl­­idene)-4-phenyl­thio­semicarbazide

aDrug Design and Bioinformatics Unit, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute, Tehran Iran13164, bDepartment of Life Science Engineering, Faculty of New Science and Technology, University of Tehran, Tehran, Iran, and cDepartment of Chemistry, Shahid Beheshti University, G. C., Evin, Tehran, 1983963113, Iran
*Correspondence e-mail: ssardari@hotmail.com

(Received 23 April 2012; accepted 13 June 2012; online 20 June 2012)

In the title mol­ecule, C14H12N4O2S, the conformation about the imine bond is trans. The dihedral angle between the two rings is 88.22 (11)°. An intra­molecular N—H⋯N contact occurs. The crystal structure features N—H⋯S and C—H⋯O hydrogen bonds.

Related literature

For background to thio­semicarbazone derivatives, see: Shaabani et al. (2011[Shaabani, A., Maleki, A., Rezayan, A. H. & Sarvary, A. (2011). Mol. Divers. 15, 41-68.]); Sardari et al. (1999[Sardari, S., Mori, Y., Horita, K., Micetich, R. G., Nishibe, S. & Daneshtalab, M. (1999). Bioorg. Med. Chem. 7, 1933-1940.]). For applications of imine bonds in synthesis, see: Plech et al. (2011[Plech, T., Wujec, M., Siwek, A., Kosikowska, U. & Malm, A. (2011). Eur. J. Med. Chem. 46, 241-248.]); Tada et al. (2011[Tada, R., Chavda, N. & Shah, M. K. (2011). J. Chem. Pharm. Res. 3, 290-297.]); Sriram et al. (2007[Sriram, D., Yogeeswari, P., Dinakaran, M. & Thirumurugan, R. (2007). J. Antimicrob. Chemother. 59, 1194-1196.]). For related structures, see: Jian & Li (2006a[Jian, F.-F. & Li, Y. (2006b). Acta Cryst. E62, o4563-o4564.],b[Jian, F.-F. & Li, Y. (2006a). Acta Cryst. E62, o2934-o2935.]); Fang et al. (2007[Fang, W., Lin, L.-R., Huang, R.-B. & Zheng, L.-S. (2007). Acta Cryst. E63, o112-o113.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12N4O2S

  • Mr = 300.35

  • Triclinic, [P \overline 1]

  • a = 7.4050 (7) Å

  • b = 8.4239 (8) Å

  • c = 12.2363 (10) Å

  • α = 90.382 (7)°

  • β = 93.974 (7)°

  • γ = 110.004 (8)°

  • V = 715.14 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 298 K

  • 0.38 × 0.35 × 0.32 mm

Data collection
  • Stoe IPDS II diffractometer

  • Absorption correction: numerical (X-RED and X-SHAPE; Stoe & Cie (2005[Stoe & Cie (2005). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.910, Tmax = 0.930

  • 7967 measured reflections

  • 3832 independent reflections

  • 2715 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.128

  • S = 1.03

  • 3832 reflections

  • 202 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3B⋯S1i 0.87 (2) 2.51 (2) 3.3664 (18) 168.8 (19)
N4—H4B⋯N2 0.79 (3) 2.29 (2) 2.642 (2) 108 (2)
C11—H11⋯O1ii 0.93 2.60 3.214 (3) 125
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) x, y+1, z+1.

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Thiosemicarbazone derivatives are of special importance because of their versatile biological and pharmacological activities. Thiosemicarbazides are potent intermediates for the synthesis of pharmaceutical and bioactive materials and thus, they are used extensively in the field of medicinal chemistry. The imine bond (–N=CH–) in this compounds are useful intermediates in organic synthesis, in particular for the preparation of heterocycles and non-natural β-aminoacids (Plech et al., 2011; Tada et al., 2011; Sriram et al., 2007).

In a continuation of our research on the development of synthetic methods in heterocyclic chemistry (Shaabani et al., 2011; Sardari et al., 1999) here we report the synthesis and structure of the title compound.

The asymmetric unit of the title compound is shown in Fig. 1. In the title molecule, the configuration is trans about the imine bond (C=N). Bond lengths and angles are in the normal ranges reported for similar structures (Jian and Li (2006a,b); Fang et al. (2007)). The dihedral angle between the two phenyl ring is 88.22 (11)°. The crystal structure exhibits intermolecular N—H···S and C—H···O hydrogen bonds and also intramolecular N—H···O and C—H···N hydrogen bonds (Fig. 2 & Table 1).

Related literature top

For background to thiosemicarbazone derivatives, see: Shaabani et al. (2011); Sardari et al. (1999). For applications of imine bonds in synthesis, see: Plech et al. (2011); Tada et al. (2011); Sriram et al. (2007). For related structures, see: Jian & Li (2006a,b); Fang et al. (2007).

Experimental top

To a magnetically stirred solution of 4-phenylthiosemicarbazide (0.167 g, 1.0 mmol) in MeOH (30 ml) in round bottom flask was added a solution of 2-nitrobenzaldehyde (0.151 g, 1 mmol) at room temperature. The mixture was stirred for 48 h. After completion of the reaction, the Precipitate product was filtered and washed with MeOH (20 ml) and dried at room temperature. The final product is a yellow solid (yield 70%).

Refinement top

The hydrogen atom attached to nitrogen atoms and C—H of imine moiety were found in difference Fourier map and refined isotropically without restraint. Aromatic C—H protons were positioned geometrically and refined as riding atoms with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C).

Structure description top

Thiosemicarbazone derivatives are of special importance because of their versatile biological and pharmacological activities. Thiosemicarbazides are potent intermediates for the synthesis of pharmaceutical and bioactive materials and thus, they are used extensively in the field of medicinal chemistry. The imine bond (–N=CH–) in this compounds are useful intermediates in organic synthesis, in particular for the preparation of heterocycles and non-natural β-aminoacids (Plech et al., 2011; Tada et al., 2011; Sriram et al., 2007).

In a continuation of our research on the development of synthetic methods in heterocyclic chemistry (Shaabani et al., 2011; Sardari et al., 1999) here we report the synthesis and structure of the title compound.

The asymmetric unit of the title compound is shown in Fig. 1. In the title molecule, the configuration is trans about the imine bond (C=N). Bond lengths and angles are in the normal ranges reported for similar structures (Jian and Li (2006a,b); Fang et al. (2007)). The dihedral angle between the two phenyl ring is 88.22 (11)°. The crystal structure exhibits intermolecular N—H···S and C—H···O hydrogen bonds and also intramolecular N—H···O and C—H···N hydrogen bonds (Fig. 2 & Table 1).

For background to thiosemicarbazone derivatives, see: Shaabani et al. (2011); Sardari et al. (1999). For applications of imine bonds in synthesis, see: Plech et al. (2011); Tada et al. (2011); Sriram et al. (2007). For related structures, see: Jian & Li (2006a,b); Fang et al. (2007).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with displacement ellipsoids drawn at 30% probability level.
[Figure 2] Fig. 2. The packing diagram of the title compound. The intermolecular N—H···S and C—H···O hydrogen bonds are shown as blue dashed lines.
(E)-1-(2-Nitrobenzylidene)-4-phenylthiosemicarbazide top
Crystal data top
C14H12N4O2SZ = 2
Mr = 300.35F(000) = 312
Triclinic, P1Dx = 1.395 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4050 (7) ÅCell parameters from 7967 reflections
b = 8.4239 (8) Åθ = 2.6–29.2°
c = 12.2363 (10) ŵ = 0.24 mm1
α = 90.382 (7)°T = 298 K
β = 93.974 (7)°Prism, yellow
γ = 110.004 (8)°0.38 × 0.35 × 0.32 mm
V = 715.14 (12) Å3
Data collection top
Stoe IPDS II
diffractometer
3832 independent reflections
Radiation source: fine-focus sealed tube2715 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
Detector resolution: 0.15 mm pixels mm-1θmax = 29.2°, θmin = 2.6°
rotation method scansh = 1010
Absorption correction: numerical
(X-RED and X-SHAPE; Stoe & Cie (2005)
k = 1110
Tmin = 0.910, Tmax = 0.930l = 1516
7967 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0528P)2 + 0.223P]
where P = (Fo2 + 2Fc2)/3
3832 reflections(Δ/σ)max = 0.005
202 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C14H12N4O2Sγ = 110.004 (8)°
Mr = 300.35V = 715.14 (12) Å3
Triclinic, P1Z = 2
a = 7.4050 (7) ÅMo Kα radiation
b = 8.4239 (8) ŵ = 0.24 mm1
c = 12.2363 (10) ÅT = 298 K
α = 90.382 (7)°0.38 × 0.35 × 0.32 mm
β = 93.974 (7)°
Data collection top
Stoe IPDS II
diffractometer
3832 independent reflections
Absorption correction: numerical
(X-RED and X-SHAPE; Stoe & Cie (2005)
2715 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 0.930Rint = 0.043
7967 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.26 e Å3
3832 reflectionsΔρmin = 0.23 e Å3
202 parameters
Special details top

Experimental. shape of crystal determined optically

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2544 (3)0.5115 (3)0.51143 (14)0.0381 (4)
C20.2249 (3)0.5628 (3)0.40645 (15)0.0509 (5)
H20.20760.48920.34650.061*
C30.2213 (4)0.7226 (3)0.39147 (18)0.0609 (6)
H30.20070.75750.32120.073*
C40.2482 (4)0.8319 (3)0.48040 (19)0.0597 (6)
H40.24570.94040.47000.072*
C50.2790 (3)0.7805 (3)0.58510 (17)0.0479 (5)
H50.29770.85590.64420.057*
C60.2826 (3)0.6186 (2)0.60429 (14)0.0366 (4)
C70.3227 (3)0.5732 (3)0.71685 (14)0.0406 (4)
H70.388 (3)0.492 (3)0.7285 (18)0.052 (6)*
C80.2886 (3)0.6664 (2)0.99057 (14)0.0372 (4)
C90.1339 (3)0.8556 (2)1.06241 (14)0.0375 (4)
C100.2729 (3)0.9819 (3)1.12422 (16)0.0469 (5)
H100.40231.00941.11180.056*
C110.2178 (4)1.0678 (3)1.20523 (17)0.0530 (5)
H110.31081.15301.24750.064*
C120.0278 (4)1.0282 (3)1.22337 (17)0.0517 (5)
H120.00801.08591.27820.062*
C130.1108 (3)0.9032 (3)1.16084 (18)0.0514 (5)
H130.24020.87681.17320.062*
C140.0578 (3)0.8164 (3)1.07917 (16)0.0441 (5)
H140.15120.73251.03620.053*
O10.2599 (4)0.2612 (3)0.43801 (14)0.0824 (6)
O20.2395 (4)0.2728 (2)0.60884 (14)0.0829 (6)
N10.2507 (3)0.3363 (2)0.52080 (13)0.0453 (4)
N20.2793 (2)0.6465 (2)0.79714 (12)0.0395 (4)
N30.3341 (3)0.6036 (2)0.89882 (12)0.0433 (4)
H3B0.411 (3)0.546 (3)0.9056 (18)0.042 (6)*
N40.1877 (3)0.7690 (2)0.97626 (13)0.0469 (4)
H4B0.150 (3)0.782 (3)0.916 (2)0.053 (7)*
S10.35639 (10)0.60896 (8)1.11356 (4)0.05372 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0429 (10)0.0444 (11)0.0292 (8)0.0173 (9)0.0053 (7)0.0006 (7)
C20.0620 (14)0.0657 (15)0.0267 (8)0.0237 (12)0.0059 (8)0.0002 (9)
C30.0796 (17)0.0730 (17)0.0355 (10)0.0323 (14)0.0075 (10)0.0168 (10)
C40.0784 (17)0.0517 (13)0.0568 (13)0.0310 (13)0.0111 (12)0.0180 (11)
C50.0622 (14)0.0456 (12)0.0411 (10)0.0246 (11)0.0072 (9)0.0003 (9)
C60.0413 (10)0.0440 (10)0.0278 (8)0.0185 (9)0.0049 (7)0.0004 (7)
C70.0536 (12)0.0448 (11)0.0295 (8)0.0255 (10)0.0008 (8)0.0045 (7)
C80.0494 (11)0.0370 (10)0.0281 (8)0.0190 (9)0.0010 (7)0.0027 (7)
C90.0547 (12)0.0367 (10)0.0281 (8)0.0247 (9)0.0037 (7)0.0017 (7)
C100.0467 (12)0.0527 (13)0.0433 (10)0.0194 (10)0.0061 (9)0.0046 (9)
C110.0640 (15)0.0501 (13)0.0444 (11)0.0199 (11)0.0005 (10)0.0139 (9)
C120.0698 (15)0.0571 (13)0.0395 (10)0.0352 (12)0.0114 (10)0.0032 (9)
C130.0521 (13)0.0590 (14)0.0493 (11)0.0248 (11)0.0152 (10)0.0095 (10)
C140.0541 (12)0.0363 (10)0.0407 (10)0.0147 (9)0.0008 (9)0.0021 (8)
O10.1373 (19)0.0725 (12)0.0507 (10)0.0532 (13)0.0082 (10)0.0205 (9)
O20.155 (2)0.0529 (11)0.0455 (9)0.0410 (12)0.0083 (11)0.0041 (8)
N10.0516 (10)0.0481 (10)0.0377 (8)0.0193 (8)0.0037 (7)0.0076 (7)
N20.0534 (10)0.0419 (9)0.0275 (7)0.0222 (8)0.0021 (6)0.0007 (6)
N30.0664 (12)0.0493 (10)0.0259 (7)0.0359 (10)0.0009 (7)0.0034 (6)
N40.0751 (13)0.0546 (11)0.0257 (7)0.0425 (10)0.0017 (7)0.0034 (7)
S10.0844 (4)0.0706 (4)0.0259 (2)0.0526 (3)0.0011 (2)0.0008 (2)
Geometric parameters (Å, º) top
C1—C21.385 (3)C9—C141.374 (3)
C1—C61.405 (2)C9—C101.377 (3)
C1—N11.472 (3)C9—N41.432 (2)
C2—C31.369 (3)C10—C111.386 (3)
C2—H20.9300C10—H100.9300
C3—C41.379 (3)C11—C121.365 (3)
C3—H30.9300C11—H110.9300
C4—C51.384 (3)C12—C131.374 (3)
C4—H40.9300C12—H120.9300
C5—C61.394 (3)C13—C141.389 (3)
C5—H50.9300C13—H130.9300
C6—C71.470 (2)C14—H140.9300
C7—N21.273 (2)O1—N11.209 (2)
C7—H70.97 (2)O2—N11.202 (2)
C8—N41.327 (2)N2—N31.371 (2)
C8—N31.349 (2)N3—H3B0.87 (2)
C8—S11.6799 (18)N4—H4B0.79 (3)
C2—C1—C6122.28 (19)C10—C9—N4120.05 (19)
C2—C1—N1116.16 (17)C9—C10—C11119.3 (2)
C6—C1—N1121.55 (16)C9—C10—H10120.4
C3—C2—C1119.5 (2)C11—C10—H10120.4
C3—C2—H2120.2C12—C11—C10120.4 (2)
C1—C2—H2120.2C12—C11—H11119.8
C2—C3—C4120.11 (19)C10—C11—H11119.8
C2—C3—H3119.9C11—C12—C13120.19 (19)
C4—C3—H3119.9C11—C12—H12119.9
C3—C4—C5120.2 (2)C13—C12—H12119.9
C3—C4—H4119.9C12—C13—C14120.0 (2)
C5—C4—H4119.9C12—C13—H13120.0
C4—C5—C6121.7 (2)C14—C13—H13120.0
C4—C5—H5119.1C9—C14—C13119.4 (2)
C6—C5—H5119.1C9—C14—H14120.3
C5—C6—C1116.22 (17)C13—C14—H14120.3
C5—C6—C7119.24 (17)O2—N1—O1122.1 (2)
C1—C6—C7124.48 (17)O2—N1—C1119.95 (16)
N2—C7—C6119.59 (17)O1—N1—C1117.90 (18)
N2—C7—H7121.3 (13)C7—N2—N3115.10 (15)
C6—C7—H7119.1 (13)C8—N3—N2120.88 (16)
N4—C8—N3116.38 (16)C8—N3—H3B118.3 (14)
N4—C8—S1124.22 (13)N2—N3—H3B120.3 (14)
N3—C8—S1119.39 (14)C8—N4—C9125.10 (16)
C14—C9—C10120.63 (17)C8—N4—H4B118.8 (17)
C14—C9—N4119.25 (19)C9—N4—H4B116.1 (17)
C6—C1—C2—C30.5 (3)C11—C12—C13—C140.2 (3)
N1—C1—C2—C3178.3 (2)C10—C9—C14—C131.3 (3)
C1—C2—C3—C40.4 (4)N4—C9—C14—C13178.36 (18)
C2—C3—C4—C50.0 (4)C12—C13—C14—C90.6 (3)
C3—C4—C5—C60.4 (4)C2—C1—N1—O2166.3 (2)
C4—C5—C6—C10.4 (3)C6—C1—N1—O212.5 (3)
C4—C5—C6—C7177.9 (2)C2—C1—N1—O114.0 (3)
C2—C1—C6—C50.1 (3)C6—C1—N1—O1167.2 (2)
N1—C1—C6—C5178.62 (18)C6—C7—N2—N3175.80 (18)
C2—C1—C6—C7177.3 (2)N4—C8—N3—N20.6 (3)
N1—C1—C6—C74.0 (3)S1—C8—N3—N2179.32 (15)
C5—C6—C7—N227.7 (3)C7—N2—N3—C8176.8 (2)
C1—C6—C7—N2155.0 (2)N3—C8—N4—C9176.5 (2)
C14—C9—C10—C111.1 (3)S1—C8—N4—C94.9 (3)
N4—C9—C10—C11178.15 (19)C14—C9—N4—C8115.2 (2)
C9—C10—C11—C120.2 (3)C10—C9—N4—C867.7 (3)
C10—C11—C12—C130.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···S1i0.87 (2)2.51 (2)3.3664 (18)168.8 (19)
N4—H4B···N20.79 (3)2.29 (2)2.642 (2)108 (2)
C7—H7···O20.97 (2)2.26 (2)2.703 (3)106.5 (16)
C11—H11···O1ii0.932.603.214 (3)125
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC14H12N4O2S
Mr300.35
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.4050 (7), 8.4239 (8), 12.2363 (10)
α, β, γ (°)90.382 (7), 93.974 (7), 110.004 (8)
V3)715.14 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.38 × 0.35 × 0.32
Data collection
DiffractometerStoe IPDS II
Absorption correctionNumerical
(X-RED and X-SHAPE; Stoe & Cie (2005)
Tmin, Tmax0.910, 0.930
No. of measured, independent and
observed [I > 2σ(I)] reflections
7967, 3832, 2715
Rint0.043
(sin θ/λ)max1)0.686
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.128, 1.03
No. of reflections3832
No. of parameters202
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.23

Computer programs: X-AREA (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···S1i0.87 (2)2.51 (2)3.3664 (18)168.8 (19)
N4—H4B···N20.79 (3)2.29 (2)2.642 (2)108 (2)
C11—H11···O1ii0.932.603.214 (3)124.5
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+1, z+1.
 

Acknowledgements

We gratefully acknowledge the Pasteur Institute for grant No. 456.

References

First citationFang, W., Lin, L.-R., Huang, R.-B. & Zheng, L.-S. (2007). Acta Cryst. E63, o112–o113.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationJian, F.-F. & Li, Y. (2006a). Acta Cryst. E62, o2934–o2935.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJian, F.-F. & Li, Y. (2006b). Acta Cryst. E62, o4563–o4564.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPlech, T., Wujec, M., Siwek, A., Kosikowska, U. & Malm, A. (2011). Eur. J. Med. Chem. 46, 241–248.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSardari, S., Mori, Y., Horita, K., Micetich, R. G., Nishibe, S. & Daneshtalab, M. (1999). Bioorg. Med. Chem. 7, 1933–1940.  Web of Science CrossRef PubMed CAS Google Scholar
First citationShaabani, A., Maleki, A., Rezayan, A. H. & Sarvary, A. (2011). Mol. Divers. 15, 41–68.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSriram, D., Yogeeswari, P., Dinakaran, M. & Thirumurugan, R. (2007). J. Antimicrob. Chemother. 59, 1194–1196.  Web of Science CrossRef PubMed CAS Google Scholar
First citationStoe & Cie (2005). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTada, R., Chavda, N. & Shah, M. K. (2011). J. Chem. Pharm. Res. 3, 290–297.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds