metal-organic compounds
Aqua(2,2′-bipyridine-κ2N,N′)(2-methylmalonato-κ2O1,O3)copper(II) dihydrate
aDepartment of Chemistry, Pondicherry University, Puducherry 605 014, India, bDepartment of Physics, Bharathidasan Engineering College, Nattrampalli, Vellore 635 854, India, and cDepartment of Physics, Thanthai Periyar Government Institute of Technology, Vellore 632 002, India
*Correspondence e-mail: smurugavel27@gmail.com
In the title compound, [Cu(C4H4O4)(C10H8N2)(H2O)]·2H2O, the CuII ion displays a slightly distorted square-pyramidal coordination. The water molecule at the apical position shows a long bond [Cu—O = 2.276 (2) Å]. The basal plane is formed by two N atoms of the 2,2′-bipyridine ligand and two carboxylate O atoms from a malonate group. The five-membered chelate ring is almost planar [maximum deviation = −0.006 (2) Å], while the six-membered chelate ring defined by the malonate ligand adopts a distorted boat conformation. In the crystal, CuII complex molecules and lattice water molecules are connected by O—H⋯O and C—H⋯O hydrogen bonds. The crystal packing is further stabilized by π–π interactions [centroid–centroid distances = 3.563 (2)–3.828 (2) Å].
Related literature
For background to the applications of copper(II)–malonate complexes, see: Braga et al. (1998); Suresh & Bhadbhade (1997). For related structures, see: Gasque et al. (1998); Cui et al. (2005). For ring puckering analysis, see: Cremer & Pople (1975).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536812024889/bt5931sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812024889/bt5931Isup2.hkl
Basic copper(II) carbonate (1 mmol) was treated with an aqueous solution (10 ml) of methylmalonic acid (2 mmol) in a steam bath until the solid disappeared. The solution was then filtered and diluted to approximately 40 ml with water. An ethanol solution (10 ml) of 2,2'-bipyridine (2 mmol) was then added to above solution. The resultant clear-blue solution was warmed on a steam bath for 1 h. The volume was kept constant by periodic addition of water. Then the solution was filtered and allowed to stand at room temperature. Blue single crystals were obtained after 2 days. They were filtered, washed with water, ethanol and air dried.
H atoms of the water molecules were located in a difference fourier map, and were refined with distance restraints of O—H = 0.84 (1) Å and H···H = 1.32 (1) Å. All other H atoms were positioned geometrically, with C—H = 0.93–0.98 Å and constrained to ride on their parent atom, with Uiso(H)=1.5Ueq for methyl H atoms and 1.2Ueq(C) for other H atoms.
The copper(II)—malonate complexes with suitable N-heterocyclic auxiliary ligands are of interest because the metal-N-heterocyclic chelate ring could influence the Cu—O(carboxyl) bond lengths and exhibits some degree of 'metalloaromaticity' (Suresh & Bhadbhade, 1997). On the other hand, self-assembly processes involving metal ions and organic ligands has attracted increasing attention for the development of novel functional materials with desired properties (Braga et al., 1998). In continuation of the structural studies of metal complexes of these ligands, the
of the title compound was determined.Fig. 1. shows a displacement ellipsoid plot of the title complex. The CuIIion displays a slightly distorted quadratic pyramidal geometry and is coordinated to two N atoms of a 2,2'-bipyridine ligand and two carboxylate O atoms from a malonate group in the basal plane, and to a water molecule in the apical position [Cu1–O3 = 2.276 (2) Å]. The Cu1II ion is displaced by -0.2382 (4) Å from the basal plane (N1/N2/O1/O2) towards the apical position. The O3 atom of the water molecule coordinated in the apical position deviates from this basal plane by 2.514 (2) Å. A similar coordination behaviour is observed in a similar structure (Gasque et al., 1998), in which Cu1 deviates by 0.239 (2) Å and O3 atom by 2.533 (3) Å from the corresponding basal plane. The angle subtended by the pyridine ligand at the metal atom is far from the ideal value of 90° [81.0 (1)° for N1—Cu1—N2]. The bond distances Cu1—N1 = 2.004 (3), Cu1—N2 = 2.001 (1), Cu1—O1 = 1.907 (2) and Cu1—O2 = 1.919 (2) Å agree well with those reported for similar structures (Gasque et al., 1998; Cui et al., 2005).
The five-membered chelate ring (N1/N2/C5/C6/Cu1) is almost planar [maximum deviation = -0.006 (2) Å for atom N1], while the six-membered chelate ring defined by the malonate ligand (O1/O2/C11/C12/C13/Cu1) adopts a slightly distorted boat conformation as indicated by the puckering parameters (Cremer & Pople, 1975): Q = 0.580 (3) Å, θ = 81.8 (3)° and φ = 187.9 (3)°.
The crystal packing is stabilized by extensive intermolecular O—H···O and C—H···O hydrogen bonding interactions (Table 1) between the copper complex and uncordinated water molecules (Fig. 2). The crystal packing is further stabilized by π—π interactions with Cg1—Cg1viii, Cg1—Cg3viii, Cg3—Cg1viii, Cg3—Cg4viii, Cg4—Cg3viii, Cg3—Cg4i and Cg4—Cg3i seperations of 3.563 (2), 3.828 (2), 3.828 (2), 3.805 (2), 3.805 (2) 3.720 (2) and 3.720 (2) Å (Cg1, Cg2, Cg3 and Cg4 are the centroids of Cu1/N1/N2/C5/C6 ring, Cu1/O1/O2/C11/C12/C13 ring, N1/C1–C5 pyridine ring and N2/C6–C10 pyridine ring, respectively, symmetry codes: (i) 1-x, 1-y, -z; (viii) 1-x, -y, -z).
For background to the applications of copper(II)–malonate complexes, see: Braga et al. (1998); Suresh & Bhadbhade (1997). For related structures, see: Gasque et al. (1998); Cui et al. (2005). For ring puckering analysis, see: Cremer & Pople (1975).
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell
CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia (1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 20% probability level. H atoms are presented as a small cycles of arbitrary radius. | |
Fig. 2. Part of the crystal structure showing O—H···O and C—H···O hydrogen bonds. |
[Cu(C4H4O4)(C10H8N2)(H2O)]·2H2O | F(000) = 804 |
Mr = 389.84 | Dx = 1.602 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 4366 reflections |
a = 10.7588 (7) Å | θ = 2.9–29.2° |
b = 7.4761 (6) Å | µ = 1.39 mm−1 |
c = 20.1029 (13) Å | T = 293 K |
β = 90.917 (6)° | Plate, blue |
V = 1616.7 (2) Å3 | 0.25 × 0.23 × 0.17 mm |
Z = 4 |
Oxford Diffraction Xcalibur Eos diffractometer | 3782 independent reflections |
Radiation source: fine-focus sealed tube | 2771 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.045 |
Detector resolution: 15.9821 pixels mm-1 | θmax = 29.2°, θmin = 2.9° |
ω scans | h = −14→13 |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) | k = −10→9 |
Tmin = 0.699, Tmax = 0.790 | l = −25→26 |
9120 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.049 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.119 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0472P)2 + 0.4525P] where P = (Fo2 + 2Fc2)/3 |
3782 reflections | (Δ/σ)max < 0.001 |
242 parameters | Δρmax = 0.97 e Å−3 |
6 restraints | Δρmin = −0.52 e Å−3 |
[Cu(C4H4O4)(C10H8N2)(H2O)]·2H2O | V = 1616.7 (2) Å3 |
Mr = 389.84 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 10.7588 (7) Å | µ = 1.39 mm−1 |
b = 7.4761 (6) Å | T = 293 K |
c = 20.1029 (13) Å | 0.25 × 0.23 × 0.17 mm |
β = 90.917 (6)° |
Oxford Diffraction Xcalibur Eos diffractometer | 3782 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) | 2771 reflections with I > 2σ(I) |
Tmin = 0.699, Tmax = 0.790 | Rint = 0.045 |
9120 measured reflections |
R[F2 > 2σ(F2)] = 0.049 | 6 restraints |
wR(F2) = 0.119 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | Δρmax = 0.97 e Å−3 |
3782 reflections | Δρmin = −0.52 e Å−3 |
242 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
H6A | 0.8000 (17) | 0.941 (4) | 0.244 (2) | 0.084 (16)* | |
H6B | 0.863 (3) | 1.0935 (14) | 0.242 (2) | 0.078 (17)* | |
H7A | 0.0996 (16) | 0.899 (6) | 0.1481 (16) | 0.082 (17)* | |
H7B | −0.019 (2) | 0.932 (5) | 0.1575 (13) | 0.055 (13)* | |
H3A | 0.383 (3) | 0.381 (4) | 0.1980 (18) | 0.031 (9)* | |
H3B | 0.501 (4) | 0.415 (5) | 0.196 (2) | 0.070 (15)* | |
C1 | 0.2610 (3) | 0.1725 (5) | 0.02465 (17) | 0.0410 (8) | |
H1 | 0.2129 | 0.1261 | 0.0586 | 0.049* | |
C2 | 0.2030 (3) | 0.2200 (5) | −0.03429 (18) | 0.0466 (9) | |
H2 | 0.1177 | 0.2057 | −0.0403 | 0.056* | |
C3 | 0.2754 (4) | 0.2894 (5) | −0.08420 (18) | 0.0510 (10) | |
H3 | 0.2390 | 0.3233 | −0.1245 | 0.061* | |
C4 | 0.4011 (4) | 0.3084 (5) | −0.07414 (16) | 0.0419 (8) | |
H4 | 0.4504 | 0.3555 | −0.1074 | 0.050* | |
C5 | 0.4537 (3) | 0.2565 (4) | −0.01396 (15) | 0.0320 (7) | |
C6 | 0.5883 (3) | 0.2680 (4) | 0.00209 (14) | 0.0307 (7) | |
C7 | 0.6786 (3) | 0.3242 (4) | −0.04174 (17) | 0.0409 (8) | |
H7 | 0.6562 | 0.3641 | −0.0841 | 0.049* | |
C8 | 0.8013 (4) | 0.3203 (5) | −0.02201 (19) | 0.0497 (10) | |
H8 | 0.8629 | 0.3568 | −0.0509 | 0.060* | |
C9 | 0.8320 (3) | 0.2617 (5) | 0.04121 (19) | 0.0501 (10) | |
H9 | 0.9147 | 0.2564 | 0.0553 | 0.060* | |
C10 | 0.7384 (3) | 0.2114 (5) | 0.08301 (17) | 0.0427 (8) | |
H10 | 0.7593 | 0.1757 | 0.1261 | 0.051* | |
C11 | 0.3250 (3) | −0.0638 (4) | 0.21041 (16) | 0.0341 (7) | |
C12 | 0.4265 (3) | −0.0215 (6) | 0.26271 (17) | 0.0460 (9) | |
H12 | 0.4210 | 0.1077 | 0.2703 | 0.055* | |
C13 | 0.5590 (3) | −0.0537 (5) | 0.23662 (17) | 0.0365 (8) | |
C14 | 0.4053 (4) | −0.1058 (6) | 0.32924 (19) | 0.0652 (12) | |
H14A | 0.3256 | −0.0697 | 0.3454 | 0.098* | |
H14B | 0.4692 | −0.0679 | 0.3600 | 0.098* | |
H14C | 0.4075 | −0.2336 | 0.3249 | 0.098* | |
N1 | 0.3835 (2) | 0.1903 (3) | 0.03522 (13) | 0.0314 (6) | |
N2 | 0.6195 (2) | 0.2117 (4) | 0.06441 (13) | 0.0316 (6) | |
O1 | 0.3381 (2) | −0.0024 (3) | 0.15174 (10) | 0.0405 (6) | |
O2 | 0.58911 (19) | 0.0276 (3) | 0.18425 (11) | 0.0406 (6) | |
O3 | 0.4394 (3) | 0.3907 (3) | 0.17161 (12) | 0.0388 (6) | |
O4 | 0.2303 (2) | −0.1436 (4) | 0.22666 (13) | 0.0523 (7) | |
O5 | 0.6349 (2) | −0.1442 (3) | 0.26946 (14) | 0.0545 (7) | |
Cu1 | 0.47703 (3) | 0.12714 (5) | 0.118940 (18) | 0.03071 (14) | |
O6 | 0.8720 (2) | 0.9825 (4) | 0.24144 (17) | 0.0608 (8) | |
O7 | 0.0314 (3) | 0.9009 (6) | 0.12845 (16) | 0.0828 (11) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.046 (2) | 0.045 (2) | 0.0325 (18) | −0.0036 (17) | −0.0021 (16) | 0.0004 (16) |
C2 | 0.045 (2) | 0.052 (2) | 0.042 (2) | 0.0005 (18) | −0.0119 (17) | −0.0050 (18) |
C3 | 0.064 (3) | 0.052 (2) | 0.036 (2) | 0.010 (2) | −0.0168 (19) | −0.0014 (18) |
C4 | 0.059 (2) | 0.0407 (19) | 0.0263 (17) | 0.0000 (18) | 0.0008 (16) | 0.0022 (15) |
C5 | 0.0464 (18) | 0.0261 (16) | 0.0236 (15) | 0.0001 (14) | 0.0023 (14) | −0.0029 (13) |
C6 | 0.0469 (19) | 0.0223 (15) | 0.0229 (15) | −0.0016 (14) | 0.0024 (14) | −0.0028 (13) |
C7 | 0.055 (2) | 0.0394 (19) | 0.0282 (18) | −0.0061 (17) | 0.0058 (16) | 0.0022 (15) |
C8 | 0.052 (2) | 0.054 (2) | 0.043 (2) | −0.0116 (19) | 0.0184 (19) | −0.0014 (19) |
C9 | 0.0398 (19) | 0.063 (3) | 0.048 (2) | −0.0080 (19) | 0.0047 (17) | 0.002 (2) |
C10 | 0.0431 (19) | 0.052 (2) | 0.0329 (19) | −0.0039 (17) | −0.0006 (16) | 0.0004 (17) |
C11 | 0.0293 (16) | 0.0436 (19) | 0.0294 (17) | 0.0002 (14) | 0.0034 (13) | 0.0054 (15) |
C12 | 0.0388 (19) | 0.065 (2) | 0.0337 (19) | −0.0006 (18) | 0.0018 (16) | 0.0082 (18) |
C13 | 0.0286 (16) | 0.0427 (19) | 0.0381 (19) | −0.0020 (15) | −0.0024 (14) | 0.0028 (16) |
C14 | 0.047 (2) | 0.109 (4) | 0.039 (2) | 0.006 (2) | 0.0061 (19) | 0.004 (2) |
N1 | 0.0349 (14) | 0.0313 (13) | 0.0280 (14) | −0.0010 (12) | −0.0007 (12) | −0.0020 (12) |
N2 | 0.0322 (13) | 0.0357 (15) | 0.0271 (14) | −0.0014 (12) | 0.0021 (11) | 0.0000 (12) |
O1 | 0.0350 (12) | 0.0594 (15) | 0.0270 (12) | −0.0117 (11) | −0.0024 (10) | 0.0077 (11) |
O2 | 0.0300 (11) | 0.0548 (15) | 0.0372 (13) | 0.0014 (11) | 0.0044 (10) | 0.0168 (12) |
O3 | 0.0406 (14) | 0.0477 (15) | 0.0283 (13) | 0.0007 (12) | 0.0040 (12) | −0.0040 (11) |
O4 | 0.0416 (14) | 0.0750 (19) | 0.0404 (15) | −0.0188 (13) | 0.0052 (12) | 0.0123 (13) |
O5 | 0.0387 (13) | 0.0645 (17) | 0.0599 (18) | 0.0040 (12) | −0.0082 (13) | 0.0288 (14) |
Cu1 | 0.0315 (2) | 0.0373 (3) | 0.0233 (2) | −0.00150 (17) | 0.00136 (15) | 0.00288 (16) |
O6 | 0.0354 (15) | 0.061 (2) | 0.085 (2) | 0.0009 (14) | −0.0080 (15) | 0.0136 (18) |
O7 | 0.060 (2) | 0.132 (3) | 0.056 (2) | 0.017 (2) | −0.0158 (18) | −0.026 (2) |
C1—N1 | 1.338 (4) | C11—O1 | 1.276 (4) |
C1—C2 | 1.377 (5) | C11—C12 | 1.537 (5) |
C1—H1 | 0.9300 | C12—C14 | 1.499 (5) |
C2—C3 | 1.381 (5) | C12—C13 | 1.545 (4) |
C2—H2 | 0.9300 | C12—H12 | 0.9800 |
C3—C4 | 1.372 (5) | C13—O5 | 1.242 (4) |
C3—H3 | 0.9300 | C13—O2 | 1.263 (4) |
C4—C5 | 1.383 (4) | C14—H14A | 0.9600 |
C4—H4 | 0.9300 | C14—H14B | 0.9600 |
C5—N1 | 1.348 (4) | C14—H14C | 0.9600 |
C5—C6 | 1.481 (4) | N1—Cu1 | 2.004 (3) |
C6—N2 | 1.359 (4) | N2—Cu1 | 2.001 (2) |
C6—C7 | 1.387 (4) | O1—Cu1 | 1.907 (2) |
C7—C8 | 1.373 (5) | O2—Cu1 | 1.919 (2) |
C7—H7 | 0.9300 | O3—Cu1 | 2.276 (2) |
C8—C9 | 1.379 (5) | O3—H3A | 0.82 (3) |
C8—H8 | 0.9300 | O3—H3B | 0.85 (5) |
C9—C10 | 1.374 (5) | O6—H6A | 0.836 (10) |
C9—H9 | 0.9300 | O6—H6B | 0.835 (10) |
C10—N2 | 1.328 (4) | O7—H7A | 0.829 (10) |
C10—H10 | 0.9300 | O7—H7B | 0.839 (10) |
C11—O4 | 1.229 (4) | ||
N1—C1—C2 | 122.9 (3) | C14—C12—H12 | 105.3 |
N1—C1—H1 | 118.6 | C11—C12—H12 | 105.3 |
C2—C1—H1 | 118.6 | C13—C12—H12 | 105.3 |
C1—C2—C3 | 118.0 (3) | O5—C13—O2 | 122.0 (3) |
C1—C2—H2 | 121.0 | O5—C13—C12 | 120.4 (3) |
C3—C2—H2 | 121.0 | O2—C13—C12 | 117.3 (3) |
C4—C3—C2 | 119.9 (3) | C12—C14—H14A | 109.5 |
C4—C3—H3 | 120.1 | C12—C14—H14B | 109.5 |
C2—C3—H3 | 120.1 | H14A—C14—H14B | 109.5 |
C3—C4—C5 | 119.3 (3) | C12—C14—H14C | 109.5 |
C3—C4—H4 | 120.4 | H14A—C14—H14C | 109.5 |
C5—C4—H4 | 120.4 | H14B—C14—H14C | 109.5 |
N1—C5—C4 | 121.2 (3) | C1—N1—C5 | 118.8 (3) |
N1—C5—C6 | 114.8 (3) | C1—N1—Cu1 | 126.2 (2) |
C4—C5—C6 | 124.0 (3) | C5—N1—Cu1 | 115.0 (2) |
N2—C6—C7 | 121.0 (3) | C10—N2—C6 | 118.9 (3) |
N2—C6—C5 | 114.1 (3) | C10—N2—Cu1 | 126.1 (2) |
C7—C6—C5 | 124.8 (3) | C6—N2—Cu1 | 115.0 (2) |
C8—C7—C6 | 119.3 (3) | C11—O1—Cu1 | 126.9 (2) |
C8—C7—H7 | 120.3 | C13—O2—Cu1 | 126.2 (2) |
C6—C7—H7 | 120.3 | Cu1—O3—H3A | 112 (2) |
C7—C8—C9 | 119.2 (3) | Cu1—O3—H3B | 108 (3) |
C7—C8—H8 | 120.4 | H3A—O3—H3B | 103 (4) |
C9—C8—H8 | 120.4 | O1—Cu1—O2 | 93.10 (9) |
C10—C9—C8 | 118.9 (4) | O1—Cu1—N2 | 163.97 (10) |
C10—C9—H9 | 120.6 | O2—Cu1—N2 | 91.09 (10) |
C8—C9—H9 | 120.6 | O1—Cu1—N1 | 91.37 (10) |
N2—C10—C9 | 122.7 (3) | O2—Cu1—N1 | 165.47 (10) |
N2—C10—H10 | 118.7 | N2—Cu1—N1 | 81.04 (10) |
C9—C10—H10 | 118.7 | O1—Cu1—O3 | 97.61 (10) |
O4—C11—O1 | 121.7 (3) | O2—Cu1—O3 | 97.57 (10) |
O4—C11—C12 | 120.1 (3) | N2—Cu1—O3 | 97.17 (10) |
O1—C11—C12 | 118.1 (3) | N1—Cu1—O3 | 95.52 (10) |
C14—C12—C11 | 114.0 (3) | H6A—O6—H6B | 105.1 (16) |
C14—C12—C13 | 113.1 (3) | H7A—O7—H7B | 104.6 (16) |
C11—C12—C13 | 112.7 (3) | ||
N1—C1—C2—C3 | −0.3 (5) | C5—C6—N2—C10 | 178.0 (3) |
C1—C2—C3—C4 | 0.3 (6) | C7—C6—N2—Cu1 | −177.7 (2) |
C2—C3—C4—C5 | 0.3 (6) | C5—C6—N2—Cu1 | 0.1 (3) |
C3—C4—C5—N1 | −0.9 (5) | O4—C11—O1—Cu1 | 178.9 (2) |
C3—C4—C5—C6 | 179.0 (3) | C12—C11—O1—Cu1 | 4.1 (4) |
N1—C5—C6—N2 | −0.8 (4) | O5—C13—O2—Cu1 | 165.5 (3) |
C4—C5—C6—N2 | 179.3 (3) | C12—C13—O2—Cu1 | −20.5 (4) |
N1—C5—C6—C7 | 177.0 (3) | C11—O1—Cu1—O2 | 24.3 (3) |
C4—C5—C6—C7 | −3.0 (5) | C11—O1—Cu1—N2 | 129.2 (4) |
N2—C6—C7—C8 | 0.9 (5) | C11—O1—Cu1—N1 | −169.5 (3) |
C5—C6—C7—C8 | −176.7 (3) | C11—O1—Cu1—O3 | −73.8 (3) |
C6—C7—C8—C9 | −0.4 (5) | C13—O2—Cu1—O1 | −15.2 (3) |
C7—C8—C9—C10 | −1.0 (6) | C13—O2—Cu1—N2 | −179.7 (3) |
C8—C9—C10—N2 | 2.1 (6) | C13—O2—Cu1—N1 | −122.9 (4) |
O4—C11—C12—C14 | 7.4 (5) | C13—O2—Cu1—O3 | 82.9 (3) |
O1—C11—C12—C14 | −177.6 (3) | C10—N2—Cu1—O1 | −114.8 (4) |
O4—C11—C12—C13 | 138.1 (3) | C6—N2—Cu1—O1 | 62.9 (5) |
O1—C11—C12—C13 | −47.0 (4) | C10—N2—Cu1—O2 | −9.6 (3) |
C14—C12—C13—O5 | 1.2 (5) | C6—N2—Cu1—O2 | 168.1 (2) |
C11—C12—C13—O5 | −129.9 (4) | C10—N2—Cu1—N1 | −177.3 (3) |
C14—C12—C13—O2 | −172.9 (3) | C6—N2—Cu1—N1 | 0.4 (2) |
C11—C12—C13—O2 | 56.0 (4) | C10—N2—Cu1—O3 | 88.2 (3) |
C2—C1—N1—C5 | −0.4 (5) | C6—N2—Cu1—O3 | −94.1 (2) |
C2—C1—N1—Cu1 | 179.6 (3) | C1—N1—Cu1—O1 | 13.4 (3) |
C4—C5—N1—C1 | 1.0 (5) | C5—N1—Cu1—O1 | −166.6 (2) |
C6—C5—N1—C1 | −178.9 (3) | C1—N1—Cu1—O2 | 121.4 (4) |
C4—C5—N1—Cu1 | −179.0 (2) | C5—N1—Cu1—O2 | −58.7 (5) |
C6—C5—N1—Cu1 | 1.1 (3) | C1—N1—Cu1—N2 | 179.2 (3) |
C9—C10—N2—C6 | −1.6 (5) | C5—N1—Cu1—N2 | −0.8 (2) |
C9—C10—N2—Cu1 | 176.0 (3) | C1—N1—Cu1—O3 | −84.4 (3) |
C7—C6—N2—C10 | 0.1 (5) | C5—N1—Cu1—O3 | 95.6 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···O3i | 0.93 | 2.59 | 3.457 (4) | 155 |
O3—H3A···O4ii | 0.82 (3) | 1.97 (4) | 2.775 (3) | 170 (3) |
O3—H3B···O6iii | 0.85 (5) | 1.90 (5) | 2.744 (4) | 173 (4) |
O6—H6A···O5iv | 0.84 (2) | 1.96 (2) | 2.787 (3) | 168 (4) |
O6—H6B···O5v | 0.84 (1) | 1.97 (1) | 2.800 (4) | 170 (4) |
O7—H7A···O4iv | 0.83 (1) | 2.12 (2) | 2.907 (4) | 158 (4) |
O7—H7B···O6vi | 0.84 (1) | 2.10 (1) | 2.932 (5) | 170 (4) |
C2—H2···O7vii | 0.93 | 2.50 | 3.256 (5) | 139 |
C12—H12···O4ii | 0.98 | 2.47 | 3.300 (5) | 142 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+1/2, y+1/2, −z+1/2; (iii) −x+3/2, y−1/2, −z+1/2; (iv) x, y+1, z; (v) −x+3/2, y+3/2, −z+1/2; (vi) x−1, y, z; (vii) −x, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C4H4O4)(C10H8N2)(H2O)]·2H2O |
Mr | 389.84 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 293 |
a, b, c (Å) | 10.7588 (7), 7.4761 (6), 20.1029 (13) |
β (°) | 90.917 (6) |
V (Å3) | 1616.7 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.39 |
Crystal size (mm) | 0.25 × 0.23 × 0.17 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur Eos |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) |
Tmin, Tmax | 0.699, 0.790 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9120, 3782, 2771 |
Rint | 0.045 |
(sin θ/λ)max (Å−1) | 0.686 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.049, 0.119, 1.05 |
No. of reflections | 3782 |
No. of parameters | 242 |
No. of restraints | 6 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.97, −0.52 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia (1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···O3i | 0.93 | 2.59 | 3.457 (4) | 155.0 |
O3—H3A···O4ii | 0.82 (3) | 1.97 (4) | 2.775 (3) | 170 (3) |
O3—H3B···O6iii | 0.85 (5) | 1.90 (5) | 2.744 (4) | 173 (4) |
O6—H6A···O5iv | 0.84 (2) | 1.96 (2) | 2.787 (3) | 168 (4) |
O6—H6B···O5v | 0.835 (10) | 1.974 (12) | 2.800 (4) | 170 (4) |
O7—H7A···O4iv | 0.829 (10) | 2.121 (19) | 2.907 (4) | 158 (4) |
O7—H7B···O6vi | 0.839 (10) | 2.102 (13) | 2.932 (5) | 170 (4) |
C2—H2···O7vii | 0.93 | 2.50 | 3.256 (5) | 138.5 |
C12—H12···O4ii | 0.98 | 2.47 | 3.300 (5) | 141.9 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+1/2, y+1/2, −z+1/2; (iii) −x+3/2, y−1/2, −z+1/2; (iv) x, y+1, z; (v) −x+3/2, y+3/2, −z+1/2; (vi) x−1, y, z; (vii) −x, −y+1, −z. |
Acknowledgements
PM thanks Pondicherry University for a fellowship. The authors gratefully acknowledge the single-crystal XRD facility (DST-FIST), Department of Chemistry, Pondicherry University, for the XRD data.
References
Braga, D., Grepioni, F. & Desiraju, G. R. (1998). Chem. Rev. 98, 1375–1406. Web of Science CrossRef PubMed CAS Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Cui, G.-H., Li, J.-R., Hu, T.-L. & Bu, X.-H. (2005). J. Mol. Struct. 738, 183–187. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Gasque, L., Moreno-Esparza, R., Mollins, E., Briansó-Penalva, J. L., Ruiz-Ramírez, L. & Medina-Dickinson, G. (1998). Acta Cryst. C54, 1848–1850. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Suresh, E. & Bhadbhade, M. M. (1997). Acta Cryst. C53, 193–195. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The copper(II)—malonate complexes with suitable N-heterocyclic auxiliary ligands are of interest because the metal-N-heterocyclic chelate ring could influence the Cu—O(carboxyl) bond lengths and exhibits some degree of 'metalloaromaticity' (Suresh & Bhadbhade, 1997). On the other hand, self-assembly processes involving metal ions and organic ligands has attracted increasing attention for the development of novel functional materials with desired properties (Braga et al., 1998). In continuation of the structural studies of metal complexes of these ligands, the crystal structure of the title compound was determined.
Fig. 1. shows a displacement ellipsoid plot of the title complex. The CuIIion displays a slightly distorted quadratic pyramidal geometry and is coordinated to two N atoms of a 2,2'-bipyridine ligand and two carboxylate O atoms from a malonate group in the basal plane, and to a water molecule in the apical position [Cu1–O3 = 2.276 (2) Å]. The Cu1II ion is displaced by -0.2382 (4) Å from the basal plane (N1/N2/O1/O2) towards the apical position. The O3 atom of the water molecule coordinated in the apical position deviates from this basal plane by 2.514 (2) Å. A similar coordination behaviour is observed in a similar structure (Gasque et al., 1998), in which Cu1 deviates by 0.239 (2) Å and O3 atom by 2.533 (3) Å from the corresponding basal plane. The angle subtended by the pyridine ligand at the metal atom is far from the ideal value of 90° [81.0 (1)° for N1—Cu1—N2]. The bond distances Cu1—N1 = 2.004 (3), Cu1—N2 = 2.001 (1), Cu1—O1 = 1.907 (2) and Cu1—O2 = 1.919 (2) Å agree well with those reported for similar structures (Gasque et al., 1998; Cui et al., 2005).
The five-membered chelate ring (N1/N2/C5/C6/Cu1) is almost planar [maximum deviation = -0.006 (2) Å for atom N1], while the six-membered chelate ring defined by the malonate ligand (O1/O2/C11/C12/C13/Cu1) adopts a slightly distorted boat conformation as indicated by the puckering parameters (Cremer & Pople, 1975): Q = 0.580 (3) Å, θ = 81.8 (3)° and φ = 187.9 (3)°.
The crystal packing is stabilized by extensive intermolecular O—H···O and C—H···O hydrogen bonding interactions (Table 1) between the copper complex and uncordinated water molecules (Fig. 2). The crystal packing is further stabilized by π—π interactions with Cg1—Cg1viii, Cg1—Cg3viii, Cg3—Cg1viii, Cg3—Cg4viii, Cg4—Cg3viii, Cg3—Cg4i and Cg4—Cg3i seperations of 3.563 (2), 3.828 (2), 3.828 (2), 3.805 (2), 3.805 (2) 3.720 (2) and 3.720 (2) Å (Cg1, Cg2, Cg3 and Cg4 are the centroids of Cu1/N1/N2/C5/C6 ring, Cu1/O1/O2/C11/C12/C13 ring, N1/C1–C5 pyridine ring and N2/C6–C10 pyridine ring, respectively, symmetry codes: (i) 1-x, 1-y, -z; (viii) 1-x, -y, -z).