metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­(2,2′-bi­pyridine-κ2N,N′)(2-methyl­malonato-κ2O1,O3)copper(II) dihydrate

aDepartment of Chemistry, Pondicherry University, Puducherry 605 014, India, bDepartment of Physics, Bharathidasan Engineering College, Nattrampalli, Vellore 635 854, India, and cDepartment of Physics, Thanthai Periyar Government Institute of Technology, Vellore 632 002, India
*Correspondence e-mail: smurugavel27@gmail.com

(Received 21 May 2012; accepted 31 May 2012; online 13 June 2012)

In the title compound, [Cu(C4H4O4)(C10H8N2)(H2O)]·2H2O, the CuII ion displays a slightly distorted square-pyramidal coordination. The water mol­ecule at the apical position shows a long bond [Cu—O = 2.276 (2) Å]. The basal plane is formed by two N atoms of the 2,2′-bipyridine ligand and two carboxyl­ate O atoms from a malonate group. The five-membered chelate ring is almost planar [maximum deviation = −0.006 (2) Å], while the six-membered chelate ring defined by the malonate ligand adopts a distorted boat conformation. In the crystal, CuII complex mol­ecules and lattice water mol­ecules are connected by O—H⋯O and C—H⋯O hydrogen bonds. The crystal packing is further stabilized by ππ inter­actions [centroid–centroid distances = 3.563 (2)–3.828 (2) Å].

Related literature

For background to the applications of copper(II)–malonate complexes, see: Braga et al. (1998[Braga, D., Grepioni, F. & Desiraju, G. R. (1998). Chem. Rev. 98, 1375-1406.]); Suresh & Bhadbhade (1997[Suresh, E. & Bhadbhade, M. M. (1997). Acta Cryst. C53, 193-195.]). For related structures, see: Gasque et al. (1998[Gasque, L., Moreno-Esparza, R., Mollins, E., Briansó-Penalva, J. L., Ruiz-Ramírez, L. & Medina-Dickinson, G. (1998). Acta Cryst. C54, 1848-1850.]); Cui et al. (2005[Cui, G.-H., Li, J.-R., Hu, T.-L. & Bu, X.-H. (2005). J. Mol. Struct. 738, 183-187.]). For ring puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C4H4O4)(C10H8N2)(H2O)]·2H2O

  • Mr = 389.84

  • Monoclinic, P 21 /n

  • a = 10.7588 (7) Å

  • b = 7.4761 (6) Å

  • c = 20.1029 (13) Å

  • β = 90.917 (6)°

  • V = 1616.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.39 mm−1

  • T = 293 K

  • 0.25 × 0.23 × 0.17 mm

Data collection
  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.699, Tmax = 0.790

  • 9120 measured reflections

  • 3782 independent reflections

  • 2771 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.119

  • S = 1.05

  • 3782 reflections

  • 242 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.97 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O3i 0.93 2.59 3.457 (4) 155
O3—H3A⋯O4ii 0.82 (3) 1.97 (4) 2.775 (3) 170 (3)
O3—H3B⋯O6iii 0.85 (5) 1.90 (5) 2.744 (4) 173 (4)
O6—H6A⋯O5iv 0.84 (2) 1.96 (2) 2.787 (3) 168 (4)
O6—H6B⋯O5v 0.84 (1) 1.97 (1) 2.800 (4) 170 (4)
O7—H7A⋯O4iv 0.83 (1) 2.12 (2) 2.907 (4) 158 (4)
O7—H7B⋯O6vi 0.84 (1) 2.10 (1) 2.932 (5) 170 (4)
C2—H2⋯O7vii 0.93 2.50 3.256 (5) 139
C12—H12⋯O4ii 0.98 2.47 3.300 (5) 142
Symmetry codes: (i) -x+1, -y+1, -z; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) x, y+1, z; (v) [-x+{\script{3\over 2}}, y+{\script{3\over 2}}, -z+{\script{1\over 2}}]; (vi) x-1, y, z; (vii) -x, -y+1, -z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The copper(II)—malonate complexes with suitable N-heterocyclic auxiliary ligands are of interest because the metal-N-heterocyclic chelate ring could influence the Cu—O(carboxyl) bond lengths and exhibits some degree of 'metalloaromaticity' (Suresh & Bhadbhade, 1997). On the other hand, self-assembly processes involving metal ions and organic ligands has attracted increasing attention for the development of novel functional materials with desired properties (Braga et al., 1998). In continuation of the structural studies of metal complexes of these ligands, the crystal structure of the title compound was determined.

Fig. 1. shows a displacement ellipsoid plot of the title complex. The CuIIion displays a slightly distorted quadratic pyramidal geometry and is coordinated to two N atoms of a 2,2'-bipyridine ligand and two carboxylate O atoms from a malonate group in the basal plane, and to a water molecule in the apical position [Cu1–O3 = 2.276 (2) Å]. The Cu1II ion is displaced by -0.2382 (4) Å from the basal plane (N1/N2/O1/O2) towards the apical position. The O3 atom of the water molecule coordinated in the apical position deviates from this basal plane by 2.514 (2) Å. A similar coordination behaviour is observed in a similar structure (Gasque et al., 1998), in which Cu1 deviates by 0.239 (2) Å and O3 atom by 2.533 (3) Å from the corresponding basal plane. The angle subtended by the pyridine ligand at the metal atom is far from the ideal value of 90° [81.0 (1)° for N1—Cu1—N2]. The bond distances Cu1—N1 = 2.004 (3), Cu1—N2 = 2.001 (1), Cu1—O1 = 1.907 (2) and Cu1—O2 = 1.919 (2) Å agree well with those reported for similar structures (Gasque et al., 1998; Cui et al., 2005).

The five-membered chelate ring (N1/N2/C5/C6/Cu1) is almost planar [maximum deviation = -0.006 (2) Å for atom N1], while the six-membered chelate ring defined by the malonate ligand (O1/O2/C11/C12/C13/Cu1) adopts a slightly distorted boat conformation as indicated by the puckering parameters (Cremer & Pople, 1975): Q = 0.580 (3) Å, θ = 81.8 (3)° and φ = 187.9 (3)°.

The crystal packing is stabilized by extensive intermolecular O—H···O and C—H···O hydrogen bonding interactions (Table 1) between the copper complex and uncordinated water molecules (Fig. 2). The crystal packing is further stabilized by ππ interactions with Cg1—Cg1viii, Cg1—Cg3viii, Cg3—Cg1viii, Cg3—Cg4viii, Cg4—Cg3viii, Cg3—Cg4i and Cg4—Cg3i seperations of 3.563 (2), 3.828 (2), 3.828 (2), 3.805 (2), 3.805 (2) 3.720 (2) and 3.720 (2) Å (Cg1, Cg2, Cg3 and Cg4 are the centroids of Cu1/N1/N2/C5/C6 ring, Cu1/O1/O2/C11/C12/C13 ring, N1/C1–C5 pyridine ring and N2/C6–C10 pyridine ring, respectively, symmetry codes: (i) 1-x, 1-y, -z; (viii) 1-x, -y, -z).

Related literature top

For background to the applications of copper(II)–malonate complexes, see: Braga et al. (1998); Suresh & Bhadbhade (1997). For related structures, see: Gasque et al. (1998); Cui et al. (2005). For ring puckering analysis, see: Cremer & Pople (1975).

Experimental top

Basic copper(II) carbonate (1 mmol) was treated with an aqueous solution (10 ml) of methylmalonic acid (2 mmol) in a steam bath until the solid disappeared. The solution was then filtered and diluted to approximately 40 ml with water. An ethanol solution (10 ml) of 2,2'-bipyridine (2 mmol) was then added to above solution. The resultant clear-blue solution was warmed on a steam bath for 1 h. The volume was kept constant by periodic addition of water. Then the solution was filtered and allowed to stand at room temperature. Blue single crystals were obtained after 2 days. They were filtered, washed with water, ethanol and air dried.

Refinement top

H atoms of the water molecules were located in a difference fourier map, and were refined with distance restraints of O—H = 0.84 (1) Å and H···H = 1.32 (1) Å. All other H atoms were positioned geometrically, with C—H = 0.93–0.98 Å and constrained to ride on their parent atom, with Uiso(H)=1.5Ueq for methyl H atoms and 1.2Ueq(C) for other H atoms.

Structure description top

The copper(II)—malonate complexes with suitable N-heterocyclic auxiliary ligands are of interest because the metal-N-heterocyclic chelate ring could influence the Cu—O(carboxyl) bond lengths and exhibits some degree of 'metalloaromaticity' (Suresh & Bhadbhade, 1997). On the other hand, self-assembly processes involving metal ions and organic ligands has attracted increasing attention for the development of novel functional materials with desired properties (Braga et al., 1998). In continuation of the structural studies of metal complexes of these ligands, the crystal structure of the title compound was determined.

Fig. 1. shows a displacement ellipsoid plot of the title complex. The CuIIion displays a slightly distorted quadratic pyramidal geometry and is coordinated to two N atoms of a 2,2'-bipyridine ligand and two carboxylate O atoms from a malonate group in the basal plane, and to a water molecule in the apical position [Cu1–O3 = 2.276 (2) Å]. The Cu1II ion is displaced by -0.2382 (4) Å from the basal plane (N1/N2/O1/O2) towards the apical position. The O3 atom of the water molecule coordinated in the apical position deviates from this basal plane by 2.514 (2) Å. A similar coordination behaviour is observed in a similar structure (Gasque et al., 1998), in which Cu1 deviates by 0.239 (2) Å and O3 atom by 2.533 (3) Å from the corresponding basal plane. The angle subtended by the pyridine ligand at the metal atom is far from the ideal value of 90° [81.0 (1)° for N1—Cu1—N2]. The bond distances Cu1—N1 = 2.004 (3), Cu1—N2 = 2.001 (1), Cu1—O1 = 1.907 (2) and Cu1—O2 = 1.919 (2) Å agree well with those reported for similar structures (Gasque et al., 1998; Cui et al., 2005).

The five-membered chelate ring (N1/N2/C5/C6/Cu1) is almost planar [maximum deviation = -0.006 (2) Å for atom N1], while the six-membered chelate ring defined by the malonate ligand (O1/O2/C11/C12/C13/Cu1) adopts a slightly distorted boat conformation as indicated by the puckering parameters (Cremer & Pople, 1975): Q = 0.580 (3) Å, θ = 81.8 (3)° and φ = 187.9 (3)°.

The crystal packing is stabilized by extensive intermolecular O—H···O and C—H···O hydrogen bonding interactions (Table 1) between the copper complex and uncordinated water molecules (Fig. 2). The crystal packing is further stabilized by ππ interactions with Cg1—Cg1viii, Cg1—Cg3viii, Cg3—Cg1viii, Cg3—Cg4viii, Cg4—Cg3viii, Cg3—Cg4i and Cg4—Cg3i seperations of 3.563 (2), 3.828 (2), 3.828 (2), 3.805 (2), 3.805 (2) 3.720 (2) and 3.720 (2) Å (Cg1, Cg2, Cg3 and Cg4 are the centroids of Cu1/N1/N2/C5/C6 ring, Cu1/O1/O2/C11/C12/C13 ring, N1/C1–C5 pyridine ring and N2/C6–C10 pyridine ring, respectively, symmetry codes: (i) 1-x, 1-y, -z; (viii) 1-x, -y, -z).

For background to the applications of copper(II)–malonate complexes, see: Braga et al. (1998); Suresh & Bhadbhade (1997). For related structures, see: Gasque et al. (1998); Cui et al. (2005). For ring puckering analysis, see: Cremer & Pople (1975).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia (1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 20% probability level. H atoms are presented as a small cycles of arbitrary radius.
[Figure 2] Fig. 2. Part of the crystal structure showing O—H···O and C—H···O hydrogen bonds.
Aqua(2,2'-bipyridine-κ2N,N')(2-methylmalonato- κ2O1,O3)copper(II) dihydrate top
Crystal data top
[Cu(C4H4O4)(C10H8N2)(H2O)]·2H2OF(000) = 804
Mr = 389.84Dx = 1.602 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4366 reflections
a = 10.7588 (7) Åθ = 2.9–29.2°
b = 7.4761 (6) ŵ = 1.39 mm1
c = 20.1029 (13) ÅT = 293 K
β = 90.917 (6)°Plate, blue
V = 1616.7 (2) Å30.25 × 0.23 × 0.17 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
3782 independent reflections
Radiation source: fine-focus sealed tube2771 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
Detector resolution: 15.9821 pixels mm-1θmax = 29.2°, θmin = 2.9°
ω scansh = 1413
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 109
Tmin = 0.699, Tmax = 0.790l = 2526
9120 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0472P)2 + 0.4525P]
where P = (Fo2 + 2Fc2)/3
3782 reflections(Δ/σ)max < 0.001
242 parametersΔρmax = 0.97 e Å3
6 restraintsΔρmin = 0.52 e Å3
Crystal data top
[Cu(C4H4O4)(C10H8N2)(H2O)]·2H2OV = 1616.7 (2) Å3
Mr = 389.84Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.7588 (7) ŵ = 1.39 mm1
b = 7.4761 (6) ÅT = 293 K
c = 20.1029 (13) Å0.25 × 0.23 × 0.17 mm
β = 90.917 (6)°
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
3782 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
2771 reflections with I > 2σ(I)
Tmin = 0.699, Tmax = 0.790Rint = 0.045
9120 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0496 restraints
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.97 e Å3
3782 reflectionsΔρmin = 0.52 e Å3
242 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H6A0.8000 (17)0.941 (4)0.244 (2)0.084 (16)*
H6B0.863 (3)1.0935 (14)0.242 (2)0.078 (17)*
H7A0.0996 (16)0.899 (6)0.1481 (16)0.082 (17)*
H7B0.019 (2)0.932 (5)0.1575 (13)0.055 (13)*
H3A0.383 (3)0.381 (4)0.1980 (18)0.031 (9)*
H3B0.501 (4)0.415 (5)0.196 (2)0.070 (15)*
C10.2610 (3)0.1725 (5)0.02465 (17)0.0410 (8)
H10.21290.12610.05860.049*
C20.2030 (3)0.2200 (5)0.03429 (18)0.0466 (9)
H20.11770.20570.04030.056*
C30.2754 (4)0.2894 (5)0.08420 (18)0.0510 (10)
H30.23900.32330.12450.061*
C40.4011 (4)0.3084 (5)0.07414 (16)0.0419 (8)
H40.45040.35550.10740.050*
C50.4537 (3)0.2565 (4)0.01396 (15)0.0320 (7)
C60.5883 (3)0.2680 (4)0.00209 (14)0.0307 (7)
C70.6786 (3)0.3242 (4)0.04174 (17)0.0409 (8)
H70.65620.36410.08410.049*
C80.8013 (4)0.3203 (5)0.02201 (19)0.0497 (10)
H80.86290.35680.05090.060*
C90.8320 (3)0.2617 (5)0.04121 (19)0.0501 (10)
H90.91470.25640.05530.060*
C100.7384 (3)0.2114 (5)0.08301 (17)0.0427 (8)
H100.75930.17570.12610.051*
C110.3250 (3)0.0638 (4)0.21041 (16)0.0341 (7)
C120.4265 (3)0.0215 (6)0.26271 (17)0.0460 (9)
H120.42100.10770.27030.055*
C130.5590 (3)0.0537 (5)0.23662 (17)0.0365 (8)
C140.4053 (4)0.1058 (6)0.32924 (19)0.0652 (12)
H14A0.32560.06970.34540.098*
H14B0.46920.06790.36000.098*
H14C0.40750.23360.32490.098*
N10.3835 (2)0.1903 (3)0.03522 (13)0.0314 (6)
N20.6195 (2)0.2117 (4)0.06441 (13)0.0316 (6)
O10.3381 (2)0.0024 (3)0.15174 (10)0.0405 (6)
O20.58911 (19)0.0276 (3)0.18425 (11)0.0406 (6)
O30.4394 (3)0.3907 (3)0.17161 (12)0.0388 (6)
O40.2303 (2)0.1436 (4)0.22666 (13)0.0523 (7)
O50.6349 (2)0.1442 (3)0.26946 (14)0.0545 (7)
Cu10.47703 (3)0.12714 (5)0.118940 (18)0.03071 (14)
O60.8720 (2)0.9825 (4)0.24144 (17)0.0608 (8)
O70.0314 (3)0.9009 (6)0.12845 (16)0.0828 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.046 (2)0.045 (2)0.0325 (18)0.0036 (17)0.0021 (16)0.0004 (16)
C20.045 (2)0.052 (2)0.042 (2)0.0005 (18)0.0119 (17)0.0050 (18)
C30.064 (3)0.052 (2)0.036 (2)0.010 (2)0.0168 (19)0.0014 (18)
C40.059 (2)0.0407 (19)0.0263 (17)0.0000 (18)0.0008 (16)0.0022 (15)
C50.0464 (18)0.0261 (16)0.0236 (15)0.0001 (14)0.0023 (14)0.0029 (13)
C60.0469 (19)0.0223 (15)0.0229 (15)0.0016 (14)0.0024 (14)0.0028 (13)
C70.055 (2)0.0394 (19)0.0282 (18)0.0061 (17)0.0058 (16)0.0022 (15)
C80.052 (2)0.054 (2)0.043 (2)0.0116 (19)0.0184 (19)0.0014 (19)
C90.0398 (19)0.063 (3)0.048 (2)0.0080 (19)0.0047 (17)0.002 (2)
C100.0431 (19)0.052 (2)0.0329 (19)0.0039 (17)0.0006 (16)0.0004 (17)
C110.0293 (16)0.0436 (19)0.0294 (17)0.0002 (14)0.0034 (13)0.0054 (15)
C120.0388 (19)0.065 (2)0.0337 (19)0.0006 (18)0.0018 (16)0.0082 (18)
C130.0286 (16)0.0427 (19)0.0381 (19)0.0020 (15)0.0024 (14)0.0028 (16)
C140.047 (2)0.109 (4)0.039 (2)0.006 (2)0.0061 (19)0.004 (2)
N10.0349 (14)0.0313 (13)0.0280 (14)0.0010 (12)0.0007 (12)0.0020 (12)
N20.0322 (13)0.0357 (15)0.0271 (14)0.0014 (12)0.0021 (11)0.0000 (12)
O10.0350 (12)0.0594 (15)0.0270 (12)0.0117 (11)0.0024 (10)0.0077 (11)
O20.0300 (11)0.0548 (15)0.0372 (13)0.0014 (11)0.0044 (10)0.0168 (12)
O30.0406 (14)0.0477 (15)0.0283 (13)0.0007 (12)0.0040 (12)0.0040 (11)
O40.0416 (14)0.0750 (19)0.0404 (15)0.0188 (13)0.0052 (12)0.0123 (13)
O50.0387 (13)0.0645 (17)0.0599 (18)0.0040 (12)0.0082 (13)0.0288 (14)
Cu10.0315 (2)0.0373 (3)0.0233 (2)0.00150 (17)0.00136 (15)0.00288 (16)
O60.0354 (15)0.061 (2)0.085 (2)0.0009 (14)0.0080 (15)0.0136 (18)
O70.060 (2)0.132 (3)0.056 (2)0.017 (2)0.0158 (18)0.026 (2)
Geometric parameters (Å, º) top
C1—N11.338 (4)C11—O11.276 (4)
C1—C21.377 (5)C11—C121.537 (5)
C1—H10.9300C12—C141.499 (5)
C2—C31.381 (5)C12—C131.545 (4)
C2—H20.9300C12—H120.9800
C3—C41.372 (5)C13—O51.242 (4)
C3—H30.9300C13—O21.263 (4)
C4—C51.383 (4)C14—H14A0.9600
C4—H40.9300C14—H14B0.9600
C5—N11.348 (4)C14—H14C0.9600
C5—C61.481 (4)N1—Cu12.004 (3)
C6—N21.359 (4)N2—Cu12.001 (2)
C6—C71.387 (4)O1—Cu11.907 (2)
C7—C81.373 (5)O2—Cu11.919 (2)
C7—H70.9300O3—Cu12.276 (2)
C8—C91.379 (5)O3—H3A0.82 (3)
C8—H80.9300O3—H3B0.85 (5)
C9—C101.374 (5)O6—H6A0.836 (10)
C9—H90.9300O6—H6B0.835 (10)
C10—N21.328 (4)O7—H7A0.829 (10)
C10—H100.9300O7—H7B0.839 (10)
C11—O41.229 (4)
N1—C1—C2122.9 (3)C14—C12—H12105.3
N1—C1—H1118.6C11—C12—H12105.3
C2—C1—H1118.6C13—C12—H12105.3
C1—C2—C3118.0 (3)O5—C13—O2122.0 (3)
C1—C2—H2121.0O5—C13—C12120.4 (3)
C3—C2—H2121.0O2—C13—C12117.3 (3)
C4—C3—C2119.9 (3)C12—C14—H14A109.5
C4—C3—H3120.1C12—C14—H14B109.5
C2—C3—H3120.1H14A—C14—H14B109.5
C3—C4—C5119.3 (3)C12—C14—H14C109.5
C3—C4—H4120.4H14A—C14—H14C109.5
C5—C4—H4120.4H14B—C14—H14C109.5
N1—C5—C4121.2 (3)C1—N1—C5118.8 (3)
N1—C5—C6114.8 (3)C1—N1—Cu1126.2 (2)
C4—C5—C6124.0 (3)C5—N1—Cu1115.0 (2)
N2—C6—C7121.0 (3)C10—N2—C6118.9 (3)
N2—C6—C5114.1 (3)C10—N2—Cu1126.1 (2)
C7—C6—C5124.8 (3)C6—N2—Cu1115.0 (2)
C8—C7—C6119.3 (3)C11—O1—Cu1126.9 (2)
C8—C7—H7120.3C13—O2—Cu1126.2 (2)
C6—C7—H7120.3Cu1—O3—H3A112 (2)
C7—C8—C9119.2 (3)Cu1—O3—H3B108 (3)
C7—C8—H8120.4H3A—O3—H3B103 (4)
C9—C8—H8120.4O1—Cu1—O293.10 (9)
C10—C9—C8118.9 (4)O1—Cu1—N2163.97 (10)
C10—C9—H9120.6O2—Cu1—N291.09 (10)
C8—C9—H9120.6O1—Cu1—N191.37 (10)
N2—C10—C9122.7 (3)O2—Cu1—N1165.47 (10)
N2—C10—H10118.7N2—Cu1—N181.04 (10)
C9—C10—H10118.7O1—Cu1—O397.61 (10)
O4—C11—O1121.7 (3)O2—Cu1—O397.57 (10)
O4—C11—C12120.1 (3)N2—Cu1—O397.17 (10)
O1—C11—C12118.1 (3)N1—Cu1—O395.52 (10)
C14—C12—C11114.0 (3)H6A—O6—H6B105.1 (16)
C14—C12—C13113.1 (3)H7A—O7—H7B104.6 (16)
C11—C12—C13112.7 (3)
N1—C1—C2—C30.3 (5)C5—C6—N2—C10178.0 (3)
C1—C2—C3—C40.3 (6)C7—C6—N2—Cu1177.7 (2)
C2—C3—C4—C50.3 (6)C5—C6—N2—Cu10.1 (3)
C3—C4—C5—N10.9 (5)O4—C11—O1—Cu1178.9 (2)
C3—C4—C5—C6179.0 (3)C12—C11—O1—Cu14.1 (4)
N1—C5—C6—N20.8 (4)O5—C13—O2—Cu1165.5 (3)
C4—C5—C6—N2179.3 (3)C12—C13—O2—Cu120.5 (4)
N1—C5—C6—C7177.0 (3)C11—O1—Cu1—O224.3 (3)
C4—C5—C6—C73.0 (5)C11—O1—Cu1—N2129.2 (4)
N2—C6—C7—C80.9 (5)C11—O1—Cu1—N1169.5 (3)
C5—C6—C7—C8176.7 (3)C11—O1—Cu1—O373.8 (3)
C6—C7—C8—C90.4 (5)C13—O2—Cu1—O115.2 (3)
C7—C8—C9—C101.0 (6)C13—O2—Cu1—N2179.7 (3)
C8—C9—C10—N22.1 (6)C13—O2—Cu1—N1122.9 (4)
O4—C11—C12—C147.4 (5)C13—O2—Cu1—O382.9 (3)
O1—C11—C12—C14177.6 (3)C10—N2—Cu1—O1114.8 (4)
O4—C11—C12—C13138.1 (3)C6—N2—Cu1—O162.9 (5)
O1—C11—C12—C1347.0 (4)C10—N2—Cu1—O29.6 (3)
C14—C12—C13—O51.2 (5)C6—N2—Cu1—O2168.1 (2)
C11—C12—C13—O5129.9 (4)C10—N2—Cu1—N1177.3 (3)
C14—C12—C13—O2172.9 (3)C6—N2—Cu1—N10.4 (2)
C11—C12—C13—O256.0 (4)C10—N2—Cu1—O388.2 (3)
C2—C1—N1—C50.4 (5)C6—N2—Cu1—O394.1 (2)
C2—C1—N1—Cu1179.6 (3)C1—N1—Cu1—O113.4 (3)
C4—C5—N1—C11.0 (5)C5—N1—Cu1—O1166.6 (2)
C6—C5—N1—C1178.9 (3)C1—N1—Cu1—O2121.4 (4)
C4—C5—N1—Cu1179.0 (2)C5—N1—Cu1—O258.7 (5)
C6—C5—N1—Cu11.1 (3)C1—N1—Cu1—N2179.2 (3)
C9—C10—N2—C61.6 (5)C5—N1—Cu1—N20.8 (2)
C9—C10—N2—Cu1176.0 (3)C1—N1—Cu1—O384.4 (3)
C7—C6—N2—C100.1 (5)C5—N1—Cu1—O395.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O3i0.932.593.457 (4)155
O3—H3A···O4ii0.82 (3)1.97 (4)2.775 (3)170 (3)
O3—H3B···O6iii0.85 (5)1.90 (5)2.744 (4)173 (4)
O6—H6A···O5iv0.84 (2)1.96 (2)2.787 (3)168 (4)
O6—H6B···O5v0.84 (1)1.97 (1)2.800 (4)170 (4)
O7—H7A···O4iv0.83 (1)2.12 (2)2.907 (4)158 (4)
O7—H7B···O6vi0.84 (1)2.10 (1)2.932 (5)170 (4)
C2—H2···O7vii0.932.503.256 (5)139
C12—H12···O4ii0.982.473.300 (5)142
Symmetry codes: (i) x+1, y+1, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x+3/2, y1/2, z+1/2; (iv) x, y+1, z; (v) x+3/2, y+3/2, z+1/2; (vi) x1, y, z; (vii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu(C4H4O4)(C10H8N2)(H2O)]·2H2O
Mr389.84
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)10.7588 (7), 7.4761 (6), 20.1029 (13)
β (°) 90.917 (6)
V3)1616.7 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.39
Crystal size (mm)0.25 × 0.23 × 0.17
Data collection
DiffractometerOxford Diffraction Xcalibur Eos
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.699, 0.790
No. of measured, independent and
observed [I > 2σ(I)] reflections
9120, 3782, 2771
Rint0.045
(sin θ/λ)max1)0.686
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.119, 1.05
No. of reflections3782
No. of parameters242
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.97, 0.52

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia (1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O3i0.932.593.457 (4)155.0
O3—H3A···O4ii0.82 (3)1.97 (4)2.775 (3)170 (3)
O3—H3B···O6iii0.85 (5)1.90 (5)2.744 (4)173 (4)
O6—H6A···O5iv0.84 (2)1.96 (2)2.787 (3)168 (4)
O6—H6B···O5v0.835 (10)1.974 (12)2.800 (4)170 (4)
O7—H7A···O4iv0.829 (10)2.121 (19)2.907 (4)158 (4)
O7—H7B···O6vi0.839 (10)2.102 (13)2.932 (5)170 (4)
C2—H2···O7vii0.932.503.256 (5)138.5
C12—H12···O4ii0.982.473.300 (5)141.9
Symmetry codes: (i) x+1, y+1, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x+3/2, y1/2, z+1/2; (iv) x, y+1, z; (v) x+3/2, y+3/2, z+1/2; (vi) x1, y, z; (vii) x, y+1, z.
 

Acknowledgements

PM thanks Pondicherry University for a fellowship. The authors gratefully acknowledge the single-crystal XRD facility (DST-FIST), Department of Chemistry, Pondicherry University, for the XRD data.

References

First citationBraga, D., Grepioni, F. & Desiraju, G. R. (1998). Chem. Rev. 98, 1375–1406.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationCui, G.-H., Li, J.-R., Hu, T.-L. & Bu, X.-H. (2005). J. Mol. Struct. 738, 183–187.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGasque, L., Moreno-Esparza, R., Mollins, E., Briansó-Penalva, J. L., Ruiz-Ramírez, L. & Medina-Dickinson, G. (1998). Acta Cryst. C54, 1848–1850.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuresh, E. & Bhadbhade, M. M. (1997). Acta Cryst. C53, 193–195.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds