metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[aqua­(1,10-phenanthroline-κ2N,N′)zinc]-μ-acetyl­ene­di­carboxyl­ato-κ2O1:O2] monohydrate]

aDepartment of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
*Correspondence e-mail: fettouhi@kfupm.edu.sa

(Received 24 May 2012; accepted 1 June 2012; online 13 June 2012)

In the title complex, {[Zn(C4O4)(C12H8N2)(H2O)]·H2O}n, the penta­coordinated ZnII ion is bound to two N atoms of the 1,10-phenanthroline ligand, two O atoms from two bridging acetyl­enedicarboxyl­ate anions and a water O atom in a distorted trigonal–bipyramidal geometry. The crystal structure is characterized by polymeric zigzag chains running parallel to [2-10] and is stabilized by O—H⋯O hydrogen bonds.

Related literature

For background to polymetallic complexes, see: Winpenny (2001[Winpenny, R. E. P. (2001). Adv. Inorg. Chem. 52, 1-111.]); Swiegers & Malefetse (2000[Swiegers, G. F. & Malefetse, T. J. (2000). Chem. Rev. 100, 3483-3537.]). For polymeric complexes based on acetyl­enedicarboxyl­ate, see: Hermann et al. (2011[Hermann, D., Näther, C. & Ruschewitz, U. (2011). Solid State Sci. 13, 1096-1101.]); Lin et al. (2011[Lin, J.-L., Zhu, H.-L., Zhang, J., Zhao, J.-M. & Zheng, Y.-Q. (2011). J. Mol. Struct. 995, 91-96.]); Zheng et al. (2010[Zheng, Y.-Q., Zhang, J. & Liu, J.-Y. (2010). CrystEngComm, 12, 2740-2748.]). For a related six-coord­inate octa­hedral ZnII–pyridine complex with similar hydrogen-bonding inter­actions, see: Stein & Ruschewitz (2009[Stein, I. & Ruschewitz, U. (2009). Z. Naturforsch. Teil B, 64, 1093-1097.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C4O4)(C12H8N2)(H2O)]·H2O

  • Mr = 393.65

  • Triclinic, [P \overline 1]

  • a = 7.9592 (8) Å

  • b = 7.9598 (8) Å

  • c = 13.3712 (13) Å

  • α = 105.062 (2)°

  • β = 101.287 (2)°

  • γ = 99.131 (2)°

  • V = 782.30 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.61 mm−1

  • T = 296 K

  • 0.37 × 0.14 × 0.07 mm

Data collection
  • Bruker SMART APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.588, Tmax = 0.896

  • 6649 measured reflections

  • 3398 independent reflections

  • 3069 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.111

  • S = 1.14

  • 3398 reflections

  • 242 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.71 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H1W⋯O3i 0.83 (2) 1.91 (2) 2.741 (4) 176 (4)
O5—H2W⋯O6ii 0.83 (2) 1.93 (2) 2.746 (4) 167 (5)
O6—H3W⋯O2iii 0.83 (2) 2.04 (3) 2.847 (5) 164 (6)
O6—H4W⋯O4iv 0.85 (2) 1.97 (2) 2.806 (4) 168 (5)
Symmetry codes: (i) -x, -y+1, -z; (ii) x-1, y+1, z; (iii) x, y-1, z; (iv) x+1, y, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The design and structural control of polymetallic complexes is an area of interest owing to wide potential applications (Winpenny, 2001; Swiegers et al., 2000). In this context, acetylenedicarboxylate is a particularly attracting ligand as a building block of polymeric metal complexes (Hermann et al., 2011; Lin et al., 2011; Zheng et al., 2010). I report herein on a polymeric zinc complex based on 1,10-phenanthroline and the acetylenedicarboxylate anion. The Zn(II) ion is bound to two nitrogen atoms of the 1,10-phenanthroline ligand, two oxygen atoms each belonging to an acetylenedicarboxylate anion and an oxygen atom of a water molecule (Figure 1). The geometry is distorted trigonal bipyramidal where the equatorial positions are occupied by the two carboxylate oxygen atoms and one nitrogen atom. The two acetylenedicarboxylate anions are each located on an inversion center and bridging Zn(II) ions to generate a zigzag chain structure parallel to [2 1 0] (Figure 2). The coordinated water molecule belonging to one chain interacts with a carbonyl oxygen of an adjacent chain, giving rise to eight-membered [Zn—(O···H—O)2—Zn] inter-chain rings with a chair configuration. One crystallization water molecule in the lattice has hydrogen bonding interactions connecting three adjacent chains by interacting with two carbonyl oxygen atoms of the first and second chain respectively in addition to a hydrogen atom of the coordinated water molecule of the third chain. A six-coordinate octahedral pyridine complex with similar hydrogen bonding interactions has been reported (Stein et al., 2009).

Related literature top

For background to polymetallic complexes, see: Winpenny (2001); Swiegers & Malefetse (2000). For polymeric complexes based on acetylenedicarboxylate, see: Hermann et al. (2011); Lin et al. (2011); Zheng et al. (2010). For a related six-coordinate octahedral ZnII–pyridine complex with similar hydrogen-bonding interactions, see: Stein & Ruschewitz (2009).

Experimental top

Acetylenedicarboxylic acid (0.2 mmol, 0.0228 g) and 1,10-phenanthroline (0.2 mmol, 0.0397 g) were mixed in 2 ml e thanol. A clear solution was obtained upon addition of an aqueous solution (2 ml) of Zn(NO3)2.6H2O (0.2 mmol, 0.0595 g). The pH was then adjusted to 4.4 using NaOH (0.010 M) and the solution was filtered. Colorless crystals suitable for X-ray diffraction were obtained after few days by slow evaporation of the filtrate.

Refinement top

H atoms of the two water molecules were located on a difference Fourier map and refined isotropically with distance restraints of O—H = 0.84 (2) Å. All other H atoms were placed in calculated positions with a C—H distance of 0.93 Å and Uiso(H) = 1.2Ueq(C).

Structure description top

The design and structural control of polymetallic complexes is an area of interest owing to wide potential applications (Winpenny, 2001; Swiegers et al., 2000). In this context, acetylenedicarboxylate is a particularly attracting ligand as a building block of polymeric metal complexes (Hermann et al., 2011; Lin et al., 2011; Zheng et al., 2010). I report herein on a polymeric zinc complex based on 1,10-phenanthroline and the acetylenedicarboxylate anion. The Zn(II) ion is bound to two nitrogen atoms of the 1,10-phenanthroline ligand, two oxygen atoms each belonging to an acetylenedicarboxylate anion and an oxygen atom of a water molecule (Figure 1). The geometry is distorted trigonal bipyramidal where the equatorial positions are occupied by the two carboxylate oxygen atoms and one nitrogen atom. The two acetylenedicarboxylate anions are each located on an inversion center and bridging Zn(II) ions to generate a zigzag chain structure parallel to [2 1 0] (Figure 2). The coordinated water molecule belonging to one chain interacts with a carbonyl oxygen of an adjacent chain, giving rise to eight-membered [Zn—(O···H—O)2—Zn] inter-chain rings with a chair configuration. One crystallization water molecule in the lattice has hydrogen bonding interactions connecting three adjacent chains by interacting with two carbonyl oxygen atoms of the first and second chain respectively in addition to a hydrogen atom of the coordinated water molecule of the third chain. A six-coordinate octahedral pyridine complex with similar hydrogen bonding interactions has been reported (Stein et al., 2009).

For background to polymetallic complexes, see: Winpenny (2001); Swiegers & Malefetse (2000). For polymeric complexes based on acetylenedicarboxylate, see: Hermann et al. (2011); Lin et al. (2011); Zheng et al. (2010). For a related six-coordinate octahedral ZnII–pyridine complex with similar hydrogen-bonding interactions, see: Stein & Ruschewitz (2009).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of a fragment of the title compound showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level (Symmetry codes: i = -x + 1,-y + 2,-z; ii = -x,-y,-z).
[Figure 2] Fig. 2. Packing diagram of the title complex showing the H-bonding interactions.
catena-Poly[[[aqua(1,10-phenanthroline-κ2N,N')zinc]- µ-acetylenedicarboxylato-κ2O1:O2] monohydrate] top
Crystal data top
[Zn(C4O4)(C12H8N2)(H2O)]·H2OZ = 2
Mr = 393.65F(000) = 400
Triclinic, P1Dx = 1.671 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9592 (8) ÅCell parameters from 6941 reflections
b = 7.9598 (8) Åθ = 1.6–28.3°
c = 13.3712 (13) ŵ = 1.61 mm1
α = 105.062 (2)°T = 296 K
β = 101.287 (2)°Parallelepiped, yellow
γ = 99.131 (2)°0.37 × 0.14 × 0.07 mm
V = 782.30 (13) Å3
Data collection top
Bruker Smart Apex area detector
diffractometer
3398 independent reflections
Radiation source: normal-focus sealed tube3069 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ω scansθmax = 27.1°, θmin = 1.6°
Absorption correction: multi-scan
SADABS; Sheldrick, 1996
h = 1010
Tmin = 0.588, Tmax = 0.896k = 1010
6649 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.14 w = 1/[σ2(Fo2) + (0.0449P)2 + 1.0051P]
where P = (Fo2 + 2Fc2)/3
3398 reflections(Δ/σ)max = 0.001
242 parametersΔρmax = 0.71 e Å3
4 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Zn(C4O4)(C12H8N2)(H2O)]·H2Oγ = 99.131 (2)°
Mr = 393.65V = 782.30 (13) Å3
Triclinic, P1Z = 2
a = 7.9592 (8) ÅMo Kα radiation
b = 7.9598 (8) ŵ = 1.61 mm1
c = 13.3712 (13) ÅT = 296 K
α = 105.062 (2)°0.37 × 0.14 × 0.07 mm
β = 101.287 (2)°
Data collection top
Bruker Smart Apex area detector
diffractometer
3398 independent reflections
Absorption correction: multi-scan
SADABS; Sheldrick, 1996
3069 reflections with I > 2σ(I)
Tmin = 0.588, Tmax = 0.896Rint = 0.018
6649 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0414 restraints
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.14Δρmax = 0.71 e Å3
3398 reflectionsΔρmin = 0.34 e Å3
242 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.23205 (5)0.62227 (5)0.17319 (3)0.02899 (13)
N10.4701 (4)0.5448 (4)0.2254 (2)0.0364 (6)
N20.2790 (4)0.7239 (4)0.3405 (2)0.0339 (6)
O10.3084 (3)0.7402 (4)0.0701 (2)0.0472 (7)
O20.5273 (5)0.9248 (5)0.1989 (2)0.0753 (11)
O30.1288 (3)0.3764 (3)0.06832 (19)0.0386 (5)
O40.0871 (4)0.2719 (3)0.2021 (2)0.0481 (6)
O50.0117 (4)0.6855 (4)0.1476 (2)0.0440 (6)
O60.9009 (5)0.0096 (5)0.2544 (3)0.0570 (8)
C10.4810 (5)0.9623 (5)0.0304 (3)0.0432 (8)
C20.4356 (5)0.8714 (5)0.1069 (3)0.0417 (8)
C30.1800 (6)0.8060 (5)0.3967 (3)0.0439 (8)
H30.07470.82340.36090.053*
C40.2293 (7)0.8677 (6)0.5091 (3)0.0588 (12)
H40.15670.92440.54640.071*
C50.3816 (7)0.8450 (6)0.5629 (3)0.0622 (13)
H50.41510.88680.63710.075*
C60.4893 (6)0.7575 (5)0.5058 (3)0.0488 (10)
C70.6539 (7)0.7268 (7)0.5552 (4)0.0673 (15)
H70.69430.76770.62930.081*
C80.7501 (6)0.6408 (7)0.4972 (4)0.0674 (14)
H80.85690.62460.53190.081*
C90.6940 (5)0.5727 (6)0.3829 (4)0.0519 (10)
C100.7835 (6)0.4750 (6)0.3164 (5)0.0639 (13)
H100.88960.45130.34610.077*
C110.7161 (6)0.4151 (6)0.2092 (5)0.0620 (12)
H110.77410.34860.16500.074*
C120.5598 (5)0.4544 (5)0.1665 (3)0.0469 (9)
H120.51590.41520.09260.056*
C130.5344 (4)0.6041 (5)0.3325 (3)0.0366 (7)
C140.4315 (5)0.6990 (4)0.3941 (3)0.0366 (8)
C150.0839 (4)0.2526 (4)0.1076 (3)0.0341 (7)
C160.0234 (5)0.0720 (4)0.0302 (3)0.0356 (7)
H1W0.051 (5)0.662 (6)0.0818 (16)0.045 (12)*
H2W0.029 (6)0.775 (4)0.188 (3)0.066 (15)*
H3W0.795 (3)0.030 (8)0.226 (4)0.079 (19)*
H4W0.946 (6)0.084 (4)0.242 (4)0.067 (16)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0351 (2)0.0266 (2)0.02205 (19)0.00242 (14)0.00536 (14)0.00573 (13)
N10.0358 (15)0.0368 (15)0.0382 (15)0.0069 (12)0.0095 (12)0.0146 (12)
N20.0412 (15)0.0308 (14)0.0261 (13)0.0017 (12)0.0073 (11)0.0071 (11)
O10.0449 (15)0.0527 (16)0.0448 (15)0.0046 (12)0.0066 (12)0.0288 (13)
O20.108 (3)0.063 (2)0.0341 (16)0.0223 (19)0.0131 (16)0.0070 (14)
O30.0461 (14)0.0252 (11)0.0342 (12)0.0001 (10)0.0009 (10)0.0041 (9)
O40.0627 (17)0.0410 (14)0.0359 (14)0.0072 (12)0.0133 (12)0.0057 (11)
O50.0486 (15)0.0492 (16)0.0330 (14)0.0156 (12)0.0073 (12)0.0096 (12)
O60.068 (2)0.057 (2)0.0536 (18)0.0196 (17)0.0231 (17)0.0201 (15)
C10.048 (2)0.0378 (19)0.040 (2)0.0027 (16)0.0129 (16)0.0109 (15)
C20.057 (2)0.0356 (19)0.0361 (19)0.0063 (16)0.0198 (17)0.0130 (15)
C30.057 (2)0.0379 (19)0.0354 (19)0.0064 (16)0.0171 (17)0.0071 (15)
C40.089 (3)0.050 (2)0.037 (2)0.007 (2)0.029 (2)0.0050 (18)
C50.104 (4)0.046 (2)0.0228 (18)0.006 (2)0.006 (2)0.0065 (16)
C60.068 (3)0.0359 (19)0.0285 (18)0.0112 (18)0.0038 (17)0.0108 (15)
C70.081 (3)0.056 (3)0.042 (2)0.015 (2)0.022 (2)0.021 (2)
C80.053 (3)0.066 (3)0.068 (3)0.003 (2)0.022 (2)0.032 (3)
C90.037 (2)0.049 (2)0.066 (3)0.0021 (17)0.0050 (18)0.031 (2)
C100.037 (2)0.061 (3)0.100 (4)0.015 (2)0.006 (2)0.040 (3)
C110.046 (2)0.060 (3)0.091 (4)0.021 (2)0.026 (2)0.030 (3)
C120.048 (2)0.049 (2)0.049 (2)0.0166 (18)0.0177 (18)0.0167 (18)
C130.0350 (17)0.0340 (17)0.0381 (18)0.0008 (14)0.0018 (14)0.0166 (14)
C140.0439 (19)0.0299 (16)0.0289 (16)0.0066 (14)0.0013 (14)0.0115 (13)
C150.0310 (16)0.0267 (16)0.0371 (18)0.0055 (13)0.0023 (13)0.0017 (13)
C160.0385 (18)0.0290 (15)0.0378 (18)0.0061 (13)0.0084 (14)0.0091 (13)
Geometric parameters (Å, º) top
Zn1—O11.992 (2)C4—C51.347 (7)
Zn1—O32.021 (2)C4—H40.9300
Zn1—O52.067 (3)C5—C61.404 (7)
Zn1—N22.106 (3)C5—H50.9300
Zn1—N12.129 (3)C6—C141.400 (5)
N1—C121.318 (5)C6—C71.435 (7)
N1—C131.349 (4)C7—C81.335 (8)
N2—C31.324 (5)C7—H70.9300
N2—C141.354 (4)C8—C91.433 (7)
O1—C21.249 (4)C8—H80.9300
O2—C21.227 (5)C9—C101.403 (7)
O3—C151.267 (4)C9—C131.408 (5)
O4—C151.227 (4)C10—C111.353 (7)
O5—H1W0.834 (19)C10—H100.9300
O5—H2W0.829 (19)C11—C121.382 (6)
O6—H3W0.826 (19)C11—H110.9300
O6—H4W0.849 (19)C12—H120.9300
C1—C1i1.185 (7)C13—C141.435 (5)
C1—C21.465 (5)C15—C161.477 (4)
C3—C41.406 (5)C16—C16ii1.171 (7)
C3—H30.9300
O1—Zn1—O397.23 (11)C4—C5—H5120.3
O1—Zn1—O592.99 (11)C6—C5—H5120.3
O3—Zn1—O590.36 (11)C14—C6—C5117.3 (4)
O1—Zn1—N2129.20 (11)C14—C6—C7118.9 (4)
O3—Zn1—N2133.15 (10)C5—C6—C7123.8 (4)
O5—Zn1—N292.75 (11)C8—C7—C6121.4 (4)
O1—Zn1—N197.80 (11)C8—C7—H7119.3
O3—Zn1—N190.77 (11)C6—C7—H7119.3
O5—Zn1—N1168.92 (11)C7—C8—C9122.0 (4)
N2—Zn1—N178.48 (11)C7—C8—H8119.0
C12—N1—C13118.7 (3)C9—C8—H8119.0
C12—N1—Zn1128.1 (3)C10—C9—C13116.8 (4)
C13—N1—Zn1113.2 (2)C10—C9—C8125.6 (4)
C3—N2—C14118.2 (3)C13—C9—C8117.6 (4)
C3—N2—Zn1128.4 (3)C11—C10—C9120.3 (4)
C14—N2—Zn1113.4 (2)C11—C10—H10119.9
C2—O1—Zn1117.2 (2)C9—C10—H10119.9
C15—O3—Zn1116.4 (2)C10—C11—C12119.0 (4)
Zn1—O5—H1W108 (3)C10—C11—H11120.5
Zn1—O5—H2W120 (4)C12—C11—H11120.5
H1W—O5—H2W119 (5)N1—C12—C11123.1 (4)
H3W—O6—H4W105 (5)N1—C12—H12118.4
C1i—C1—C2179.1 (5)C11—C12—H12118.4
O2—C2—O1125.8 (3)N1—C13—C9122.1 (4)
O2—C2—C1118.4 (3)N1—C13—C14117.1 (3)
O1—C2—C1115.8 (3)C9—C13—C14120.8 (4)
N2—C3—C4121.9 (4)N2—C14—C6123.0 (4)
N2—C3—H3119.0N2—C14—C13117.8 (3)
C4—C3—H3119.0C6—C14—C13119.3 (3)
C5—C4—C3120.1 (4)O4—C15—O3125.6 (3)
C5—C4—H4119.9O4—C15—C16119.3 (3)
C3—C4—H4119.9O3—C15—C16115.2 (3)
C4—C5—C6119.4 (4)C16ii—C16—C15179.1 (5)
Symmetry codes: (i) x+1, y+2, z; (ii) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H1W···O3iii0.83 (2)1.91 (2)2.741 (4)176 (4)
O5—H2W···O6iv0.83 (2)1.93 (2)2.746 (4)167 (5)
O6—H3W···O2v0.83 (2)2.04 (3)2.847 (5)164 (6)
O6—H4W···O4vi0.85 (2)1.97 (2)2.806 (4)168 (5)
Symmetry codes: (iii) x, y+1, z; (iv) x1, y+1, z; (v) x, y1, z; (vi) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Zn(C4O4)(C12H8N2)(H2O)]·H2O
Mr393.65
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.9592 (8), 7.9598 (8), 13.3712 (13)
α, β, γ (°)105.062 (2), 101.287 (2), 99.131 (2)
V3)782.30 (13)
Z2
Radiation typeMo Kα
µ (mm1)1.61
Crystal size (mm)0.37 × 0.14 × 0.07
Data collection
DiffractometerBruker Smart Apex area detector
Absorption correctionMulti-scan
SADABS; Sheldrick, 1996
Tmin, Tmax0.588, 0.896
No. of measured, independent and
observed [I > 2σ(I)] reflections
6649, 3398, 3069
Rint0.018
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.111, 1.14
No. of reflections3398
No. of parameters242
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.71, 0.34

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H1W···O3i0.834 (19)1.91 (2)2.741 (4)176 (4)
O5—H2W···O6ii0.829 (19)1.93 (2)2.746 (4)167 (5)
O6—H3W···O2iii0.826 (19)2.04 (3)2.847 (5)164 (6)
O6—H4W···O4iv0.849 (19)1.97 (2)2.806 (4)168 (5)
Symmetry codes: (i) x, y+1, z; (ii) x1, y+1, z; (iii) x, y1, z; (iv) x+1, y, z.
 

Acknowledgements

We gratefully acknowledge King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia for financial support.

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHermann, D., Näther, C. & Ruschewitz, U. (2011). Solid State Sci. 13, 1096–1101.  Web of Science CSD CrossRef CAS Google Scholar
First citationLin, J.-L., Zhu, H.-L., Zhang, J., Zhao, J.-M. & Zheng, Y.-Q. (2011). J. Mol. Struct. 995, 91–96.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStein, I. & Ruschewitz, U. (2009). Z. Naturforsch. Teil B, 64, 1093–1097.  CAS Google Scholar
First citationSwiegers, G. F. & Malefetse, T. J. (2000). Chem. Rev. 100, 3483–3537.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWinpenny, R. E. P. (2001). Adv. Inorg. Chem. 52, 1–111.  Web of Science CrossRef CAS Google Scholar
First citationZheng, Y.-Q., Zhang, J. & Liu, J.-Y. (2010). CrystEngComm, 12, 2740–2748.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds