organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Cyclo­propylammonium 4-iodo­benzoate

aCentre for Supramolecular Chemistry Research, Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
*Correspondence e-mail: andreas.lemmerer@wits.ac.za

(Received 28 May 2012; accepted 29 May 2012; online 13 June 2012)

In the title mol­ecular salt, C3H8N+·C7H4IO2, the cyclo­propanaminium cation forms three hydrogen bonds to the 4-iodo­benzoate anion, forming two unique repeating R44(12) hydrogen-bonding rings that result in one-dimensional hydrogen-bonded columns along the crystallographic c axis.

Related literature

For proton-transfer compounds, see: Kinbara et al. (1996[Kinbara, K., Hashimoto, Y., Sukegawa, M., Nohia, H. & Saigo, K. (1996). J. Am. Chem. Soc. 118, 3441-3449.]). For hydrogen bonds between primary ammonium cations and a carboxyl­ate anion, see: Lemmerer (2011[Lemmerer, A. (2011). Cryst. Growth Des. 11, 583-593.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 35, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C3H8N+·C7H4IO2

  • Mr = 305.11

  • Orthorhombic, P b c n

  • a = 30.7877 (6) Å

  • b = 9.7608 (2) Å

  • c = 7.4757 (2) Å

  • V = 2246.54 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.83 mm−1

  • T = 173 K

  • 0.5 × 0.15 × 0.11 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: integration (XPREP; Bruker, 2004[Bruker (2004). SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.332, Tmax = 0.746

  • 11693 measured reflections

  • 2705 independent reflections

  • 2103 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.047

  • S = 0.97

  • 2705 reflections

  • 139 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.79 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1 0.86 (3) 1.95 (3) 2.807 (3) 173 (2)
N1—H1B⋯O1i 0.95 (2) 1.90 (2) 2.807 (2) 161 (2)
N1—H1C⋯O2ii 0.83 (3) 1.92 (3) 2.739 (2) 171 (2)
Symmetry codes: (i) [x, -y+1, z-{\script{1\over 2}}]; (ii) [-x, y, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker 2004[Bruker (2004). SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Ammonium carboxylate salts are molecular salts formed by mixing a primary amine and a carboxylic acid containing molecule, thus resulting in proton transfer from the acid to the amine (Kinbara et al., 1996). This forms a primary ammonium cation and a carboxylate anion. The three H atoms on the cation can then form three charge-assisted hydrogen bonds to the two O atoms on the anion. In the literature, three kinds of hydrogen bonded rings are most commonly formed by these hydrogen bonds, described using graph-set notation (Bernstein et al., 1995): R24(8), R34(10) and R44(12) (Lemmerer, 2011).

In molecular salt (I), shown in Fig. 1, formed by dissolving cyclopropylamine and p-iodobenzoic acid in methanol, only a R44(12) ring is formed. However, two such rings are formed, one by using the N1—H1A···O1 and N1—H1B···O1 hydrogen bonds, and the second one by using the N1—H1B···O1 and N1—H1C···O2 hydrogen bonds. As the N1—H1B···O1 hydrogen bond is common to both rings, a repetition of the two types of rings results, forming a 1-D hydrogen bonded column along the c axis (Fig. 2).

Related literature top

For proton-transfer compounds, see: Kinbara et al. (1996). For hydrogen bonds between primary ammonium cations and a carboxylate anion, see: Lemmerer (2011). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

All chemicals were purchased from commercial sources and used as received. (I) was prepared by slowly evaporating a solution of cyclopropylamine (0.050 g, 0.88 mmol) and p-iodobenzoic acid (0.217 g, 0.886 mmol) dissolved in 5 ml methanol.

Refinement top

All C—H atoms were refined using a riding model, with a distance of 0.95 Å (Ar—H), 0.99 Å, (CH2) and 1.00 Å, (CH) and Uiso(H) = 1.2Ueq(C). N—H atoms on the ammonium group were located in the difference Fourier map and their coordinates and isotropic displacement parameters were refined freely.

Structure description top

Ammonium carboxylate salts are molecular salts formed by mixing a primary amine and a carboxylic acid containing molecule, thus resulting in proton transfer from the acid to the amine (Kinbara et al., 1996). This forms a primary ammonium cation and a carboxylate anion. The three H atoms on the cation can then form three charge-assisted hydrogen bonds to the two O atoms on the anion. In the literature, three kinds of hydrogen bonded rings are most commonly formed by these hydrogen bonds, described using graph-set notation (Bernstein et al., 1995): R24(8), R34(10) and R44(12) (Lemmerer, 2011).

In molecular salt (I), shown in Fig. 1, formed by dissolving cyclopropylamine and p-iodobenzoic acid in methanol, only a R44(12) ring is formed. However, two such rings are formed, one by using the N1—H1A···O1 and N1—H1B···O1 hydrogen bonds, and the second one by using the N1—H1B···O1 and N1—H1C···O2 hydrogen bonds. As the N1—H1B···O1 hydrogen bond is common to both rings, a repetition of the two types of rings results, forming a 1-D hydrogen bonded column along the c axis (Fig. 2).

For proton-transfer compounds, see: Kinbara et al. (1996). For hydrogen bonds between primary ammonium cations and a carboxylate anion, see: Lemmerer (2011). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit and atom numbering scheme of the title compound. Displacement ellipsoids are shown at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The hydrogen bonding pattern of the title compound. H atoms not involved in hydrogen bonding are omitted for clarity. Atoms marked with superscript i and ii are at the symmetry positions (-x, -y + 1, z - 1/2) and (-x, y, -z + 1/2) respectively.
Cyclopropylammonium 4-iodobenzoate top
Crystal data top
C3H8N+·C7H4IO2F(000) = 1184
Mr = 305.11Dx = 1.804 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 4806 reflections
a = 30.7877 (6) Åθ = 2.7–28.1°
b = 9.7608 (2) ŵ = 2.83 mm1
c = 7.4757 (2) ÅT = 173 K
V = 2246.54 (9) Å3Needle, colourless
Z = 80.5 × 0.15 × 0.11 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2103 reflections with I > 2σ(I)
ω scansRint = 0.037
Absorption correction: integration
(XPREP; Bruker, 2004)
θmax = 28°, θmin = 2.2°
Tmin = 0.332, Tmax = 0.746h = 3740
11693 measured reflectionsk = 1211
2705 independent reflectionsl = 99
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.023 w = 1/[σ2(Fo2) + (0.0206P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.047(Δ/σ)max = 0.001
S = 0.97Δρmax = 0.42 e Å3
2705 reflectionsΔρmin = 0.79 e Å3
139 parameters
Crystal data top
C3H8N+·C7H4IO2V = 2246.54 (9) Å3
Mr = 305.11Z = 8
Orthorhombic, PbcnMo Kα radiation
a = 30.7877 (6) ŵ = 2.83 mm1
b = 9.7608 (2) ÅT = 173 K
c = 7.4757 (2) Å0.5 × 0.15 × 0.11 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2705 independent reflections
Absorption correction: integration
(XPREP; Bruker, 2004)
2103 reflections with I > 2σ(I)
Tmin = 0.332, Tmax = 0.746Rint = 0.037
11693 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.047H atoms treated by a mixture of independent and constrained refinement
S = 0.97Δρmax = 0.42 e Å3
2705 reflectionsΔρmin = 0.79 e Å3
139 parameters
Special details top

Experimental. Numerical integration absorption corrections based on indexed crystal faces were applied using the XPREP routine (Bruker, 2004)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.12089 (7)0.65046 (19)0.5124 (3)0.0213 (4)
C20.14737 (7)0.5436 (2)0.4583 (3)0.0247 (5)
H20.13550.47080.38950.03*
C30.19096 (7)0.5418 (2)0.5035 (3)0.0268 (5)
H30.20890.46740.46830.032*
C40.20809 (7)0.6497 (2)0.6003 (3)0.0225 (4)
C50.18231 (7)0.7577 (2)0.6552 (3)0.0262 (5)
H50.19440.83120.72210.031*
C60.13877 (7)0.7572 (2)0.6114 (3)0.0241 (5)
H60.12080.83060.64930.029*
C70.07329 (7)0.6516 (2)0.4662 (3)0.0235 (5)
O10.06027 (5)0.56982 (14)0.34560 (18)0.0263 (3)
O20.04919 (5)0.73454 (15)0.5467 (2)0.0332 (4)
I10.274626 (5)0.652799 (16)0.66287 (2)0.03283 (6)
C80.05737 (7)0.8095 (2)0.0226 (3)0.0257 (5)
H80.05360.84720.1460.031*
C90.05800 (8)0.9120 (2)0.1242 (3)0.0353 (6)
H9A0.04520.88520.24050.042*
H9B0.05421.00960.09180.042*
C100.09938 (8)0.8420 (2)0.0668 (3)0.0383 (6)
H10A0.12090.89670.00080.046*
H10B0.11190.77230.14790.046*
N10.03677 (6)0.67743 (18)0.0111 (3)0.0227 (4)
H1A0.0424 (9)0.650 (2)0.118 (4)0.042 (8)*
H1B0.0454 (7)0.607 (2)0.068 (3)0.034 (7)*
H1C0.0101 (8)0.686 (2)0.001 (3)0.032 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0246 (10)0.0218 (10)0.0174 (10)0.0011 (9)0.0012 (9)0.0029 (9)
C20.0308 (12)0.0221 (11)0.0214 (11)0.0006 (9)0.0023 (9)0.0045 (9)
C30.0282 (11)0.0266 (11)0.0255 (11)0.0046 (9)0.0017 (10)0.0037 (10)
C40.0212 (10)0.0273 (11)0.0190 (10)0.0010 (9)0.0001 (9)0.0021 (10)
C50.0287 (11)0.0240 (11)0.0258 (12)0.0040 (9)0.0015 (10)0.0028 (10)
C60.0265 (11)0.0207 (11)0.0249 (11)0.0018 (9)0.0003 (9)0.0036 (9)
C70.0287 (11)0.0199 (10)0.0220 (11)0.0018 (9)0.0040 (9)0.0065 (10)
O10.0329 (8)0.0222 (8)0.0238 (8)0.0030 (6)0.0087 (7)0.0008 (7)
O20.0240 (8)0.0341 (9)0.0416 (10)0.0048 (7)0.0064 (7)0.0119 (8)
I10.02229 (8)0.04054 (10)0.03566 (10)0.00054 (6)0.00137 (7)0.00002 (8)
C80.0310 (12)0.0249 (11)0.0212 (11)0.0076 (9)0.0002 (10)0.0037 (9)
C90.0491 (16)0.0231 (12)0.0337 (14)0.0057 (11)0.0002 (12)0.0024 (11)
C100.0373 (14)0.0449 (15)0.0327 (14)0.0172 (12)0.0037 (11)0.0041 (12)
N10.0240 (10)0.0213 (10)0.0229 (11)0.0007 (8)0.0038 (9)0.0004 (8)
Geometric parameters (Å, º) top
C1—C21.384 (3)C7—O11.269 (2)
C1—C61.391 (3)C8—N11.459 (3)
C1—C71.506 (3)C8—C91.485 (3)
C2—C31.384 (3)C8—C101.490 (3)
C2—H20.95C8—H81
C3—C41.382 (3)C9—C101.508 (3)
C3—H30.95C9—H9A0.99
C4—C51.383 (3)C9—H9B0.99
C4—I12.101 (2)C10—H10A0.99
C5—C61.380 (3)C10—H10B0.99
C5—H50.95N1—H1A0.86 (3)
C6—H60.95N1—H1B0.95 (2)
C7—O21.253 (2)N1—H1C0.83 (3)
C2—C1—C6119.13 (19)C9—C8—C1060.91 (15)
C2—C1—C7120.76 (18)N1—C8—H8115.8
C6—C1—C7120.11 (18)C9—C8—H8115.8
C3—C2—C1120.59 (19)C10—C8—H8115.8
C3—C2—H2119.7C8—C9—C1059.71 (14)
C1—C2—H2119.7C8—C9—H9A117.8
C4—C3—C2119.3 (2)C10—C9—H9A117.8
C4—C3—H3120.4C8—C9—H9B117.8
C2—C3—H3120.4C10—C9—H9B117.8
C3—C4—C5121.2 (2)H9A—C9—H9B114.9
C3—C4—I1119.99 (15)C8—C10—C959.38 (15)
C5—C4—I1118.84 (15)C8—C10—H10A117.8
C6—C5—C4118.9 (2)C9—C10—H10A117.8
C6—C5—H5120.5C8—C10—H10B117.8
C4—C5—H5120.5C9—C10—H10B117.8
C5—C6—C1120.91 (19)H10A—C10—H10B115
C5—C6—H6119.5C8—N1—H1A110.5 (16)
C1—C6—H6119.5C8—N1—H1B114.5 (14)
O2—C7—O1124.1 (2)H1A—N1—H1B107 (2)
O2—C7—C1118.10 (19)C8—N1—H1C108.7 (16)
O1—C7—C1117.78 (19)H1A—N1—H1C109 (2)
N1—C8—C9118.27 (19)H1B—N1—H1C107 (2)
N1—C8—C10119.23 (19)
C6—C1—C2—C30.7 (3)C2—C1—C6—C50.2 (3)
C7—C1—C2—C3178.98 (19)C7—C1—C6—C5179.90 (19)
C1—C2—C3—C41.4 (3)C2—C1—C7—O2166.03 (19)
C2—C3—C4—C51.1 (3)C6—C1—C7—O213.6 (3)
C2—C3—C4—I1177.88 (16)C2—C1—C7—O115.2 (3)
C3—C4—C5—C60.2 (3)C6—C1—C7—O1165.19 (18)
I1—C4—C5—C6178.79 (15)N1—C8—C9—C10109.6 (2)
C4—C5—C6—C10.5 (3)N1—C8—C10—C9108.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.86 (3)1.95 (3)2.807 (3)173 (2)
N1—H1B···O1i0.95 (2)1.90 (2)2.807 (2)161 (2)
N1—H1C···O2ii0.83 (3)1.92 (3)2.739 (2)171 (2)
Symmetry codes: (i) x, y+1, z1/2; (ii) x, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC3H8N+·C7H4IO2
Mr305.11
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)173
a, b, c (Å)30.7877 (6), 9.7608 (2), 7.4757 (2)
V3)2246.54 (9)
Z8
Radiation typeMo Kα
µ (mm1)2.83
Crystal size (mm)0.5 × 0.15 × 0.11
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionIntegration
(XPREP; Bruker, 2004)
Tmin, Tmax0.332, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
11693, 2705, 2103
Rint0.037
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.047, 0.97
No. of reflections2705
No. of parameters139
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.42, 0.79

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2004), SAINT-Plus and XPREP (Bruker 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1999), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.86 (3)1.95 (3)2.807 (3)173 (2)
N1—H1B···O1i0.95 (2)1.90 (2)2.807 (2)161 (2)
N1—H1C···O2ii0.83 (3)1.92 (3)2.739 (2)171 (2)
Symmetry codes: (i) x, y+1, z1/2; (ii) x, y, z+1/2.
 

Acknowledgements

The University of Cape Town is thanked for providing the infrastructure required to do this work and the National Research Fund (SFP2006061500015) for the award of a postdoctoral fellowship.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 35, 1555–1573.  CrossRef Web of Science Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKinbara, K., Hashimoto, Y., Sukegawa, M., Nohia, H. & Saigo, K. (1996). J. Am. Chem. Soc. 118, 3441–3449.  CSD CrossRef CAS Web of Science Google Scholar
First citationLemmerer, A. (2011). Cryst. Growth Des. 11, 583–593.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds