organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-4-(4-meth­­oxy­phen­yl)-7,7-di­methyl-5-oxo-5,6,7,8-tetra­hydro-4H-chromene-3-carbo­nitrile propan-2-one monosolvate

aChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cUniversity of Sargodha, Department of Physics, Sargodha, Pakistan, and dDepartment of Organic Chemistry, Baku State University, Baku, Azerbaijan
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 18 June 2012; accepted 19 June 2012; online 27 June 2012)

In the crystal structure of the title compound, C19H20N2O3·C3H6O, mol­ecules are linked into inversion dimers with an R22(12) motif by pairs of N—H⋯N hydrogen bonds. These dimers are further connected into chains running along the a axis by N—H⋯O hydrogen bonds. C—H⋯N and C—H⋯π inter­actions also feature in the packing. The cyclohexene ring adopts nearly an envelope conformation [puckering parameters are QT = 0.456 (2) Å, θ = 54.6 (3)° and φ = 225.2 (3)°].

Related literature

For pharmacological properties of 4H-chromene and fused 4H-chromene derivatives, see: Kemnitzer et al. (2007[Kemnitzer, W., Drewe, J., Jiang, S., Zhang, H., Zhao, J., Crogan-Grundy, C., Xu, L., Lamothe, S., Gourdeau, H., Denis, R., Tseng, B., Kasibhatla, S. & Cai, S. X. (2007). J. Med. Chem. 50, 2858-2864.], 2008[Kemnitzer, W., Drewe, J., Jiang, S., Zhang, H., Crogan-Grundy, C., Labreque, D., Bubenick, M., Attardo, G., Denis, R., Lamothe, S., Gourdeau, H., Tseng, B., Kasibhatla, S. & Cai, S. X. (2008). J. Med. Chem. 51, 417-423.]); Abd-El-Aziz et al. (2004[Abd-El-Aziz, A. S., El-Agrody, A. M., Bedair, A. H., Corkery, T. C. & Ata, A. (2004). Heterocycles, 63, 1793-1812.], 2007[Abd-El-Aziz, A. S., Mohamed, H. M., Mohammed, S., Zahid, S., Ata, A., Bedair, A. H., El- Agrody, A. M. & Harvey, P. D. (2007). J. Heterocycl. Chem. 44, 1287-1301.]); Sabry et al. (2011[Sabry, N. M., Mohamed, H. M., Khattab, E. S. A. E. H., Motlaq, S. S. & El- Agrody, A. M. (2011). Eur. J. Med. Chem. 46, 765-772.]); Gourdeau et al. (2004[Gourdeau, H., Leblond, L., Hamelin, B., Desputeau, C., Dong, K., Kianicka, I., Custeau, D., Boudreau, C., Geerts, L., Cai, S.-X., Drewe, J., Labrecque, D., Kasibhatla, S. & Tseng, B. (2004). Mol. Cancer Ther. 3, 1375-1384.]); Mahdavi et al. (2011[Mahdavi, M., Davoodi, J., Zali, M. R. & Foroumadi, A. (2011). Biomed. Pharm. 65, 175-182.]); Brühlmann et al. (2001[Brühlmann, C., Ooms, F., Carrupt, P.-A., Testa, B., Catto, M., Leonetti, F., Altomare, C. & Carotti, A. (2001). J. Med. Chem. 44, 3195-3198.]). For a related structure, see: Mohamed et al. (2012[Mohamed, S. K., Akkurt, M., Tahir, M. N., Abdelhamid, A. A. & Albayati, M. R. (2012). Acta Cryst. E68, o1965-o1966.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C19H20N2O3·C3H6O

  • Mr = 382.45

  • Triclinic, [P \overline 1]

  • a = 8.2037 (4) Å

  • b = 9.5319 (4) Å

  • c = 13.8390 (7) Å

  • α = 77.743 (2)°

  • β = 87.307 (3)°

  • γ = 80.672 (2)°

  • V = 1043.43 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.28 × 0.22 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.978, Tmax = 0.983

  • 16752 measured reflections

  • 4917 independent reflections

  • 3284 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.182

  • S = 1.04

  • 4917 reflections

  • 246 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the O2/C8–C10/C12/C13) 4H-pyran ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯N1i 0.86 2.30 3.142 (3) 168
N2—H2B⋯O3ii 0.86 2.19 3.029 (2) 165
C6—H6⋯N1iii 0.93 2.51 3.258 (3) 137
C18—H18ACg2iv 0.96 2.77 3.677 (2) 158
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x+1, y, z; (iii) -x+1, -y+1, -z+1; (iv) x, y-1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Compounds such as 4H-chromenes and fused 4H-chromenes are a great class of organic drugs due to their wide applications in chemo therapy. They exhibited anticancer activities (Kemnitzer et al., 2007, 2008; Abd-El-Aziz et al., 2004, 2007; Gourdeau et al., 2004; Sabry et al., 2011; Mahdavi et al., 2011) and have used in treatment of Alzheimer's disease and Schizophrenia disorder (Brühlmann et al., 2001). In this context and further to our on-going study in synthesis and biological investigation of 4H-chromene compounds (Mohamed et al. 2012), we report in this study the structure and synthesis of the title compound (I).

In the title compound (I) shown in Fig. 1, the C12–C17 cyclohexene and O2/C8—C10/C12/C13 4H-pyran rings are puckered with the puckering parameters (Cremer & Pople, 1975) of QT = 0.456 (2) ° A, θ = 54.6 (3) °, φ = 225.2 (3) °, and QT = 0.201 (2) Å, θ = 108.1 (5) °, φ = 354.7 (6) °, respectively. The bond lengths and bond angles in (I) are normal and are comparable with those of a related structure previously reported (Mohamed et al., 2012).

In the crystal structure, adjacent molecules are connected by the pairs of N—H···N hydrogen bonds, forming dimers, with an R22(12) motif (Bernstein et al., 1995; Table 1, Fig. 2). These dimers are further connected to chains running along the a axis by N—H···O hydrogen bonds. Furthermore, C—H···π interactions contribute to the stabilization of the crystal packing (Table 1, Fig. 2).

Related literature top

For pharmacological properties of 4H-chromene and fused 4H-chromene derivatives, see: Kemnitzer et al. (2007, 2008); Abd-El-Aziz et al. (2004, 2007); Sabry et al. (2011); Gourdeau et al. (2004); Mahdavi et al. (2011); Brühlmann et al. (2001). For a related structure, see: Mohamed et al. (2012). For puckering parameters, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

To a solution of 184 mg (1 mmol) (4-methoxybenzylidene)propanedinitrile in 50 ml ethanol, 140 mg (1 mmol) 5,5-dimethylcyclohexane-1,3-dione was added in presence of 123 mg (1 mmol) (4-aminophenyl)methanol as catalyst. The reaction mixture was refluxed at 350 K for 5 h, then cooled at ambient temperature. The resin product that formed was solidified by washing with acetone then filtered off under vacuum and recrystallized from ethanol. Single crystals suitable for X-ray diffraction were produced by slow evaporation of ethanol/acetone solution (1:1) of (I) over two days at room temperature. Yield is 86%, M.p. 443 K.

Refinement top

All H atoms were positioned geometrically and refined by using a riding model, with N—H = 0.86 Å and C—H = 0.93 Å (aromatic), 0.96 Å (methyl), 0.97 Å (methylene) and 0.98 Å (methine), with Uiso(H) = 1.5Ueq(O) for methyl groups and Uiso(H) = 1.2Ueq(C, N) for others.

Structure description top

Compounds such as 4H-chromenes and fused 4H-chromenes are a great class of organic drugs due to their wide applications in chemo therapy. They exhibited anticancer activities (Kemnitzer et al., 2007, 2008; Abd-El-Aziz et al., 2004, 2007; Gourdeau et al., 2004; Sabry et al., 2011; Mahdavi et al., 2011) and have used in treatment of Alzheimer's disease and Schizophrenia disorder (Brühlmann et al., 2001). In this context and further to our on-going study in synthesis and biological investigation of 4H-chromene compounds (Mohamed et al. 2012), we report in this study the structure and synthesis of the title compound (I).

In the title compound (I) shown in Fig. 1, the C12–C17 cyclohexene and O2/C8—C10/C12/C13 4H-pyran rings are puckered with the puckering parameters (Cremer & Pople, 1975) of QT = 0.456 (2) ° A, θ = 54.6 (3) °, φ = 225.2 (3) °, and QT = 0.201 (2) Å, θ = 108.1 (5) °, φ = 354.7 (6) °, respectively. The bond lengths and bond angles in (I) are normal and are comparable with those of a related structure previously reported (Mohamed et al., 2012).

In the crystal structure, adjacent molecules are connected by the pairs of N—H···N hydrogen bonds, forming dimers, with an R22(12) motif (Bernstein et al., 1995; Table 1, Fig. 2). These dimers are further connected to chains running along the a axis by N—H···O hydrogen bonds. Furthermore, C—H···π interactions contribute to the stabilization of the crystal packing (Table 1, Fig. 2).

For pharmacological properties of 4H-chromene and fused 4H-chromene derivatives, see: Kemnitzer et al. (2007, 2008); Abd-El-Aziz et al. (2004, 2007); Sabry et al. (2011); Gourdeau et al. (2004); Mahdavi et al. (2011); Brühlmann et al. (2001). For a related structure, see: Mohamed et al. (2012). For puckering parameters, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. View of the dimers formed by pairs of N—H···N hydrogen bonds, with an R22(12) motif and the N—H···O and C—H···N hydrogen bonds connect the dimers with each other. H atoms not involved in hydrogen bonds have been omitted for clarity.
2-Amino-4-(4-methoxyphenyl)-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4H- chromene-3-carbonitrile propan-2-one monosolvate top
Crystal data top
C19H20N2O3·C3H6OZ = 2
Mr = 382.45F(000) = 408
Triclinic, P1Dx = 1.217 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2037 (4) ÅCell parameters from 360 reflections
b = 9.5319 (4) Åθ = 21.3–3.4°
c = 13.8390 (7) ŵ = 0.08 mm1
α = 77.743 (2)°T = 296 K
β = 87.307 (3)°Prism, white
γ = 80.672 (2)°0.28 × 0.22 × 0.20 mm
V = 1043.43 (9) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4917 independent reflections
Radiation source: fine-focus sealed tube3284 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 0.81 pixels mm-1θmax = 28.0°, θmin = 2.2°
ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 129
Tmin = 0.978, Tmax = 0.983l = 1818
16752 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.182H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0878P)2 + 0.2431P]
where P = (Fo2 + 2Fc2)/3
4917 reflections(Δ/σ)max < 0.001
246 parametersΔρmax = 0.59 e Å3
1 restraintΔρmin = 0.50 e Å3
Crystal data top
C19H20N2O3·C3H6Oγ = 80.672 (2)°
Mr = 382.45V = 1043.43 (9) Å3
Triclinic, P1Z = 2
a = 8.2037 (4) ÅMo Kα radiation
b = 9.5319 (4) ŵ = 0.08 mm1
c = 13.8390 (7) ÅT = 296 K
α = 77.743 (2)°0.28 × 0.22 × 0.20 mm
β = 87.307 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4917 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3284 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.983Rint = 0.027
16752 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0591 restraint
wR(F2) = 0.182H-atom parameters constrained
S = 1.04Δρmax = 0.59 e Å3
4917 reflectionsΔρmin = 0.50 e Å3
246 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4032 (2)0.66247 (19)0.08006 (13)0.0802 (7)
O21.02042 (14)0.08753 (13)0.35411 (10)0.0488 (4)
O30.45650 (17)0.03885 (16)0.37857 (13)0.0629 (6)
N10.8196 (2)0.4700 (2)0.51973 (16)0.0656 (7)
N21.14500 (19)0.24295 (18)0.41136 (14)0.0563 (6)
C10.6070 (2)0.33700 (18)0.31182 (14)0.0399 (5)
C20.6619 (2)0.3463 (2)0.21430 (15)0.0483 (6)
C30.5919 (3)0.4548 (2)0.13983 (16)0.0543 (7)
C40.4642 (3)0.5588 (2)0.16012 (16)0.0532 (7)
C50.4076 (2)0.5523 (2)0.25594 (17)0.0549 (7)
C60.4797 (2)0.4416 (2)0.33068 (15)0.0473 (6)
C70.2741 (4)0.7714 (3)0.0945 (2)0.0952 (11)
C80.6896 (2)0.22102 (18)0.39559 (14)0.0389 (5)
C90.8474 (2)0.26366 (19)0.42629 (14)0.0437 (4)
C100.9993 (2)0.20384 (19)0.39964 (14)0.0419 (5)
C110.8333 (2)0.37739 (19)0.47771 (14)0.0437 (4)
C120.8867 (2)0.02105 (18)0.34609 (14)0.0408 (5)
C130.7325 (2)0.07535 (18)0.36796 (13)0.0403 (5)
C140.5994 (2)0.00856 (19)0.36226 (15)0.0455 (6)
C150.6483 (2)0.1573 (2)0.33914 (17)0.0538 (7)
C160.7957 (3)0.1685 (2)0.26744 (17)0.0570 (5)
C170.9388 (2)0.11592 (19)0.30923 (16)0.0475 (6)
C180.8500 (3)0.3269 (2)0.2591 (2)0.0702 (9)
C190.7493 (3)0.0761 (2)0.16615 (17)0.0570 (5)
O40.0402 (4)0.1650 (4)0.0951 (3)0.1652 (16)
C200.1432 (4)0.2327 (4)0.1086 (2)0.0875 (11)
C210.3163 (5)0.1707 (5)0.1206 (4)0.149 (2)
C220.1030 (5)0.3830 (4)0.1273 (4)0.142 (2)
H20.747900.277400.199500.0580*
H2A1.149600.314900.439000.0680*
H2B1.234200.196200.391200.0680*
H30.630400.458600.075200.0650*
H50.321800.621500.270500.0660*
H60.441100.437800.395300.0570*
H7A0.182300.727800.125800.1420*
H7B0.240600.832100.031800.1420*
H7C0.310600.829100.135800.1420*
H80.613500.212000.452500.0470*
H15A0.554400.183500.310900.0650*
H15B0.675300.227100.400400.0650*
H17A0.987800.191300.363100.0570*
H17B1.022700.100000.258100.0570*
H18A0.759200.363300.236800.1050*
H18B0.884600.384300.322600.1050*
H18C0.940300.332600.212700.1050*
H19A0.714300.023000.171700.0850*
H19B0.660900.111400.140300.0850*
H19C0.843400.081500.122400.0850*
H21A0.351500.175900.184700.2240*
H21B0.380700.224100.070600.2240*
H21C0.331300.070900.114400.2240*
H22A0.158800.447500.079100.2140*
H22B0.138500.383600.192300.2140*
H22C0.014100.414500.122600.2140*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0853 (12)0.0744 (11)0.0695 (11)0.0109 (9)0.0079 (9)0.0055 (9)
O20.0325 (6)0.0517 (7)0.0730 (9)0.0094 (5)0.0028 (6)0.0355 (7)
O30.0363 (7)0.0646 (9)0.0955 (12)0.0134 (6)0.0069 (7)0.0313 (8)
N10.0476 (10)0.0739 (12)0.0915 (14)0.0128 (9)0.0111 (9)0.0534 (11)
N20.0338 (8)0.0609 (10)0.0875 (13)0.0101 (7)0.0002 (8)0.0433 (9)
C10.0310 (8)0.0410 (9)0.0535 (11)0.0093 (7)0.0008 (7)0.0203 (8)
C20.0443 (10)0.0474 (10)0.0576 (12)0.0066 (8)0.0043 (9)0.0224 (9)
C30.0581 (12)0.0571 (11)0.0512 (12)0.0099 (10)0.0041 (10)0.0193 (9)
C40.0499 (11)0.0530 (11)0.0580 (13)0.0082 (9)0.0084 (10)0.0128 (9)
C50.0408 (10)0.0538 (11)0.0708 (14)0.0020 (8)0.0011 (9)0.0216 (10)
C60.0367 (9)0.0521 (10)0.0557 (12)0.0056 (8)0.0043 (8)0.0189 (9)
C70.093 (2)0.0738 (17)0.101 (2)0.0192 (15)0.0154 (17)0.0002 (15)
C80.0314 (8)0.0416 (9)0.0480 (10)0.0077 (7)0.0039 (7)0.0184 (7)
C90.0351 (7)0.0473 (7)0.0538 (8)0.0064 (5)0.0003 (6)0.0222 (6)
C100.0381 (9)0.0428 (9)0.0505 (10)0.0070 (7)0.0030 (8)0.0214 (8)
C110.0351 (7)0.0473 (7)0.0538 (8)0.0064 (5)0.0003 (6)0.0222 (6)
C120.0355 (9)0.0407 (9)0.0504 (10)0.0082 (7)0.0015 (8)0.0172 (8)
C130.0350 (9)0.0401 (9)0.0484 (10)0.0073 (7)0.0005 (7)0.0142 (7)
C140.0388 (10)0.0458 (9)0.0553 (11)0.0118 (8)0.0007 (8)0.0145 (8)
C150.0479 (11)0.0469 (10)0.0738 (14)0.0187 (8)0.0022 (10)0.0208 (9)
C160.0577 (9)0.0558 (8)0.0649 (9)0.0136 (7)0.0035 (7)0.0248 (7)
C170.0408 (10)0.0410 (9)0.0656 (13)0.0045 (7)0.0014 (9)0.0233 (9)
C180.0664 (14)0.0530 (12)0.1049 (19)0.0192 (10)0.0059 (13)0.0410 (13)
C190.0577 (9)0.0558 (8)0.0649 (9)0.0136 (7)0.0035 (7)0.0248 (7)
O40.118 (2)0.219 (3)0.206 (3)0.089 (2)0.007 (2)0.104 (3)
C200.0769 (19)0.110 (2)0.090 (2)0.0446 (17)0.0029 (15)0.0312 (17)
C210.092 (3)0.125 (3)0.237 (6)0.014 (2)0.018 (3)0.049 (4)
C220.115 (3)0.115 (3)0.199 (5)0.032 (2)0.019 (3)0.031 (3)
Geometric parameters (Å, º) top
O1—C41.372 (3)C16—C181.531 (3)
O1—C71.397 (4)C2—H20.9300
O2—C101.371 (2)C3—H30.9300
O2—C121.373 (2)C5—H50.9300
O3—C141.215 (2)C6—H60.9300
O4—C201.187 (5)C7—H7B0.9600
N1—C111.144 (3)C7—H7C0.9600
N2—C101.335 (2)C7—H7A0.9600
N2—H2B0.8600C8—H80.9800
N2—H2A0.8600C15—H15B0.9700
C1—C21.392 (3)C15—H15A0.9700
C1—C81.521 (3)C17—H17A0.9700
C1—C61.379 (3)C17—H17B0.9700
C2—C31.368 (3)C18—H18B0.9600
C3—C41.383 (3)C18—H18C0.9600
C4—C51.376 (3)C18—H18A0.9600
C5—C61.387 (3)C19—H19B0.9600
C8—C91.522 (2)C19—H19C0.9600
C8—C131.501 (2)C19—H19A0.9600
C9—C101.353 (2)C20—C211.450 (5)
C9—C111.405 (3)C20—C221.492 (5)
C12—C131.333 (2)C21—H21A0.9600
C12—C171.493 (3)C21—H21B0.9600
C13—C141.468 (2)C21—H21C0.9600
C14—C151.507 (3)C22—H22A0.9600
C15—C161.533 (3)C22—H22B0.9600
C16—C191.518 (3)C22—H22C0.9600
C16—C171.530 (3)
C4—O1—C7119.00 (19)C1—C6—H6119.00
C10—O2—C12118.71 (13)C5—C6—H6119.00
C10—N2—H2B120.00O1—C7—H7A109.00
H2A—N2—H2B120.00O1—C7—H7B109.00
C10—N2—H2A120.00O1—C7—H7C110.00
C6—C1—C8120.86 (17)H7A—C7—H7B109.00
C2—C1—C6117.49 (17)H7A—C7—H7C110.00
C2—C1—C8121.58 (16)H7B—C7—H7C109.00
C1—C2—C3121.33 (18)C1—C8—H8108.00
C2—C3—C4120.4 (2)C9—C8—H8108.00
O1—C4—C3115.55 (19)C13—C8—H8109.00
C3—C4—C5119.50 (19)C14—C15—H15A109.00
O1—C4—C5124.96 (19)C14—C15—H15B109.00
C4—C5—C6119.47 (18)C16—C15—H15A109.00
C1—C6—C5121.83 (18)C16—C15—H15B109.00
C1—C8—C13112.40 (15)H15A—C15—H15B108.00
C1—C8—C9110.68 (14)C12—C17—H17A109.00
C9—C8—C13108.21 (14)C12—C17—H17B109.00
C8—C9—C10122.50 (16)C16—C17—H17A109.00
C8—C9—C11118.28 (15)C16—C17—H17B109.00
C10—C9—C11119.04 (16)H17A—C17—H17B108.00
N2—C10—C9128.41 (18)C16—C18—H18A109.00
O2—C10—N2110.29 (15)C16—C18—H18B110.00
O2—C10—C9121.30 (15)C16—C18—H18C110.00
N1—C11—C9179.09 (19)H18A—C18—H18B109.00
O2—C12—C13123.20 (16)H18A—C18—H18C109.00
O2—C12—C17110.77 (14)H18B—C18—H18C109.00
C13—C12—C17126.03 (16)C16—C19—H19A109.00
C12—C13—C14118.86 (16)C16—C19—H19B109.00
C8—C13—C14118.84 (15)C16—C19—H19C109.00
C8—C13—C12122.28 (15)H19A—C19—H19B109.00
O3—C14—C13121.03 (17)H19A—C19—H19C109.00
O3—C14—C15121.68 (16)H19B—C19—H19C109.00
C13—C14—C15117.26 (15)O4—C20—C21122.9 (4)
C14—C15—C16113.98 (16)O4—C20—C22122.7 (4)
C17—C16—C18108.51 (18)C21—C20—C22114.0 (3)
C17—C16—C19110.37 (18)C20—C21—H21A109.00
C18—C16—C19109.63 (19)C20—C21—H21B109.00
C15—C16—C19110.12 (19)C20—C21—H21C109.00
C15—C16—C17108.13 (17)H21A—C21—H21B109.00
C15—C16—C18110.05 (18)H21A—C21—H21C109.00
C12—C17—C16112.99 (15)H21B—C21—H21C109.00
C1—C2—H2119.00C20—C22—H22A109.00
C3—C2—H2119.00C20—C22—H22B109.00
C2—C3—H3120.00C20—C22—H22C109.00
C4—C3—H3120.00H22A—C22—H22B109.00
C4—C5—H5120.00H22A—C22—H22C110.00
C6—C5—H5120.00H22B—C22—H22C109.00
C7—O1—C4—C3180.0 (2)C1—C8—C13—C1474.3 (2)
C7—O1—C4—C50.2 (3)C9—C8—C13—C1218.5 (2)
C12—O2—C10—N2172.48 (16)C9—C8—C13—C14163.20 (16)
C12—O2—C10—C97.6 (3)C8—C9—C10—O28.6 (3)
C10—O2—C12—C139.5 (3)C8—C9—C10—N2171.34 (19)
C10—O2—C12—C17171.11 (16)C11—C9—C10—O2176.45 (17)
C6—C1—C2—C30.2 (3)C11—C9—C10—N23.6 (3)
C8—C1—C2—C3177.04 (18)O2—C12—C13—C85.1 (3)
C2—C1—C6—C50.2 (3)O2—C12—C13—C14176.54 (17)
C8—C1—C6—C5177.02 (16)C17—C12—C13—C8174.16 (18)
C2—C1—C8—C979.6 (2)C17—C12—C13—C144.2 (3)
C2—C1—C8—C1341.5 (2)O2—C12—C17—C16161.46 (16)
C6—C1—C8—C997.08 (19)C13—C12—C17—C1617.9 (3)
C6—C1—C8—C13141.80 (17)C8—C13—C14—O30.7 (3)
C1—C2—C3—C40.2 (3)C8—C13—C14—C15177.12 (17)
C2—C3—C4—O1180.0 (2)C12—C13—C14—O3177.70 (19)
C2—C3—C4—C50.1 (3)C12—C13—C14—C154.5 (3)
O1—C4—C5—C6179.9 (2)O3—C14—C15—C16147.2 (2)
C3—C4—C5—C60.1 (3)C13—C14—C15—C1635.0 (3)
C4—C5—C6—C10.1 (3)C14—C15—C16—C1754.3 (2)
C1—C8—C9—C10103.3 (2)C14—C15—C16—C18172.66 (18)
C1—C8—C9—C1171.7 (2)C14—C15—C16—C1966.4 (2)
C13—C8—C9—C1020.3 (2)C15—C16—C17—C1245.0 (2)
C13—C8—C9—C11164.75 (16)C18—C16—C17—C12164.36 (18)
C1—C8—C13—C12104.1 (2)C19—C16—C17—C1275.5 (2)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the O2/C8–C10/C12/C13) 4H-pyran ring.
D—H···AD—HH···AD···AD—H···A
N2—H2A···N1i0.862.303.142 (3)168
N2—H2B···O3ii0.862.193.029 (2)165
C6—H6···N1iii0.932.513.258 (3)137
C18—H18A···Cg2iv0.962.773.677 (2)158
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y, z; (iii) x+1, y+1, z+1; (iv) x, y1, z.

Experimental details

Crystal data
Chemical formulaC19H20N2O3·C3H6O
Mr382.45
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.2037 (4), 9.5319 (4), 13.8390 (7)
α, β, γ (°)77.743 (2), 87.307 (3), 80.672 (2)
V3)1043.43 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.28 × 0.22 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.978, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
16752, 4917, 3284
Rint0.027
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.182, 1.04
No. of reflections4917
No. of parameters246
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.50

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the O2/C8–C10/C12/C13) 4H-pyran ring.
D—H···AD—HH···AD···AD—H···A
N2—H2A···N1i0.862.303.142 (3)168
N2—H2B···O3ii0.862.193.029 (2)165
C6—H6···N1iii0.932.513.258 (3)137
C18—H18A···Cg2iv0.962.773.677 (2)158
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y, z; (iii) x+1, y+1, z+1; (iv) x, y1, z.
 

Acknowledgements

The financial support of the Egyptian Goverment to carry out this study is gratefully acknowledged. We also thank Manchester Metropolitan University and Erciyes University for guidance and instrumental support of the study.

References

First citationAbd-El-Aziz, A. S., El-Agrody, A. M., Bedair, A. H., Corkery, T. C. & Ata, A. (2004). Heterocycles, 63, 1793–1812.  CAS Google Scholar
First citationAbd-El-Aziz, A. S., Mohamed, H. M., Mohammed, S., Zahid, S., Ata, A., Bedair, A. H., El- Agrody, A. M. & Harvey, P. D. (2007). J. Heterocycl. Chem. 44, 1287–1301.  CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrühlmann, C., Ooms, F., Carrupt, P.-A., Testa, B., Catto, M., Leonetti, F., Altomare, C. & Carotti, A. (2001). J. Med. Chem. 44, 3195–3198.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGourdeau, H., Leblond, L., Hamelin, B., Desputeau, C., Dong, K., Kianicka, I., Custeau, D., Boudreau, C., Geerts, L., Cai, S.-X., Drewe, J., Labrecque, D., Kasibhatla, S. & Tseng, B. (2004). Mol. Cancer Ther. 3, 1375–1384.  Web of Science PubMed CAS Google Scholar
First citationKemnitzer, W., Drewe, J., Jiang, S., Zhang, H., Crogan-Grundy, C., Labreque, D., Bubenick, M., Attardo, G., Denis, R., Lamothe, S., Gourdeau, H., Tseng, B., Kasibhatla, S. & Cai, S. X. (2008). J. Med. Chem. 51, 417–423.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKemnitzer, W., Drewe, J., Jiang, S., Zhang, H., Zhao, J., Crogan-Grundy, C., Xu, L., Lamothe, S., Gourdeau, H., Denis, R., Tseng, B., Kasibhatla, S. & Cai, S. X. (2007). J. Med. Chem. 50, 2858–2864.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMahdavi, M., Davoodi, J., Zali, M. R. & Foroumadi, A. (2011). Biomed. Pharm. 65, 175–182.  Web of Science CrossRef CAS Google Scholar
First citationMohamed, S. K., Akkurt, M., Tahir, M. N., Abdelhamid, A. A. & Albayati, M. R. (2012). Acta Cryst. E68, o1965–o1966.  CSD CrossRef IUCr Journals Google Scholar
First citationSabry, N. M., Mohamed, H. M., Khattab, E. S. A. E. H., Motlaq, S. S. & El- Agrody, A. M. (2011). Eur. J. Med. Chem. 46, 765–772.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds