organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-3-(2-Chloro­benz­yl)-1,5-benzo­thia­zepin-4(5H)-one

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and bDepartment of Organic Chemistry, University of Madras, Chennai 600 025, India
*Correspondence e-mail: aravindhanpresidency@gmail.com

(Received 19 June 2012; accepted 26 June 2012; online 30 June 2012)

In the crystal structure of the title compound, C16H12ClNOS, the mol­ecules are linked into centrosymmetric R22(8) dimers via pairs of N—H⋯O hydrogen bonds. The seven-membered ring adopts a boat conformation.

Related literature

For the pharmaceutical properties of thia­zepin derivatives, see: Tomascovic et al. (2000[Tomascovic, L. L., Arneri, R. S., Brundic, A. H., Nagl, A., Mintas, M. & Sandtrom, J. (2000). Helv. Chim. Acta, 83, 479-493.]); Rajsner et al. (1971[Rajsner, M., Protiva, M. & Metysova, J. (1971). Czech. Patent Appl. CS 143737.]); Metys et al. (1965[Metys, J., Metysova, J. & Votava, Z. (1965). Acta Biol. Med. Ger. 15, 871-873.]). For conformations of thia­zepin derivatives, see: Huang et al. (2011[Huang, Z.-H., Chu, Y. & Ye, D.-Y. (2011). Acta Cryst. E67, o168.]). For graph-set analysis of hydrogen bonds, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C16H12ClNOS

  • Mr = 301.78

  • Triclinic, [P \overline 1]

  • a = 8.4958 (3) Å

  • b = 8.7197 (3) Å

  • c = 10.0520 (3) Å

  • α = 101.930 (1)°

  • β = 95.179 (2)°

  • γ = 90.314 (2)°

  • V = 725.38 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 298 K

  • 0.32 × 0.20 × 0.10 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.980, Tmax = 0.990

  • 10314 measured reflections

  • 3596 independent reflections

  • 2961 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.129

  • S = 0.93

  • 3596 reflections

  • 185 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.82 (2) 2.08 (2) 2.8911 (19) 174 (3)
Symmetry code: (i) -x+1, -y+2, -z+2.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound is used as an intermediate for the synthesis of dosulepin, which is an antidepressant of the tricyclic family. Dosulepin prevents reabsorbing of serotonin and noradrenaline in the brain, helps to prolong the mood lightening effect of any released noradrenaline and serotonin, thus relieving depression. The dibenzo[c,e]thiazepin derivatives exhibit chiroptical properties (Tomascovic et al., 2000). Dibenzo[b,e]thiazepin-5,5-dioxide derivatives possess antihistaminic and antiallergenic activities (Rajsner et al., 1971). Benzene thiazepin derivatives are identified as a new type of effective antihistaminic compounds (Metys et al., 1965). Considering the wide range of biological activities of the thiazepin derivatives,we determined the crystal structure of the title compound.

X-Ray analysis confirms the molecular structure and atom connectivity as illustrated in (Fig. 1). The seven membered thiazepin ring adopts a boat conformation (Huang et al., 2011). The sum of the bond angles around the N1 atom (357.72°) indicates sp2 hybridization. The molecules are linked via N—H···O hydrogen bonds to centrosymmetric dimers with graph set notation R 2 2(8) (Bernstein et al., 1995) (Fig.2).

Related literature top

For the pharmaceutical properties of thiazepin derivatives, see: Tomascovic et al. (2000); Rajsner et al. (1971); Metys et al. (1965). For conformations of thiazepin derivatives, see: Huang et al. (2011). For graph=set analysis of hydrogen bonds, see: Bernstein et al. (1995).

Experimental top

A mixture of (Z)-methyl 2-(bromomethyl)-3-(2-chlorophenyl)acrylate (2 mmol) and o-aminothiophenol (2 mmol) in the presence of potassium tert-butoxide (4.8 mmol) in dry THF (10 ml) was stirred at room temperature for 1 h. After the completion of the reaction as indicated by TLC, the reaction mixture was concentrated and the resulting crude mass was diluted with water (20 ml) and extracted with ethyl acetate (3 x 20 ml). The organic layer was washed with brine (2 x 20 ml) and dried over anhydrous sodium sulfate. The organic layer was concentrated, which successfully provide the crude final product ((Z)-3-(2-chlorobenzyl)benzo[b][1,4]thiazepin-4(5H)-one). The final product was purified by column chromatography on silica gel to afford the title compound in 45% yields.

Refinement top

H atoms bonded to C were refined with fixed individual displacement parameters [U(H) = 1.2 Ueq(C)] using a riding model with C—H ranging from 0.93 Å to 0.97 Å. The amino H atom was freely refined.

Structure description top

The title compound is used as an intermediate for the synthesis of dosulepin, which is an antidepressant of the tricyclic family. Dosulepin prevents reabsorbing of serotonin and noradrenaline in the brain, helps to prolong the mood lightening effect of any released noradrenaline and serotonin, thus relieving depression. The dibenzo[c,e]thiazepin derivatives exhibit chiroptical properties (Tomascovic et al., 2000). Dibenzo[b,e]thiazepin-5,5-dioxide derivatives possess antihistaminic and antiallergenic activities (Rajsner et al., 1971). Benzene thiazepin derivatives are identified as a new type of effective antihistaminic compounds (Metys et al., 1965). Considering the wide range of biological activities of the thiazepin derivatives,we determined the crystal structure of the title compound.

X-Ray analysis confirms the molecular structure and atom connectivity as illustrated in (Fig. 1). The seven membered thiazepin ring adopts a boat conformation (Huang et al., 2011). The sum of the bond angles around the N1 atom (357.72°) indicates sp2 hybridization. The molecules are linked via N—H···O hydrogen bonds to centrosymmetric dimers with graph set notation R 2 2(8) (Bernstein et al., 1995) (Fig.2).

For the pharmaceutical properties of thiazepin derivatives, see: Tomascovic et al. (2000); Rajsner et al. (1971); Metys et al. (1965). For conformations of thiazepin derivatives, see: Huang et al. (2011). For graph=set analysis of hydrogen bonds, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. A view of the crystal packing. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.
(Z)-3-(2-Chlorobenzyl)-1,5-benzothiazepin-4(5H)-one top
Crystal data top
C16H12ClNOSZ = 2
Mr = 301.78F(000) = 312
Triclinic, P1Dx = 1.382 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.4958 (3) ÅCell parameters from 8725 reflections
b = 8.7197 (3) Åθ = 2.8–29.1°
c = 10.0520 (3) ŵ = 0.40 mm1
α = 101.930 (1)°T = 298 K
β = 95.179 (2)°Triclinic, colourless
γ = 90.314 (2)°0.32 × 0.20 × 0.10 mm
V = 725.38 (4) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3596 independent reflections
Radiation source: fine-focus sealed tube2961 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 15.9948 pixels mm-1θmax = 28.6°, θmin = 2.1°
φ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 1110
Tmin = 0.980, Tmax = 0.990l = 1213
10314 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 0.93 w = 1/[σ2(Fo2) + (0.0686P)2 + 0.3987P]
where P = (Fo2 + 2Fc2)/3
3596 reflections(Δ/σ)max < 0.001
185 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.54 e Å3
Crystal data top
C16H12ClNOSγ = 90.314 (2)°
Mr = 301.78V = 725.38 (4) Å3
Triclinic, P1Z = 2
a = 8.4958 (3) ÅMo Kα radiation
b = 8.7197 (3) ŵ = 0.40 mm1
c = 10.0520 (3) ÅT = 298 K
α = 101.930 (1)°0.32 × 0.20 × 0.10 mm
β = 95.179 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3596 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2961 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.990Rint = 0.020
10314 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 0.93Δρmax = 0.51 e Å3
3596 reflectionsΔρmin = 0.54 e Å3
185 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3986 (3)0.7811 (3)0.4385 (2)0.0611 (6)
H10.33290.78500.36020.073*
C20.5362 (3)0.6996 (3)0.4275 (3)0.0727 (7)
H20.56400.65000.34210.087*
C30.6327 (3)0.6915 (3)0.5429 (3)0.0686 (6)
H30.72590.63620.53540.082*
C40.5921 (2)0.7650 (3)0.6696 (2)0.0554 (5)
H40.65780.75870.74740.066*
C50.45365 (19)0.8482 (2)0.68197 (17)0.0400 (4)
N10.42278 (17)0.92803 (19)0.81405 (14)0.0425 (3)
C60.29024 (18)0.92977 (19)0.87848 (16)0.0352 (3)
C70.13755 (18)0.85995 (19)0.80480 (17)0.0361 (3)
C80.0826 (2)0.8806 (2)0.68177 (19)0.0455 (4)
H80.01940.84300.64970.055*
C90.3563 (2)0.8580 (2)0.56553 (17)0.0429 (4)
C100.0416 (2)0.7741 (2)0.88754 (19)0.0435 (4)
H10A0.02360.84400.97300.052*
H10B0.06040.74260.83760.052*
C110.12551 (19)0.6308 (2)0.91707 (17)0.0382 (4)
C120.2153 (2)0.6381 (2)1.0410 (2)0.0506 (4)
H120.21980.73121.10620.061*
C130.2978 (3)0.5119 (3)1.0702 (2)0.0615 (6)
H130.35780.52121.15380.074*
C140.2922 (3)0.3731 (3)0.9772 (3)0.0622 (6)
H140.34860.28820.99700.075*
C150.2030 (3)0.3594 (3)0.8545 (2)0.0594 (5)
H150.19690.26460.79140.071*
C160.1220 (2)0.4874 (2)0.82485 (18)0.0466 (4)
Cl10.01021 (9)0.46470 (9)0.66795 (6)0.0789 (2)
O10.29428 (15)0.98862 (16)1.00167 (12)0.0457 (3)
S10.18502 (6)0.97237 (7)0.57440 (5)0.05265 (16)
H1A0.501 (3)0.958 (3)0.867 (2)0.051 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0598 (12)0.0839 (16)0.0365 (9)0.0198 (11)0.0013 (8)0.0081 (9)
C20.0641 (14)0.0927 (18)0.0539 (13)0.0154 (13)0.0192 (11)0.0075 (12)
C30.0482 (11)0.0836 (17)0.0714 (15)0.0037 (11)0.0188 (10)0.0043 (12)
C40.0397 (9)0.0745 (14)0.0536 (11)0.0014 (9)0.0038 (8)0.0170 (10)
C50.0358 (8)0.0482 (10)0.0363 (8)0.0078 (7)0.0001 (6)0.0113 (7)
N10.0328 (7)0.0581 (9)0.0340 (7)0.0079 (6)0.0066 (6)0.0076 (6)
C60.0359 (7)0.0334 (8)0.0362 (8)0.0005 (6)0.0041 (6)0.0105 (6)
C70.0308 (7)0.0366 (8)0.0408 (8)0.0011 (6)0.0018 (6)0.0104 (6)
C80.0348 (8)0.0536 (11)0.0492 (10)0.0023 (7)0.0088 (7)0.0186 (8)
C90.0420 (8)0.0497 (10)0.0373 (8)0.0107 (7)0.0029 (7)0.0130 (7)
C100.0333 (8)0.0494 (10)0.0496 (10)0.0012 (7)0.0043 (7)0.0139 (8)
C110.0347 (7)0.0421 (9)0.0396 (8)0.0047 (6)0.0059 (6)0.0118 (7)
C120.0593 (11)0.0457 (10)0.0452 (10)0.0068 (8)0.0056 (8)0.0103 (8)
C130.0661 (13)0.0602 (13)0.0611 (13)0.0029 (10)0.0127 (10)0.0279 (11)
C140.0671 (13)0.0521 (12)0.0759 (15)0.0095 (10)0.0129 (11)0.0299 (11)
C150.0749 (14)0.0442 (11)0.0595 (12)0.0017 (10)0.0226 (11)0.0051 (9)
C160.0504 (10)0.0523 (11)0.0373 (8)0.0065 (8)0.0080 (7)0.0082 (7)
Cl10.0987 (5)0.0856 (5)0.0433 (3)0.0106 (4)0.0118 (3)0.0007 (3)
O10.0450 (7)0.0514 (7)0.0370 (6)0.0043 (5)0.0015 (5)0.0029 (5)
S10.0507 (3)0.0646 (3)0.0485 (3)0.0007 (2)0.0081 (2)0.0308 (2)
Geometric parameters (Å, º) top
C1—C21.372 (4)C8—S11.7554 (19)
C1—C91.393 (3)C8—H80.9300
C1—H10.9300C9—S11.767 (2)
C2—C31.373 (4)C10—C111.510 (3)
C2—H20.9300C10—H10A0.9700
C3—C41.378 (3)C10—H10B0.9700
C3—H30.9300C11—C121.390 (3)
C4—C51.387 (3)C11—C161.393 (3)
C4—H40.9300C12—C131.376 (3)
C5—C91.389 (2)C12—H120.9300
C5—N11.414 (2)C13—C141.366 (3)
N1—C61.347 (2)C13—H130.9300
N1—H1A0.81 (2)C14—C151.371 (3)
C6—O11.236 (2)C14—H140.9300
C6—C71.494 (2)C15—C161.384 (3)
C7—C81.330 (2)C15—H150.9300
C7—C101.513 (2)C16—Cl11.740 (2)
C2—C1—C9120.8 (2)C5—C9—S1121.50 (14)
C2—C1—H1119.6C1—C9—S1119.38 (15)
C9—C1—H1119.6C11—C10—C7111.24 (14)
C3—C2—C1119.9 (2)C11—C10—H10A109.4
C3—C2—H2120.0C7—C10—H10A109.4
C1—C2—H2120.0C11—C10—H10B109.4
C2—C3—C4120.2 (2)C7—C10—H10B109.4
C2—C3—H3119.9H10A—C10—H10B108.0
C4—C3—H3119.9C12—C11—C16116.03 (17)
C3—C4—C5120.4 (2)C12—C11—C10120.21 (16)
C3—C4—H4119.8C16—C11—C10123.74 (16)
C5—C4—H4119.8C13—C12—C11122.1 (2)
C4—C5—C9119.62 (17)C13—C12—H12118.9
C4—C5—N1117.68 (16)C11—C12—H12118.9
C9—C5—N1122.60 (17)C14—C13—C12120.3 (2)
C6—N1—C5129.94 (14)C14—C13—H13119.8
C6—N1—H1A112.3 (15)C12—C13—H13119.8
C5—N1—H1A115.5 (16)C13—C14—C15119.7 (2)
O1—C6—N1119.72 (14)C13—C14—H14120.2
O1—C6—C7118.76 (15)C15—C14—H14120.2
N1—C6—C7121.52 (14)C14—C15—C16119.7 (2)
C8—C7—C6123.87 (16)C14—C15—H15120.1
C8—C7—C10121.87 (15)C16—C15—H15120.1
C6—C7—C10114.06 (14)C15—C16—C11122.12 (18)
C7—C8—S1125.94 (14)C15—C16—Cl1118.14 (16)
C7—C8—H8117.0C11—C16—Cl1119.73 (15)
S1—C8—H8117.0C8—S1—C999.34 (8)
C5—C9—C1119.06 (19)
C9—C1—C2—C30.9 (4)C2—C1—C9—S1175.81 (18)
C1—C2—C3—C40.1 (4)C8—C7—C10—C11119.48 (19)
C2—C3—C4—C50.2 (4)C6—C7—C10—C1165.55 (19)
C3—C4—C5—C90.4 (3)C7—C10—C11—C1296.9 (2)
C3—C4—C5—N1176.6 (2)C7—C10—C11—C1681.8 (2)
C4—C5—N1—C6131.9 (2)C16—C11—C12—C130.9 (3)
C9—C5—N1—C652.0 (3)C10—C11—C12—C13177.81 (19)
C5—N1—C6—O1169.22 (17)C11—C12—C13—C140.7 (3)
C5—N1—C6—C79.9 (3)C12—C13—C14—C150.4 (4)
O1—C6—C7—C8136.80 (19)C13—C14—C15—C161.3 (3)
N1—C6—C7—C844.0 (3)C14—C15—C16—C111.1 (3)
O1—C6—C7—C1038.0 (2)C14—C15—C16—Cl1179.98 (17)
N1—C6—C7—C10141.13 (17)C12—C11—C16—C150.0 (3)
C6—C7—C8—S17.7 (3)C10—C11—C16—C15178.67 (17)
C10—C7—C8—S1177.85 (14)C12—C11—C16—Cl1178.87 (14)
C4—C5—C9—C11.2 (3)C10—C11—C16—Cl12.4 (2)
N1—C5—C9—C1177.26 (17)C7—C8—S1—C955.28 (19)
C4—C5—C9—S1176.03 (15)C5—C9—S1—C859.33 (16)
N1—C5—C9—S10.0 (2)C1—C9—S1—C8123.43 (16)
C2—C1—C9—C51.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.82 (2)2.08 (2)2.8911 (19)174 (3)
Symmetry code: (i) x+1, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC16H12ClNOS
Mr301.78
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.4958 (3), 8.7197 (3), 10.0520 (3)
α, β, γ (°)101.930 (1), 95.179 (2), 90.314 (2)
V3)725.38 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.32 × 0.20 × 0.10
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.980, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
10314, 3596, 2961
Rint0.020
(sin θ/λ)max1)0.673
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.129, 0.93
No. of reflections3596
No. of parameters185
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.51, 0.54

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.82 (2)2.08 (2)2.8911 (19)174 (3)
Symmetry code: (i) x+1, y+2, z+2.
 

Acknowledgements

SA thanks the UGC, India, for financial support.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHuang, Z.-H., Chu, Y. & Ye, D.-Y. (2011). Acta Cryst. E67, o168.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMetys, J., Metysova, J. & Votava, Z. (1965). Acta Biol. Med. Ger. 15, 871–873.  CAS PubMed Web of Science Google Scholar
First citationRajsner, M., Protiva, M. & Metysova, J. (1971). Czech. Patent Appl. CS 143737.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTomascovic, L. L., Arneri, R. S., Brundic, A. H., Nagl, A., Mintas, M. & Sandtrom, J. (2000). Helv. Chim. Acta, 83, 479–493.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds