organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-Diisoprop­oxy-5,5′-methyl­enedi­benz­alde­hyde

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and bDepartment of Organic Chemistry, University of Madras, Chennai 600 025, India
*Correspondence e-mail: aravindhanpresidency@gmail.com

(Received 19 June 2012; accepted 20 June 2012; online 23 June 2012)

Mol­ecules of the title compound, C21H24O4, are located on a twofold rotation axis running through the central methyl­ene C atom. The aldehyde group is coplanar with the benzene ring [C—C—C—O = 175.7 (4) °].

Related literature

For related salicyl­aldehyde compounds, see: Qiu et al. (2009[Qiu, L., Lin, J. & Xu, Y. (2009). Inorg. Chem. Commun. 12, 986-989.]); Yu et al. (2007[Yu, T.-Z., Su, W.-M., Li, W.-L., Hong, Z.-R., Hua, R.-N. & Li, B. (2007). Thin Solid Films, 515, 4080-4084.]); Wang et al. (2009[Wang, H., Zhang, D., Ni, Z.-H., Li, X., Tian, L. & Jiang, J. (2009). Inorg. Chem. 48, 5946-5956.]).

[Scheme 1]

Experimental

Crystal data
  • C21H24O4

  • Mr = 340.40

  • Orthorhombic, F d d 2

  • a = 26.337 (9) Å

  • b = 28.349 (10) Å

  • c = 4.990 (2) Å

  • V = 3726 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.35 × 0.25 × 0.20 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.972, Tmax = 0.984

  • 4329 measured reflections

  • 1022 independent reflections

  • 886 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.114

  • S = 1.06

  • 1022 reflections

  • 114 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.13 e Å−3

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Salicylaldehyde and its derivatives are widely used in the construction of metal complexes (Qiu et al., 2009; Wang et al.,2009; Yu et al.,2007).

X-Ray analysis confirms the molecular structure and atom connectivity as illustrated in (Fig. 1). There os one half molecule in the asymmetric unit located on a two-fold rotation axis. The aldehyde group is coplanar with the benzene ring [C2—C1—C8—O2 = 175.7 (4) °].

The crystal packing is stabilized by weak C-H···O hydrogen bonds.

Related literature top

For related salicylaldehyde compounds, see: Qiu et al. (2009); Yu et al. (2007); Wang et al. (2009).

Experimental top

To a stirred solution of 5,5'-methylenebis(2-hydroxybenzaldehyde) (0.50 g, 1.95 mmol) in CH3CN (20 ml) was added K2CO3 (1.35 g, 9.76 mmol) and stirred for 15 min. To this, isopropylbromide (0.40 ml, 4.29 mmol) was added and stirred for 24 h at rt. After completion of the reaction as indicated by TLC, the reaction mixture was concentrated and the resulting crude mass was diluted with water (15 ml) and extracted with ethyl acetate (3 × 15 ml). The combined organic layer was washed with brine (2 × 10 ml) and dried over anhydrous Na2SO4.The organic layer was concentrated and the solid thus obtained was washed with ethylacetate-hexanes (1:9) to afford the compound 5,5'-Methylenebis(2-isopropoxybenzaldehyde) as a colourless solid in 95% yield.

Refinement top

Hydrogen atom were found in a difference electron density map and subsequently treated as riding atoms with distances of 0.96 Å (CH3), 0.97 Å (CH2), 0.98 Å (tertiary CH) or 0.93 Å (aromatic CH). Uiso(H) was set to 1.2Ueq(C) or 1.5Ueq(Cmethyl), respectively. Due to the absence of anomalous scatterers, Friedel pairs were merged.

Structure description top

Salicylaldehyde and its derivatives are widely used in the construction of metal complexes (Qiu et al., 2009; Wang et al.,2009; Yu et al.,2007).

X-Ray analysis confirms the molecular structure and atom connectivity as illustrated in (Fig. 1). There os one half molecule in the asymmetric unit located on a two-fold rotation axis. The aldehyde group is coplanar with the benzene ring [C2—C1—C8—O2 = 175.7 (4) °].

The crystal packing is stabilized by weak C-H···O hydrogen bonds.

For related salicylaldehyde compounds, see: Qiu et al. (2009); Yu et al. (2007); Wang et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 10% probability level.
[Figure 2] Fig. 2. A view of the crystal packing.
2,2'-Diisopropoxy-5,5'-methylenedibenzaldehyde top
Crystal data top
C21H24O4F(000) = 1456
Mr = 340.40Dx = 1.214 Mg m3
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2dCell parameters from 1022 reflections
a = 26.337 (9) Åθ = 3.1–26.0°
b = 28.349 (10) ŵ = 0.08 mm1
c = 4.990 (2) ÅT = 293 K
V = 3726 (2) Å3Orthorhombic, colourless
Z = 80.35 × 0.25 × 0.20 mm
Data collection top
Bruker SMART APEXII area-detector
diffractometer
1022 independent reflections
Radiation source: fine-focus sealed tube886 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω and φ scansθmax = 26.0°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 3232
Tmin = 0.972, Tmax = 0.984k = 3134
4329 measured reflectionsl = 64
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0561P)2 + 2.1412P]
where P = (Fo2 + 2Fc2)/3
1022 reflections(Δ/σ)max < 0.001
114 parametersΔρmax = 0.17 e Å3
1 restraintΔρmin = 0.13 e Å3
Crystal data top
C21H24O4V = 3726 (2) Å3
Mr = 340.40Z = 8
Orthorhombic, Fdd2Mo Kα radiation
a = 26.337 (9) ŵ = 0.08 mm1
b = 28.349 (10) ÅT = 293 K
c = 4.990 (2) Å0.35 × 0.25 × 0.20 mm
Data collection top
Bruker SMART APEXII area-detector
diffractometer
1022 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
886 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.984Rint = 0.035
4329 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0401 restraint
wR(F2) = 0.114H-atom parameters constrained
S = 1.06Δρmax = 0.17 e Å3
1022 reflectionsΔρmin = 0.13 e Å3
114 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.15629 (6)0.10388 (6)0.7445 (5)0.0632 (5)
C40.25293 (9)0.18516 (9)0.9981 (6)0.0580 (6)
H40.28730.19190.97670.070*
C20.18085 (8)0.13881 (8)0.8776 (6)0.0499 (6)
C70.25000.25001.3451 (9)0.0711 (11)
H7A0.22450.26421.45980.085*0.50
H7B0.27550.23581.45980.085*0.50
C10.15181 (8)0.16511 (8)1.0577 (6)0.0552 (7)
C30.23209 (8)0.14955 (8)0.8487 (6)0.0572 (7)
H30.25210.13260.72880.069*
C50.22521 (9)0.21160 (8)1.1795 (5)0.0546 (6)
C60.17461 (9)0.20091 (8)1.2046 (6)0.0578 (7)
H60.15490.21821.32400.069*
C90.18476 (10)0.06998 (9)0.5895 (6)0.0621 (7)
H90.20760.08650.46610.075*
O20.07084 (7)0.17443 (8)1.2544 (9)0.1226 (13)
C100.21526 (11)0.03853 (10)0.7716 (8)0.0760 (9)
H10A0.23970.05710.86740.114*
H10B0.23250.01510.66670.114*
H10C0.19300.02330.89680.114*
C110.14556 (13)0.04302 (12)0.4324 (8)0.0882 (11)
H11A0.12740.06430.31760.132*
H11B0.12220.02810.55370.132*
H11C0.16200.01940.32550.132*
C80.09748 (9)0.15523 (10)1.0940 (10)0.0888 (13)
H80.08280.13250.98450.107*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0503 (9)0.0492 (9)0.0902 (13)0.0024 (7)0.0055 (10)0.0102 (10)
C40.0436 (11)0.0618 (14)0.0686 (15)0.0084 (10)0.0086 (12)0.0086 (14)
C20.0445 (11)0.0388 (11)0.0663 (15)0.0025 (9)0.0052 (12)0.0066 (11)
C70.079 (2)0.074 (3)0.060 (2)0.0213 (19)0.0000.000
C10.0430 (11)0.0383 (11)0.0844 (19)0.0028 (9)0.0120 (13)0.0036 (13)
C30.0477 (12)0.0544 (14)0.0695 (16)0.0004 (10)0.0158 (12)0.0006 (14)
C50.0576 (12)0.0495 (13)0.0568 (15)0.0065 (10)0.0027 (12)0.0081 (12)
C60.0560 (12)0.0444 (12)0.0730 (18)0.0018 (10)0.0181 (13)0.0005 (14)
C90.0704 (15)0.0549 (14)0.0609 (15)0.0082 (12)0.0218 (14)0.0046 (13)
O20.0639 (12)0.0834 (15)0.221 (4)0.0002 (10)0.0623 (19)0.031 (2)
C100.0793 (17)0.0574 (15)0.091 (2)0.0121 (13)0.0235 (18)0.0004 (17)
C110.098 (2)0.082 (2)0.084 (2)0.0235 (17)0.011 (2)0.016 (2)
C80.0464 (13)0.0554 (15)0.164 (4)0.0008 (12)0.024 (2)0.018 (2)
Geometric parameters (Å, º) top
O1—C21.357 (3)C5—C61.372 (3)
O1—C91.444 (3)C6—H60.9300
C4—C31.370 (4)C9—C101.505 (4)
C4—C51.384 (4)C9—C111.505 (4)
C4—H40.9300C9—H90.9800
C2—C31.391 (3)O2—C81.196 (5)
C2—C11.396 (3)C10—H10A0.9600
C7—C5i1.514 (4)C10—H10B0.9600
C7—C51.515 (4)C10—H10C0.9600
C7—H7A0.9700C11—H11A0.9600
C7—H7B0.9700C11—H11B0.9600
C1—C61.389 (3)C11—H11C0.9600
C1—C81.469 (3)C8—H80.9300
C3—H30.9300
C2—O1—C9120.03 (18)C5—C6—H6118.9
C3—C4—C5122.9 (2)C1—C6—H6118.9
C3—C4—H4118.5O1—C9—C10110.4 (3)
C5—C4—H4118.5O1—C9—C11105.1 (2)
O1—C2—C3124.9 (2)C10—C9—C11112.3 (2)
O1—C2—C1116.35 (18)O1—C9—H9109.6
C3—C2—C1118.8 (2)C10—C9—H9109.6
C5i—C7—C5113.9 (4)C11—C9—H9109.6
C5i—C7—H7A108.8C9—C10—H10A109.5
C5—C7—H7A108.8C9—C10—H10B109.5
C5i—C7—H7B108.8H10A—C10—H10B109.5
C5—C7—H7B108.8C9—C10—H10C109.5
H7A—C7—H7B107.7H10A—C10—H10C109.5
C6—C1—C2119.6 (2)H10B—C10—H10C109.5
C6—C1—C8119.7 (3)C9—C11—H11A109.5
C2—C1—C8120.8 (2)C9—C11—H11B109.5
C4—C3—C2119.6 (2)H11A—C11—H11B109.5
C4—C3—H3120.2C9—C11—H11C109.5
C2—C3—H3120.2H11A—C11—H11C109.5
C6—C5—C4116.9 (2)H11B—C11—H11C109.5
C6—C5—C7121.8 (2)O2—C8—C1124.6 (3)
C4—C5—C7121.2 (2)O2—C8—H8117.7
C5—C6—C1122.2 (2)C1—C8—H8117.7
C9—O1—C2—C39.8 (4)C5i—C7—C5—C6122.2 (3)
C9—O1—C2—C1169.6 (2)C5i—C7—C5—C458.8 (2)
O1—C2—C1—C6178.9 (2)C4—C5—C6—C10.4 (4)
C3—C2—C1—C60.5 (4)C7—C5—C6—C1178.6 (3)
O1—C2—C1—C80.9 (4)C2—C1—C6—C50.0 (4)
C3—C2—C1—C8179.7 (3)C8—C1—C6—C5179.8 (3)
C5—C4—C3—C20.1 (4)C2—O1—C9—C1068.9 (3)
O1—C2—C3—C4178.8 (2)C2—O1—C9—C11169.7 (2)
C1—C2—C3—C40.6 (4)C6—C1—C8—O24.1 (6)
C3—C4—C5—C60.4 (4)C2—C1—C8—O2175.7 (4)
C3—C4—C5—C7178.7 (3)
Symmetry code: (i) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O10.932.422.749 (3)101

Experimental details

Crystal data
Chemical formulaC21H24O4
Mr340.40
Crystal system, space groupOrthorhombic, Fdd2
Temperature (K)293
a, b, c (Å)26.337 (9), 28.349 (10), 4.990 (2)
V3)3726 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.35 × 0.25 × 0.20
Data collection
DiffractometerBruker SMART APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.972, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
4329, 1022, 886
Rint0.035
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.114, 1.06
No. of reflections1022
No. of parameters114
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.13

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Acknowledgements

GS and SA thank Dr Babu Varghese, SAIF, IIT Madras, for the structure refinement clarifications and the Department of Bio Physics, University of Madras, for providing the single-crystal XRD facilities.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationQiu, L., Lin, J. & Xu, Y. (2009). Inorg. Chem. Commun. 12, 986–989.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, H., Zhang, D., Ni, Z.-H., Li, X., Tian, L. & Jiang, J. (2009). Inorg. Chem. 48, 5946–5956.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYu, T.-Z., Su, W.-M., Li, W.-L., Hong, Z.-R., Hua, R.-N. & Li, B. (2007). Thin Solid Films, 515, 4080–4084.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds