metal-organic compounds
[N,N′-Bis(2,6-dichlorobenzylidene)propane-1,3-diamine-κ2N,N′]dibromidozinc
aDepartment of Chemistry, Faculty of Science, Golestan University, Gorgan, Iran, bSchool of Chemistry, Damghan University, Damghan 36715-364, Iran, and cInstitute of Physics ASCR, v.v.i., Na Slovance 2, 182 21 Praha 8, Czech Republic
*Correspondence e-mail: fejfarov@fzu.cz
In the title compound, [ZnBr2(C17H14Cl4N2)], the ZnII ion is bonded to two bromide ions and two N atoms of the diimine ligand and displays a moderately distorted tetrahedral coordination geometry. The Schiff base ligand acts as a chelating ligand and coordinates to the ZnII atom via two N atoms.
Related literature
For related structures, see: Khalaj et al. (2008, 2009); Salehzadeh et al. (2011); Khalaji et al. (2010, 2011, 2012). For properties and application of complexes of symmetric bidentate Schiff base ligands, see: Komatsu et al. (2007); Montazerozohori et al. (2011). For bond-length data, see: Allen et al. (1987).
Experimental
Crystal data
|
Refinement
|
|
Data collection: CrysAlis PRO (Agilent, 2011); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006.
Supporting information
https://doi.org/10.1107/S1600536812027997/bt5947sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812027997/bt5947Isup2.hkl
To a stirring solution of the (2,6-Cl-ba)2en ligand (1 mmol, in 5 ml of chloroform) was added ZnBr2 (1 mmol) in 10 ml of methanol and the mixture was stirred for 10 min in air at room temperature and was then left at 273 K for several days without disturbance yielding suitable crystals that subsequently were filtered off and washed with Et2O.
All H atoms were positioned geometrically and treated as riding on their parent atoms. The displacement coefficients Uiso(H) were set to 1.2Ueq(C).
Complexes of symmetric bidentate Schiff base ligands with transition metals have attracted much attention because of their catalytic (Komatsu et al., 2007) and thermal properties (Montazerozohori et al., 2011). There is substantial interest in the coordination chemistry of the zinc(II) ion (Khalaj et al., 2008, 2009; Salehzadeh et al.,2011; Khalaji et al.,2010, 2011, 2012).
The molecular structure of 1 with the atom-numbering scheme is presented in Fig. 1, and the bond lengths and angles are generally normal (Allen et al., 1987). The zinc(II) ion is coordinated by the bidentate Schiff-base ligand and two Br ions. Although a tetrahedral geometry might be expected for a four coordinated zinc(II) centre, the geometry around the zinc(II) ion is distorted by the bite angle N1—Zn1—N2 [90.24 (6)°] of the chelating ligand. On the contrary the Br1—Zn11—Br2 angle has opened up to 120.866 (11)°. The N—Zn—Br angles are also distorted from the tetrahedral values.
For related structures, see: Khalaj et al. (2008, 2009); Salehzadeh et al. (2011); Khalaji et al. (2010, 2011, 2012). For properties and application of complexes of symmetric bidentate Schiff base ligands, see: Komatsu et al. (2007); Montazerozohori et al. (2011). For bond-length data, see: Allen et al. (1987).
Data collection: CrysAlis PRO (Agilent, 2011); cell
CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006 (Petříček et al., 2006).Fig. 1. The molecular structure of 1. Displacement ellipsoids are drawn at the 50% probability level. |
[ZnBr2(C17H14Cl4N2)] | F(000) = 1192 |
Mr = 613.3 | Dx = 1.900 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.7107 Å |
Hall symbol: -P 2ybc | Cell parameters from 14022 reflections |
a = 17.0433 (3) Å | θ = 3.0–29.3° |
b = 9.3216 (2) Å | µ = 5.38 mm−1 |
c = 13.6038 (2) Å | T = 120 K |
β = 97.313 (2)° | Block, colourless |
V = 2143.67 (7) Å3 | 0.33 × 0.28 × 0.10 mm |
Z = 4 |
Agilent Xcalibur diffractometer with an Atlas (Gemini ultra Cu) detector | 5469 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 4344 reflections with I > 3σ(I) |
Graphite monochromator | Rint = 0.032 |
Detector resolution: 10.3784 pixels mm-1 | θmax = 29.4°, θmin = 3.0° |
Rotation method data acquisition using ω scans | h = −21→23 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | k = −12→12 |
Tmin = 0.5, Tmax = 1 | l = −18→17 |
32456 measured reflections |
Refinement on F2 | 56 constraints |
R[F > 3σ(F)] = 0.023 | H-atom parameters constrained |
wR(F) = 0.053 | Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0004I2) |
S = 1.32 | (Δ/σ)max = 0.002 |
5469 reflections | Δρmax = 0.55 e Å−3 |
235 parameters | Δρmin = −0.43 e Å−3 |
0 restraints |
[ZnBr2(C17H14Cl4N2)] | V = 2143.67 (7) Å3 |
Mr = 613.3 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 17.0433 (3) Å | µ = 5.38 mm−1 |
b = 9.3216 (2) Å | T = 120 K |
c = 13.6038 (2) Å | 0.33 × 0.28 × 0.10 mm |
β = 97.313 (2)° |
Agilent Xcalibur diffractometer with an Atlas (Gemini ultra Cu) detector | 5469 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | 4344 reflections with I > 3σ(I) |
Tmin = 0.5, Tmax = 1 | Rint = 0.032 |
32456 measured reflections |
R[F > 3σ(F)] = 0.023 | 0 restraints |
wR(F) = 0.053 | H-atom parameters constrained |
S = 1.32 | Δρmax = 0.55 e Å−3 |
5469 reflections | Δρmin = −0.43 e Å−3 |
235 parameters |
Experimental. Absorption correction: CrysAlisPro (Agilent Technologies, 2011) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Refinement. The refinement was carried out against all reflections. The conventional R-factor is always based on F. The goodness of fit as well as the weighted R-factor are based on F and F2 for refinement carried out on F and F2, respectively. The threshold expression is used only for calculating R-factors etc. and it is not relevant to the choice of reflections for refinement. The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger than the ones from the SHELX program. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.778715 (13) | −0.01264 (2) | 0.739863 (16) | 0.01974 (7) | |
Br1 | 0.815993 (14) | −0.06312 (2) | 0.909367 (15) | 0.03043 (7) | |
Br2 | 0.768458 (12) | 0.22386 (2) | 0.682623 (15) | 0.02510 (7) | |
Cl1 | 0.57897 (3) | −0.18717 (6) | 0.46139 (4) | 0.03164 (17) | |
Cl2 | 0.49527 (3) | −0.02131 (6) | 0.81149 (4) | 0.03069 (16) | |
Cl3 | 0.78647 (4) | −0.01110 (6) | 0.42235 (4) | 0.03640 (18) | |
Cl4 | 1.01713 (4) | −0.02162 (7) | 0.73027 (4) | 0.0435 (2) | |
N1 | 0.67043 (10) | −0.11134 (16) | 0.70285 (12) | 0.0204 (5) | |
N2 | 0.83223 (9) | −0.16701 (17) | 0.66248 (11) | 0.0190 (5) | |
C1 | 0.72353 (12) | −0.3466 (2) | 0.66028 (16) | 0.0272 (6) | |
C2 | 0.67041 (12) | −0.2659 (2) | 0.72376 (16) | 0.0273 (6) | |
C3 | 0.60879 (12) | −0.0487 (2) | 0.66383 (14) | 0.0216 (6) | |
C4 | 0.52967 (11) | −0.1151 (2) | 0.63559 (15) | 0.0219 (6) | |
C5 | 0.50947 (12) | −0.1818 (2) | 0.54428 (15) | 0.0252 (6) | |
C6 | 0.43508 (13) | −0.2408 (2) | 0.51740 (17) | 0.0321 (7) | |
C7 | 0.37960 (13) | −0.2328 (2) | 0.58284 (17) | 0.0342 (7) | |
C8 | 0.39751 (12) | −0.1666 (2) | 0.67387 (17) | 0.0306 (7) | |
C9 | 0.47174 (12) | −0.1085 (2) | 0.69829 (15) | 0.0240 (6) | |
C10 | 0.81108 (12) | −0.3168 (2) | 0.68397 (14) | 0.0218 (6) | |
C11 | 0.87837 (12) | −0.1473 (2) | 0.59844 (14) | 0.0232 (6) | |
C12 | 0.90508 (12) | −0.0029 (2) | 0.57246 (14) | 0.0223 (6) | |
C13 | 0.86796 (12) | 0.0692 (2) | 0.48978 (15) | 0.0248 (6) | |
C14 | 0.89235 (13) | 0.2026 (2) | 0.46228 (17) | 0.0308 (7) | |
C15 | 0.95599 (13) | 0.2659 (2) | 0.51856 (16) | 0.0312 (7) | |
C16 | 0.99483 (13) | 0.1988 (2) | 0.60108 (16) | 0.0300 (7) | |
C17 | 0.96911 (12) | 0.0647 (2) | 0.62674 (15) | 0.0260 (6) | |
H1a | 0.714222 | −0.447812 | 0.664797 | 0.0326* | |
H1b | 0.706896 | −0.326754 | 0.591541 | 0.0326* | |
H2a | 0.617401 | −0.302232 | 0.710663 | 0.0327* | |
H2b | 0.688664 | −0.281934 | 0.792584 | 0.0327* | |
H3 | 0.613239 | 0.052004 | 0.650974 | 0.0259* | |
H6 | 0.422365 | −0.286607 | 0.45416 | 0.0386* | |
H7 | 0.328059 | −0.273674 | 0.564947 | 0.0411* | |
H8 | 0.358864 | −0.161171 | 0.719285 | 0.0367* | |
H10a | 0.827835 | −0.337727 | 0.752531 | 0.0262* | |
H10b | 0.840072 | −0.381379 | 0.64704 | 0.0262* | |
H11 | 0.896906 | −0.229113 | 0.56525 | 0.0278* | |
H14 | 0.865572 | 0.250488 | 0.405122 | 0.037* | |
H15 | 0.973645 | 0.35864 | 0.499922 | 0.0375* | |
H16 | 1.038872 | 0.244152 | 0.639989 | 0.036* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.01828 (12) | 0.01772 (12) | 0.02378 (12) | −0.00064 (9) | 0.00483 (9) | −0.00078 (9) |
Br1 | 0.04287 (14) | 0.02484 (11) | 0.02295 (11) | −0.00147 (9) | 0.00178 (9) | 0.00022 (8) |
Br2 | 0.02661 (12) | 0.01722 (10) | 0.03323 (12) | 0.00196 (8) | 0.01065 (9) | 0.00062 (8) |
Cl1 | 0.0296 (3) | 0.0355 (3) | 0.0303 (3) | 0.0012 (2) | 0.0057 (2) | −0.0026 (2) |
Cl2 | 0.0303 (3) | 0.0317 (3) | 0.0313 (3) | 0.0085 (2) | 0.0086 (2) | 0.0035 (2) |
Cl3 | 0.0359 (3) | 0.0301 (3) | 0.0389 (3) | 0.0017 (2) | −0.0119 (3) | −0.0036 (2) |
Cl4 | 0.0394 (4) | 0.0537 (4) | 0.0335 (3) | −0.0191 (3) | −0.0102 (3) | 0.0086 (3) |
N1 | 0.0173 (8) | 0.0191 (8) | 0.0252 (8) | 0.0008 (7) | 0.0047 (7) | 0.0012 (7) |
N2 | 0.0159 (8) | 0.0209 (8) | 0.0194 (8) | 0.0000 (7) | −0.0008 (7) | −0.0022 (7) |
C1 | 0.0230 (11) | 0.0162 (10) | 0.0405 (12) | −0.0015 (8) | −0.0033 (9) | 0.0002 (9) |
C2 | 0.0165 (10) | 0.0208 (10) | 0.0439 (13) | −0.0020 (8) | 0.0016 (9) | 0.0114 (9) |
C3 | 0.0220 (11) | 0.0187 (10) | 0.0251 (10) | 0.0001 (8) | 0.0067 (9) | −0.0002 (8) |
C4 | 0.0161 (10) | 0.0181 (10) | 0.0312 (10) | 0.0046 (8) | 0.0019 (8) | 0.0056 (8) |
C5 | 0.0222 (11) | 0.0218 (10) | 0.0315 (11) | 0.0032 (8) | 0.0038 (9) | 0.0042 (9) |
C6 | 0.0275 (12) | 0.0282 (11) | 0.0387 (13) | −0.0011 (9) | −0.0034 (10) | 0.0014 (10) |
C7 | 0.0188 (11) | 0.0308 (12) | 0.0508 (15) | −0.0022 (9) | −0.0042 (10) | 0.0084 (11) |
C8 | 0.0193 (11) | 0.0291 (11) | 0.0444 (13) | 0.0042 (9) | 0.0078 (10) | 0.0108 (10) |
C9 | 0.0224 (11) | 0.0212 (10) | 0.0283 (10) | 0.0059 (8) | 0.0029 (9) | 0.0060 (9) |
C10 | 0.0210 (10) | 0.0171 (9) | 0.0270 (10) | 0.0031 (8) | 0.0015 (8) | 0.0025 (8) |
C11 | 0.0194 (10) | 0.0253 (10) | 0.0243 (10) | 0.0003 (8) | 0.0006 (8) | −0.0043 (9) |
C12 | 0.0207 (10) | 0.0235 (10) | 0.0238 (10) | 0.0017 (8) | 0.0075 (8) | −0.0045 (8) |
C13 | 0.0222 (11) | 0.0244 (10) | 0.0275 (10) | 0.0028 (8) | 0.0026 (9) | −0.0071 (9) |
C14 | 0.0345 (13) | 0.0234 (11) | 0.0352 (12) | 0.0092 (9) | 0.0067 (10) | 0.0022 (9) |
C15 | 0.0307 (12) | 0.0211 (10) | 0.0444 (13) | −0.0022 (9) | 0.0147 (11) | −0.0012 (10) |
C16 | 0.0254 (12) | 0.0305 (12) | 0.0355 (12) | −0.0097 (9) | 0.0090 (10) | −0.0074 (10) |
C17 | 0.0230 (11) | 0.0325 (11) | 0.0228 (10) | −0.0038 (9) | 0.0042 (9) | −0.0024 (9) |
Zn1—Br1 | 2.3599 (3) | C6—C7 | 1.381 (3) |
Zn1—Br2 | 2.3371 (3) | C6—H6 | 0.96 |
Zn1—N1 | 2.0662 (16) | C7—C8 | 1.383 (3) |
Zn1—N2 | 2.0628 (16) | C7—H7 | 0.96 |
N1—C2 | 1.469 (2) | C8—C9 | 1.377 (3) |
N1—C3 | 1.259 (2) | C8—H8 | 0.96 |
N2—C10 | 1.481 (2) | C10—H10a | 0.96 |
N2—C11 | 1.259 (3) | C10—H10b | 0.96 |
C1—C2 | 1.526 (3) | C11—C12 | 1.478 (3) |
C1—C10 | 1.512 (3) | C11—H11 | 0.96 |
C1—H1a | 0.96 | C12—C13 | 1.391 (3) |
C1—H1b | 0.96 | C12—C17 | 1.388 (3) |
C2—H2a | 0.96 | C13—C14 | 1.379 (3) |
C2—H2b | 0.96 | C14—C15 | 1.378 (3) |
C3—C4 | 1.489 (3) | C14—H14 | 0.96 |
C3—H3 | 0.96 | C15—C16 | 1.379 (3) |
C4—C5 | 1.393 (3) | C15—H15 | 0.96 |
C4—C9 | 1.386 (3) | C16—C17 | 1.384 (3) |
C5—C6 | 1.388 (3) | C16—H16 | 0.96 |
Br1—Zn1—Br2 | 120.866 (11) | C5—C6—H6 | 120.45 |
Br1—Zn1—N1 | 105.69 (5) | C7—C6—H6 | 120.45 |
Br1—Zn1—N2 | 106.14 (4) | C6—C7—C8 | 120.7 (2) |
Br2—Zn1—N1 | 108.19 (4) | C6—C7—H7 | 119.65 |
Br2—Zn1—N2 | 120.47 (4) | C8—C7—H7 | 119.65 |
N1—Zn1—N2 | 90.24 (6) | C7—C8—C9 | 118.9 (2) |
Zn1—N1—C2 | 114.32 (12) | C7—C8—H8 | 120.57 |
Zn1—N1—C3 | 124.61 (13) | C9—C8—H8 | 120.57 |
C2—N1—C3 | 121.05 (16) | C4—C9—C8 | 122.59 (19) |
Zn1—N2—C10 | 115.00 (12) | N2—C10—C1 | 112.92 (15) |
Zn1—N2—C11 | 127.37 (14) | N2—C10—H10a | 109.47 |
C10—N2—C11 | 117.60 (17) | N2—C10—H10b | 109.47 |
C2—C1—C10 | 115.44 (16) | C1—C10—H10a | 109.47 |
C2—C1—H1a | 109.47 | C1—C10—H10b | 109.47 |
C2—C1—H1b | 109.47 | H10a—C10—H10b | 105.79 |
C10—C1—H1a | 109.47 | N2—C11—C12 | 122.46 (18) |
C10—C1—H1b | 109.47 | N2—C11—H11 | 118.77 |
H1a—C1—H1b | 102.77 | C12—C11—H11 | 118.77 |
N1—C2—C1 | 111.04 (17) | C11—C12—C13 | 120.71 (17) |
N1—C2—H2a | 109.47 | C11—C12—C17 | 122.07 (17) |
N1—C2—H2b | 109.47 | C13—C12—C17 | 117.19 (18) |
C1—C2—H2a | 109.47 | C12—C13—C14 | 122.22 (18) |
C1—C2—H2b | 109.47 | C13—C14—C15 | 118.60 (19) |
H2a—C2—H2b | 107.85 | C13—C14—H14 | 120.7 |
N1—C3—C4 | 126.59 (18) | C15—C14—H14 | 120.7 |
N1—C3—H3 | 116.71 | C14—C15—C16 | 121.4 (2) |
C4—C3—H3 | 116.71 | C14—C15—H15 | 119.32 |
C3—C4—C5 | 121.91 (19) | C16—C15—H15 | 119.32 |
C3—C4—C9 | 121.04 (17) | C15—C16—C17 | 118.73 (19) |
C5—C4—C9 | 117.01 (18) | C15—C16—H16 | 120.63 |
C4—C5—C6 | 121.7 (2) | C17—C16—H16 | 120.63 |
C5—C6—C7 | 119.1 (2) | C12—C17—C16 | 121.89 (18) |
Experimental details
Crystal data | |
Chemical formula | [ZnBr2(C17H14Cl4N2)] |
Mr | 613.3 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 120 |
a, b, c (Å) | 17.0433 (3), 9.3216 (2), 13.6038 (2) |
β (°) | 97.313 (2) |
V (Å3) | 2143.67 (7) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 5.38 |
Crystal size (mm) | 0.33 × 0.28 × 0.10 |
Data collection | |
Diffractometer | Agilent Xcalibur diffractometer with an Atlas (Gemini ultra Cu) detector |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2011) |
Tmin, Tmax | 0.5, 1 |
No. of measured, independent and observed [I > 3σ(I)] reflections | 32456, 5469, 4344 |
Rint | 0.032 |
(sin θ/λ)max (Å−1) | 0.691 |
Refinement | |
R[F > 3σ(F)], wR(F), S | 0.023, 0.053, 1.32 |
No. of reflections | 5469 |
No. of parameters | 235 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.55, −0.43 |
Computer programs: CrysAlis PRO (Agilent, 2011), SIR2002 (Burla et al., 2003), JANA2006 (Petříček et al., 2006), DIAMOND (Brandenburg & Putz, 2005).
Acknowledgements
We acknowledge the Golestan and Damghan Universities for partial support of this work, the Institutional Research Plan No. AVOZ10100521 of the Institute of Physics and the Praemium Academiae Project of the Academy of Sciences of the Czech Republic.
References
Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CSD CrossRef Web of Science Google Scholar
Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103. CrossRef IUCr Journals Google Scholar
Khalaj, M., Dehghanpour, S. & Mahmoudi, A. (2008). Acta Cryst. E64, m1018. Web of Science CSD CrossRef IUCr Journals Google Scholar
Khalaj, M., Dehghanpour, S., Mahmoudi, A. & Seyedidarzam, S. (2009). Acta Cryst. E65, m890. Web of Science CSD CrossRef IUCr Journals Google Scholar
Khalaji, A. D., Grivani, G., Jalali Akerdi, S., Stoeckli-Evans, H. & Das, D. (2012). J. Chem. Crystallogr. 42, 83–88. Web of Science CSD CrossRef CAS Google Scholar
Khalaji, A. D., Jalali Akerdi, S., Grivani, G., Stoeckli-Evans, H. & Das, D. (2011). Russ. J. Coord. Chem. 37, 578–584. Web of Science CrossRef CAS Google Scholar
Khalaji, A. D., Weil, M., Grivani, G. & Jalali Akerdi, S. (2010). Monatsh. Chem. 141, 539–543. Web of Science CSD CrossRef CAS Google Scholar
Komatsu, H., Ochiai, B., Hino, T. & Endo, T. (2007). J. Mol. Catal. A273, 289–297. Web of Science CrossRef Google Scholar
Montazerozohori, M., Khani, S., Tavakol, H., Hojjati, A. & Kazemi, M. (2011). Spectrochim. Acta Part A, 81, 122–127. CrossRef CAS Google Scholar
Petříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic. Google Scholar
Salehzadeh, S., Khalaj, M., Dehghanpour, S. & Tarmoradi, I. (2011). Acta Cryst. E67, m1556. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Complexes of symmetric bidentate Schiff base ligands with transition metals have attracted much attention because of their catalytic (Komatsu et al., 2007) and thermal properties (Montazerozohori et al., 2011). There is substantial interest in the coordination chemistry of the zinc(II) ion (Khalaj et al., 2008, 2009; Salehzadeh et al.,2011; Khalaji et al.,2010, 2011, 2012).
The molecular structure of 1 with the atom-numbering scheme is presented in Fig. 1, and the bond lengths and angles are generally normal (Allen et al., 1987). The zinc(II) ion is coordinated by the bidentate Schiff-base ligand and two Br ions. Although a tetrahedral geometry might be expected for a four coordinated zinc(II) centre, the geometry around the zinc(II) ion is distorted by the bite angle N1—Zn1—N2 [90.24 (6)°] of the chelating ligand. On the contrary the Br1—Zn11—Br2 angle has opened up to 120.866 (11)°. The N—Zn—Br angles are also distorted from the tetrahedral values.