metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[N,N′-Bis(2,6-di­chloro­benzyl­­idene)propane-1,3-di­amine-κ2N,N′]di­bromidozinc

aDepartment of Chemistry, Faculty of Science, Golestan University, Gorgan, Iran, bSchool of Chemistry, Damghan University, Damghan 36715-364, Iran, and cInstitute of Physics ASCR, v.v.i., Na Slovance 2, 182 21 Praha 8, Czech Republic
*Correspondence e-mail: fejfarov@fzu.cz

(Received 19 June 2012; accepted 20 June 2012; online 23 June 2012)

In the title compound, [ZnBr2(C17H14Cl4N2)], the ZnII ion is bonded to two bromide ions and two N atoms of the diimine ligand and displays a moderately distorted tetra­hedral coordination geometry. The Schiff base ligand acts as a chelating ligand and coordinates to the ZnII atom via two N atoms.

Related literature

For related structures, see: Khalaj et al. (2008[Khalaj, M., Dehghanpour, S. & Mahmoudi, A. (2008). Acta Cryst. E64, m1018.], 2009[Khalaj, M., Dehghanpour, S., Mahmoudi, A. & Seyedidarzam, S. (2009). Acta Cryst. E65, m890.]); Saleh­zadeh et al. (2011[Salehzadeh, S., Khalaj, M., Dehghanpour, S. & Tarmoradi, I. (2011). Acta Cryst. E67, m1556.]); Khalaji et al. (2010[Khalaji, A. D., Weil, M., Grivani, G. & Jalali Akerdi, S. (2010). Monatsh. Chem. 141, 539-543.], 2011[Khalaji, A. D., Jalali Akerdi, S., Grivani, G., Stoeckli-Evans, H. & Das, D. (2011). Russ. J. Coord. Chem. 37, 578-584.], 2012[Khalaji, A. D., Grivani, G., Jalali Akerdi, S., Stoeckli-Evans, H. & Das, D. (2012). J. Chem. Crystallogr. 42, 83-88.]). For properties and application of complexes of symmetric bidentate Schiff base ligands, see: Komatsu et al. (2007[Komatsu, H., Ochiai, B., Hino, T. & Endo, T. (2007). J. Mol. Catal. A273, 289-297.]); Montazerozohori et al. (2011[Montazerozohori, M., Khani, S., Tavakol, H., Hojjati, A. & Kazemi, M. (2011). Spectrochim. Acta Part A, 81, 122-127.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnBr2(C17H14Cl4N2)]

  • Mr = 613.3

  • Monoclinic, P 21 /c

  • a = 17.0433 (3) Å

  • b = 9.3216 (2) Å

  • c = 13.6038 (2) Å

  • β = 97.313 (2)°

  • V = 2143.67 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.38 mm−1

  • T = 120 K

  • 0.33 × 0.28 × 0.10 mm

Data collection
  • Agilent Xcalibur diffractometer with an Atlas (Gemini ultra Cu) detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.5, Tmax = 1

  • 32456 measured reflections

  • 5469 independent reflections

  • 4344 reflections with I > 3σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 3σ(F2)] = 0.023

  • wR(F2) = 0.053

  • S = 1.32

  • 5469 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—Br1 2.3599 (3)
Zn1—Br2 2.3371 (3)
Zn1—N1 2.0662 (16)
Zn1—N2 2.0628 (16)

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: JANA2006 (Petříček et al., 2006[Petříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: JANA2006.

Supporting information


Comment top

Complexes of symmetric bidentate Schiff base ligands with transition metals have attracted much attention because of their catalytic (Komatsu et al., 2007) and thermal properties (Montazerozohori et al., 2011). There is substantial interest in the coordination chemistry of the zinc(II) ion (Khalaj et al., 2008, 2009; Salehzadeh et al.,2011; Khalaji et al.,2010, 2011, 2012).

The molecular structure of 1 with the atom-numbering scheme is presented in Fig. 1, and the bond lengths and angles are generally normal (Allen et al., 1987). The zinc(II) ion is coordinated by the bidentate Schiff-base ligand and two Br ions. Although a tetrahedral geometry might be expected for a four coordinated zinc(II) centre, the geometry around the zinc(II) ion is distorted by the bite angle N1—Zn1—N2 [90.24 (6)°] of the chelating ligand. On the contrary the Br1—Zn11—Br2 angle has opened up to 120.866 (11)°. The N—Zn—Br angles are also distorted from the tetrahedral values.

Related literature top

For related structures, see: Khalaj et al. (2008, 2009); Salehzadeh et al. (2011); Khalaji et al. (2010, 2011, 2012). For properties and application of complexes of symmetric bidentate Schiff base ligands, see: Komatsu et al. (2007); Montazerozohori et al. (2011). For bond-length data, see: Allen et al. (1987).

Experimental top

To a stirring solution of the (2,6-Cl-ba)2en ligand (1 mmol, in 5 ml of chloroform) was added ZnBr2 (1 mmol) in 10 ml of methanol and the mixture was stirred for 10 min in air at room temperature and was then left at 273 K for several days without disturbance yielding suitable crystals that subsequently were filtered off and washed with Et2O.

Refinement top

All H atoms were positioned geometrically and treated as riding on their parent atoms. The displacement coefficients Uiso(H) were set to 1.2Ueq(C).

Structure description top

Complexes of symmetric bidentate Schiff base ligands with transition metals have attracted much attention because of their catalytic (Komatsu et al., 2007) and thermal properties (Montazerozohori et al., 2011). There is substantial interest in the coordination chemistry of the zinc(II) ion (Khalaj et al., 2008, 2009; Salehzadeh et al.,2011; Khalaji et al.,2010, 2011, 2012).

The molecular structure of 1 with the atom-numbering scheme is presented in Fig. 1, and the bond lengths and angles are generally normal (Allen et al., 1987). The zinc(II) ion is coordinated by the bidentate Schiff-base ligand and two Br ions. Although a tetrahedral geometry might be expected for a four coordinated zinc(II) centre, the geometry around the zinc(II) ion is distorted by the bite angle N1—Zn1—N2 [90.24 (6)°] of the chelating ligand. On the contrary the Br1—Zn11—Br2 angle has opened up to 120.866 (11)°. The N—Zn—Br angles are also distorted from the tetrahedral values.

For related structures, see: Khalaj et al. (2008, 2009); Salehzadeh et al. (2011); Khalaji et al. (2010, 2011, 2012). For properties and application of complexes of symmetric bidentate Schiff base ligands, see: Komatsu et al. (2007); Montazerozohori et al. (2011). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006 (Petříček et al., 2006).

Figures top
[Figure 1] Fig. 1. The molecular structure of 1. Displacement ellipsoids are drawn at the 50% probability level.
[N,N'-Bis(2,6-dichlorobenzylidene)propane-1,3- diamine-κ2N,N']dibromidozinc top
Crystal data top
[ZnBr2(C17H14Cl4N2)]F(000) = 1192
Mr = 613.3Dx = 1.900 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.7107 Å
Hall symbol: -P 2ybcCell parameters from 14022 reflections
a = 17.0433 (3) Åθ = 3.0–29.3°
b = 9.3216 (2) ŵ = 5.38 mm1
c = 13.6038 (2) ÅT = 120 K
β = 97.313 (2)°Block, colourless
V = 2143.67 (7) Å30.33 × 0.28 × 0.10 mm
Z = 4
Data collection top
Agilent Xcalibur
diffractometer with an Atlas (Gemini ultra Cu) detector
5469 independent reflections
Radiation source: Enhance (Mo) X-ray Source4344 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 10.3784 pixels mm-1θmax = 29.4°, θmin = 3.0°
Rotation method data acquisition using ω scansh = 2123
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1212
Tmin = 0.5, Tmax = 1l = 1817
32456 measured reflections
Refinement top
Refinement on F256 constraints
R[F > 3σ(F)] = 0.023H-atom parameters constrained
wR(F) = 0.053Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0004I2)
S = 1.32(Δ/σ)max = 0.002
5469 reflectionsΔρmax = 0.55 e Å3
235 parametersΔρmin = 0.43 e Å3
0 restraints
Crystal data top
[ZnBr2(C17H14Cl4N2)]V = 2143.67 (7) Å3
Mr = 613.3Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.0433 (3) ŵ = 5.38 mm1
b = 9.3216 (2) ÅT = 120 K
c = 13.6038 (2) Å0.33 × 0.28 × 0.10 mm
β = 97.313 (2)°
Data collection top
Agilent Xcalibur
diffractometer with an Atlas (Gemini ultra Cu) detector
5469 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
4344 reflections with I > 3σ(I)
Tmin = 0.5, Tmax = 1Rint = 0.032
32456 measured reflections
Refinement top
R[F > 3σ(F)] = 0.0230 restraints
wR(F) = 0.053H-atom parameters constrained
S = 1.32Δρmax = 0.55 e Å3
5469 reflectionsΔρmin = 0.43 e Å3
235 parameters
Special details top

Experimental. Absorption correction: CrysAlisPro (Agilent Technologies, 2011) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Refinement. The refinement was carried out against all reflections. The conventional R-factor is always based on F. The goodness of fit as well as the weighted R-factor are based on F and F2 for refinement carried out on F and F2, respectively. The threshold expression is used only for calculating R-factors etc. and it is not relevant to the choice of reflections for refinement.

The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger than the ones from the SHELX program.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.778715 (13)0.01264 (2)0.739863 (16)0.01974 (7)
Br10.815993 (14)0.06312 (2)0.909367 (15)0.03043 (7)
Br20.768458 (12)0.22386 (2)0.682623 (15)0.02510 (7)
Cl10.57897 (3)0.18717 (6)0.46139 (4)0.03164 (17)
Cl20.49527 (3)0.02131 (6)0.81149 (4)0.03069 (16)
Cl30.78647 (4)0.01110 (6)0.42235 (4)0.03640 (18)
Cl41.01713 (4)0.02162 (7)0.73027 (4)0.0435 (2)
N10.67043 (10)0.11134 (16)0.70285 (12)0.0204 (5)
N20.83223 (9)0.16701 (17)0.66248 (11)0.0190 (5)
C10.72353 (12)0.3466 (2)0.66028 (16)0.0272 (6)
C20.67041 (12)0.2659 (2)0.72376 (16)0.0273 (6)
C30.60879 (12)0.0487 (2)0.66383 (14)0.0216 (6)
C40.52967 (11)0.1151 (2)0.63559 (15)0.0219 (6)
C50.50947 (12)0.1818 (2)0.54428 (15)0.0252 (6)
C60.43508 (13)0.2408 (2)0.51740 (17)0.0321 (7)
C70.37960 (13)0.2328 (2)0.58284 (17)0.0342 (7)
C80.39751 (12)0.1666 (2)0.67387 (17)0.0306 (7)
C90.47174 (12)0.1085 (2)0.69829 (15)0.0240 (6)
C100.81108 (12)0.3168 (2)0.68397 (14)0.0218 (6)
C110.87837 (12)0.1473 (2)0.59844 (14)0.0232 (6)
C120.90508 (12)0.0029 (2)0.57246 (14)0.0223 (6)
C130.86796 (12)0.0692 (2)0.48978 (15)0.0248 (6)
C140.89235 (13)0.2026 (2)0.46228 (17)0.0308 (7)
C150.95599 (13)0.2659 (2)0.51856 (16)0.0312 (7)
C160.99483 (13)0.1988 (2)0.60108 (16)0.0300 (7)
C170.96911 (12)0.0647 (2)0.62674 (15)0.0260 (6)
H1a0.7142220.4478120.6647970.0326*
H1b0.7068960.3267540.5915410.0326*
H2a0.6174010.3022320.7106630.0327*
H2b0.6886640.2819340.7925840.0327*
H30.6132390.0520040.6509740.0259*
H60.4223650.2866070.454160.0386*
H70.3280590.2736740.5649470.0411*
H80.3588640.1611710.7192850.0367*
H10a0.8278350.3377270.7525310.0262*
H10b0.8400720.3813790.647040.0262*
H110.8969060.2291130.565250.0278*
H140.8655720.2504880.4051220.037*
H150.9736450.358640.4999220.0375*
H161.0388720.2441520.6399890.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01828 (12)0.01772 (12)0.02378 (12)0.00064 (9)0.00483 (9)0.00078 (9)
Br10.04287 (14)0.02484 (11)0.02295 (11)0.00147 (9)0.00178 (9)0.00022 (8)
Br20.02661 (12)0.01722 (10)0.03323 (12)0.00196 (8)0.01065 (9)0.00062 (8)
Cl10.0296 (3)0.0355 (3)0.0303 (3)0.0012 (2)0.0057 (2)0.0026 (2)
Cl20.0303 (3)0.0317 (3)0.0313 (3)0.0085 (2)0.0086 (2)0.0035 (2)
Cl30.0359 (3)0.0301 (3)0.0389 (3)0.0017 (2)0.0119 (3)0.0036 (2)
Cl40.0394 (4)0.0537 (4)0.0335 (3)0.0191 (3)0.0102 (3)0.0086 (3)
N10.0173 (8)0.0191 (8)0.0252 (8)0.0008 (7)0.0047 (7)0.0012 (7)
N20.0159 (8)0.0209 (8)0.0194 (8)0.0000 (7)0.0008 (7)0.0022 (7)
C10.0230 (11)0.0162 (10)0.0405 (12)0.0015 (8)0.0033 (9)0.0002 (9)
C20.0165 (10)0.0208 (10)0.0439 (13)0.0020 (8)0.0016 (9)0.0114 (9)
C30.0220 (11)0.0187 (10)0.0251 (10)0.0001 (8)0.0067 (9)0.0002 (8)
C40.0161 (10)0.0181 (10)0.0312 (10)0.0046 (8)0.0019 (8)0.0056 (8)
C50.0222 (11)0.0218 (10)0.0315 (11)0.0032 (8)0.0038 (9)0.0042 (9)
C60.0275 (12)0.0282 (11)0.0387 (13)0.0011 (9)0.0034 (10)0.0014 (10)
C70.0188 (11)0.0308 (12)0.0508 (15)0.0022 (9)0.0042 (10)0.0084 (11)
C80.0193 (11)0.0291 (11)0.0444 (13)0.0042 (9)0.0078 (10)0.0108 (10)
C90.0224 (11)0.0212 (10)0.0283 (10)0.0059 (8)0.0029 (9)0.0060 (9)
C100.0210 (10)0.0171 (9)0.0270 (10)0.0031 (8)0.0015 (8)0.0025 (8)
C110.0194 (10)0.0253 (10)0.0243 (10)0.0003 (8)0.0006 (8)0.0043 (9)
C120.0207 (10)0.0235 (10)0.0238 (10)0.0017 (8)0.0075 (8)0.0045 (8)
C130.0222 (11)0.0244 (10)0.0275 (10)0.0028 (8)0.0026 (9)0.0071 (9)
C140.0345 (13)0.0234 (11)0.0352 (12)0.0092 (9)0.0067 (10)0.0022 (9)
C150.0307 (12)0.0211 (10)0.0444 (13)0.0022 (9)0.0147 (11)0.0012 (10)
C160.0254 (12)0.0305 (12)0.0355 (12)0.0097 (9)0.0090 (10)0.0074 (10)
C170.0230 (11)0.0325 (11)0.0228 (10)0.0038 (9)0.0042 (9)0.0024 (9)
Geometric parameters (Å, º) top
Zn1—Br12.3599 (3)C6—C71.381 (3)
Zn1—Br22.3371 (3)C6—H60.96
Zn1—N12.0662 (16)C7—C81.383 (3)
Zn1—N22.0628 (16)C7—H70.96
N1—C21.469 (2)C8—C91.377 (3)
N1—C31.259 (2)C8—H80.96
N2—C101.481 (2)C10—H10a0.96
N2—C111.259 (3)C10—H10b0.96
C1—C21.526 (3)C11—C121.478 (3)
C1—C101.512 (3)C11—H110.96
C1—H1a0.96C12—C131.391 (3)
C1—H1b0.96C12—C171.388 (3)
C2—H2a0.96C13—C141.379 (3)
C2—H2b0.96C14—C151.378 (3)
C3—C41.489 (3)C14—H140.96
C3—H30.96C15—C161.379 (3)
C4—C51.393 (3)C15—H150.96
C4—C91.386 (3)C16—C171.384 (3)
C5—C61.388 (3)C16—H160.96
Br1—Zn1—Br2120.866 (11)C5—C6—H6120.45
Br1—Zn1—N1105.69 (5)C7—C6—H6120.45
Br1—Zn1—N2106.14 (4)C6—C7—C8120.7 (2)
Br2—Zn1—N1108.19 (4)C6—C7—H7119.65
Br2—Zn1—N2120.47 (4)C8—C7—H7119.65
N1—Zn1—N290.24 (6)C7—C8—C9118.9 (2)
Zn1—N1—C2114.32 (12)C7—C8—H8120.57
Zn1—N1—C3124.61 (13)C9—C8—H8120.57
C2—N1—C3121.05 (16)C4—C9—C8122.59 (19)
Zn1—N2—C10115.00 (12)N2—C10—C1112.92 (15)
Zn1—N2—C11127.37 (14)N2—C10—H10a109.47
C10—N2—C11117.60 (17)N2—C10—H10b109.47
C2—C1—C10115.44 (16)C1—C10—H10a109.47
C2—C1—H1a109.47C1—C10—H10b109.47
C2—C1—H1b109.47H10a—C10—H10b105.79
C10—C1—H1a109.47N2—C11—C12122.46 (18)
C10—C1—H1b109.47N2—C11—H11118.77
H1a—C1—H1b102.77C12—C11—H11118.77
N1—C2—C1111.04 (17)C11—C12—C13120.71 (17)
N1—C2—H2a109.47C11—C12—C17122.07 (17)
N1—C2—H2b109.47C13—C12—C17117.19 (18)
C1—C2—H2a109.47C12—C13—C14122.22 (18)
C1—C2—H2b109.47C13—C14—C15118.60 (19)
H2a—C2—H2b107.85C13—C14—H14120.7
N1—C3—C4126.59 (18)C15—C14—H14120.7
N1—C3—H3116.71C14—C15—C16121.4 (2)
C4—C3—H3116.71C14—C15—H15119.32
C3—C4—C5121.91 (19)C16—C15—H15119.32
C3—C4—C9121.04 (17)C15—C16—C17118.73 (19)
C5—C4—C9117.01 (18)C15—C16—H16120.63
C4—C5—C6121.7 (2)C17—C16—H16120.63
C5—C6—C7119.1 (2)C12—C17—C16121.89 (18)

Experimental details

Crystal data
Chemical formula[ZnBr2(C17H14Cl4N2)]
Mr613.3
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)17.0433 (3), 9.3216 (2), 13.6038 (2)
β (°) 97.313 (2)
V3)2143.67 (7)
Z4
Radiation typeMo Kα
µ (mm1)5.38
Crystal size (mm)0.33 × 0.28 × 0.10
Data collection
DiffractometerAgilent Xcalibur
diffractometer with an Atlas (Gemini ultra Cu) detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.5, 1
No. of measured, independent and
observed [I > 3σ(I)] reflections
32456, 5469, 4344
Rint0.032
(sin θ/λ)max1)0.691
Refinement
R[F > 3σ(F)], wR(F), S 0.023, 0.053, 1.32
No. of reflections5469
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.55, 0.43

Computer programs: CrysAlis PRO (Agilent, 2011), SIR2002 (Burla et al., 2003), JANA2006 (Petříček et al., 2006), DIAMOND (Brandenburg & Putz, 2005).

Selected bond lengths (Å) top
Zn1—Br12.3599 (3)Zn1—N12.0662 (16)
Zn1—Br22.3371 (3)Zn1—N22.0628 (16)
 

Acknowledgements

We acknowledge the Golestan and Damghan Universities for partial support of this work, the Institutional Research Plan No. AVOZ10100521 of the Institute of Physics and the Praemium Academiae Project of the Academy of Sciences of the Czech Republic.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationKhalaj, M., Dehghanpour, S. & Mahmoudi, A. (2008). Acta Cryst. E64, m1018.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhalaj, M., Dehghanpour, S., Mahmoudi, A. & Seyedidarzam, S. (2009). Acta Cryst. E65, m890.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhalaji, A. D., Grivani, G., Jalali Akerdi, S., Stoeckli-Evans, H. & Das, D. (2012). J. Chem. Crystallogr. 42, 83–88.  Web of Science CSD CrossRef CAS Google Scholar
First citationKhalaji, A. D., Jalali Akerdi, S., Grivani, G., Stoeckli-Evans, H. & Das, D. (2011). Russ. J. Coord. Chem. 37, 578–584.  Web of Science CrossRef CAS Google Scholar
First citationKhalaji, A. D., Weil, M., Grivani, G. & Jalali Akerdi, S. (2010). Monatsh. Chem. 141, 539–543.  Web of Science CSD CrossRef CAS Google Scholar
First citationKomatsu, H., Ochiai, B., Hino, T. & Endo, T. (2007). J. Mol. Catal. A273, 289–297.  Web of Science CrossRef Google Scholar
First citationMontazerozohori, M., Khani, S., Tavakol, H., Hojjati, A. & Kazemi, M. (2011). Spectrochim. Acta Part A, 81, 122–127.  CrossRef CAS Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.  Google Scholar
First citationSalehzadeh, S., Khalaj, M., Dehghanpour, S. & Tarmoradi, I. (2011). Acta Cryst. E67, m1556.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds