organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(E)-4-Meth­­oxy­benzyl­­idene]-1,2,3,4-tetra­hydro­naphthalen-1-one

aChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah, Saudi Arabia, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 20 June 2012; accepted 20 June 2012; online 23 June 2012)

Two independent mol­ecules (A and B) comprise the asymmetric unit of the title compound, C18H16O2. Mol­ecule B is virtually superimposable upon A. Minor differences are noted in the dihedral angles between the terminal benzene rings of 56.03 (10) and 54.62 (10)°, and in the orientations of meth­oxy groups with respect to the benzene rings to which they are attached [C—O—C—C torsion angles = 169.11 (19) and −172.37 (18)°]. The cyclo­hexene ring of each fused ring system has a screw-boat conformation. In the crystal, C—H⋯π inter­actions assemble mol­ecules into a supra­molecular array in the ab plane.

Related literature

For the activity of related species developed for the treatment of Chagas disease, see: Vera-DiVaio et al. (2009[Vera-DiVaio, M. A. F., Freitas, A. C. C., Castro, F. H. C., de Albuquerque, S., Cabral, L. M., Rodrigues, C. R., Albuquerque, M. G., Martins, R. C. A., Henriques, M. G. M. O. & Dias, L. R. S. (2009). Bioorg. Med. Chem. 17, 295-302.]). For the structure of the 2-meth­oxy derivative, see: Dimmock et al. (2002[Dimmock, J. R., Zello, G. A., Oloo, E. O., Quail, J. W., Kraatz, H.-B., Perjési, P., Aradi, F., Tákacs-Novák, K., Allen, T. M., Santos, C. L., Balzarini, J., De Clerq, E. & Stables, J. P. (2002). J. Med. Chem. 45, 3103-3111.]). For conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C18H16O2

  • Mr = 264.31

  • Monoclinic, P 21 /n

  • a = 6.8289 (4) Å

  • b = 14.7444 (8) Å

  • c = 26.7258 (14) Å

  • β = 93.757 (5)°

  • V = 2685.2 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.40 × 0.20 × 0.10 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.766, Tmax = 1.000

  • 18691 measured reflections

  • 6195 independent reflections

  • 3813 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.187

  • S = 0.99

  • 6195 reflections

  • 361 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1–Cg3 are the centroids of the C20–C25, C2–C7 and C12–C17 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯Cg1i 0.95 2.70 3.486 (2) 140
C21—H21⋯Cg2ii 0.95 2.97 3.595 (2) 124
C31—H31⋯Cg2iii 0.95 2.64 3.411 (2) 139
C36—H36BCg3 0.98 2.88 3.592 (2) 131
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x+1, y, z; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The crystal structure of the title compound, 2-(4-methoxybenzylidene)-3,4-dihydro-2H-naphthalen-1-one (I), was investigated owing to its relationship to some active compounds developed for the treatment of Chagas disease (Vera-DiVaio et al., 2009).

Two independent molecules comprise the asymmetric unit of (I), Fig. 1. The inverted structure of the O3-containing molecule is virtually super-imposable upon the O1-containing molecule, Fig. 2. The cyclohexene ring of each fused ring system has a screw boat conformation (Cremer & Pople, 1975). A difference between the molecules is seen in the dihedral angles between the terminal benzene rings of 56.03 (10) and 54.62 (10)°, respectively. The methoxy groups are co-planar with the benzene rings to which they are attached as seen in the C18—O2—C15—C14 and C36—O4—C33—C32 torsion angles of 169.11 (19) and -172.37 (18)°, respectively. The conformation about each ethylene bond is E. The overall molecular conformation observed for the independent molecules of (I) resembles that seen in the 2-methoxy derivative (Dimmock et al., 2002).

The presence of C—H···π interactions link molecules into a supramolecular array in the ab plane in the crystal structure of (I), Fig. 3 and Table 1. Layers stack along the c axis with no specific interactions between them (Fig. 4).

Related literature top

For the activity of related species developed for the treatment of Chagas disease, see: Vera-DiVaio et al. (2009). For the structure of the 2-methoxy derivative, see: Dimmock et al. (2002). For conformational analysis, see: Cremer & Pople (1975).

Experimental top

A solution of the 4-methoxybenzaldehyde (1.3 g, 0.01 M) in ethanol (20 ml) was added to a stirred solution of 1-tetralone (1.46 g,0.01 M) in ethanolic KOH (20 ml, 20%), and stirring was maintained at room temperature for 6 h. The reaction mixture was then poured onto water (200 ml) and set aside overnight. The precipitated solid product was collected by filtration, washed with water, dried and recrystallized from ethanol. Yield: 92%.

Refinement top

H-atoms were placed in calculated positions [C—H = 0.95 Å, Uiso(H) = 1.2Ueq(C)] and were included in the refinement in the riding model approximation. One reflection, i.e. (-3 6 3), was omitted from the final refinement owing to poor agreement.

Structure description top

The crystal structure of the title compound, 2-(4-methoxybenzylidene)-3,4-dihydro-2H-naphthalen-1-one (I), was investigated owing to its relationship to some active compounds developed for the treatment of Chagas disease (Vera-DiVaio et al., 2009).

Two independent molecules comprise the asymmetric unit of (I), Fig. 1. The inverted structure of the O3-containing molecule is virtually super-imposable upon the O1-containing molecule, Fig. 2. The cyclohexene ring of each fused ring system has a screw boat conformation (Cremer & Pople, 1975). A difference between the molecules is seen in the dihedral angles between the terminal benzene rings of 56.03 (10) and 54.62 (10)°, respectively. The methoxy groups are co-planar with the benzene rings to which they are attached as seen in the C18—O2—C15—C14 and C36—O4—C33—C32 torsion angles of 169.11 (19) and -172.37 (18)°, respectively. The conformation about each ethylene bond is E. The overall molecular conformation observed for the independent molecules of (I) resembles that seen in the 2-methoxy derivative (Dimmock et al., 2002).

The presence of C—H···π interactions link molecules into a supramolecular array in the ab plane in the crystal structure of (I), Fig. 3 and Table 1. Layers stack along the c axis with no specific interactions between them (Fig. 4).

For the activity of related species developed for the treatment of Chagas disease, see: Vera-DiVaio et al. (2009). For the structure of the 2-methoxy derivative, see: Dimmock et al. (2002). For conformational analysis, see: Cremer & Pople (1975).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Superimposition of the two independent molecules in (I). The fused ring systems have been superimposed. The O1 and inverted O3-containing molecules are shown as red and blue images, respectively.
[Figure 3] Fig. 3. A view of the supramolecular array in the ab plane in (I) mediated by C—H···π interactions shown as purple dashed lines.
[Figure 4] Fig. 4. A view in projection down the a axis of the unit-cell contents of (I), showing the stacking supramolecular layers along the c axis. The C—H···π interactions shown as purple dashed lines.
2-[(E)-4-Methoxybenzylidene]-1,2,3,4-tetrahydronaphthalen-1-one top
Crystal data top
C18H16O2F(000) = 1120
Mr = 264.31Dx = 1.308 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3418 reflections
a = 6.8289 (4) Åθ = 2.7–27.5°
b = 14.7444 (8) ŵ = 0.08 mm1
c = 26.7258 (14) ÅT = 100 K
β = 93.757 (5)°Prism, light-yellow
V = 2685.2 (3) Å30.40 × 0.20 × 0.10 mm
Z = 8
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
6195 independent reflections
Radiation source: SuperNova (Mo) X-ray Source3813 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.054
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.7°
ω scanh = 88
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1915
Tmin = 0.766, Tmax = 1.000l = 3427
18691 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.187H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
6195 reflections(Δ/σ)max < 0.001
361 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C18H16O2V = 2685.2 (3) Å3
Mr = 264.31Z = 8
Monoclinic, P21/nMo Kα radiation
a = 6.8289 (4) ŵ = 0.08 mm1
b = 14.7444 (8) ÅT = 100 K
c = 26.7258 (14) Å0.40 × 0.20 × 0.10 mm
β = 93.757 (5)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
6195 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
3813 reflections with I > 2σ(I)
Tmin = 0.766, Tmax = 1.000Rint = 0.054
18691 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.187H-atom parameters constrained
S = 0.99Δρmax = 0.27 e Å3
6195 reflectionsΔρmin = 0.25 e Å3
361 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6701 (2)0.77015 (11)0.24286 (5)0.0275 (4)
O20.2580 (2)0.79768 (10)0.02451 (5)0.0278 (4)
O31.2130 (2)0.55355 (11)0.26086 (6)0.0292 (4)
O40.2783 (2)0.52827 (10)0.04328 (5)0.0268 (4)
C10.5156 (3)0.78348 (13)0.26276 (8)0.0191 (5)
C20.5128 (3)0.78434 (13)0.31863 (7)0.0192 (5)
C30.6731 (3)0.74880 (14)0.34768 (8)0.0255 (5)
H30.78420.72690.33180.031*
C40.6701 (4)0.74553 (15)0.39950 (8)0.0293 (5)
H40.77780.72040.41910.035*
C50.5088 (4)0.77917 (15)0.42253 (8)0.0289 (5)
H50.50690.77750.45800.035*
C60.3502 (3)0.81528 (14)0.39402 (8)0.0246 (5)
H60.24120.83860.41030.029*
C70.3488 (3)0.81776 (13)0.34180 (8)0.0205 (5)
C80.1784 (3)0.85520 (14)0.30966 (7)0.0207 (5)
H8A0.20590.91890.30080.025*
H8B0.05900.85450.32880.025*
C90.1421 (3)0.79936 (14)0.26173 (8)0.0203 (5)
H9A0.10160.73720.27050.024*
H9B0.03430.82710.24040.024*
C100.3253 (3)0.79488 (13)0.23293 (8)0.0186 (4)
C110.3302 (3)0.80015 (13)0.18286 (7)0.0188 (5)
H110.45750.80330.17060.023*
C120.1669 (3)0.80180 (13)0.14431 (7)0.0191 (5)
C130.1890 (3)0.84882 (14)0.09931 (7)0.0208 (5)
H130.30590.88220.09530.025*
C140.0440 (3)0.84745 (14)0.06078 (8)0.0216 (5)
H140.06060.88090.03100.026*
C150.1261 (3)0.79728 (14)0.06547 (7)0.0209 (5)
C160.1524 (3)0.74988 (14)0.10958 (7)0.0205 (5)
H160.26890.71590.11310.025*
C170.0066 (3)0.75278 (13)0.14846 (7)0.0192 (5)
H170.02540.72060.17860.023*
C180.4166 (3)0.73482 (16)0.02424 (9)0.0307 (5)
H18A0.50070.74240.00660.046*
H18B0.49350.74600.05330.046*
H18C0.36470.67280.02580.046*
C191.0573 (3)0.54246 (13)0.28040 (8)0.0193 (5)
C201.0499 (3)0.54485 (13)0.33611 (8)0.0191 (5)
C211.2083 (3)0.58197 (14)0.36510 (8)0.0245 (5)
H211.32010.60330.34930.029*
C221.2022 (3)0.58761 (14)0.41678 (8)0.0274 (5)
H221.30950.61300.43650.033*
C231.0381 (3)0.55593 (14)0.43966 (8)0.0268 (5)
H231.03290.56050.47500.032*
C240.8820 (3)0.51760 (14)0.41117 (8)0.0234 (5)
H240.77220.49490.42730.028*
C250.8846 (3)0.51211 (14)0.35905 (8)0.0199 (5)
C260.7168 (3)0.47224 (14)0.32696 (8)0.0225 (5)
H26A0.59620.47370.34560.027*
H26B0.74620.40810.31940.027*
C270.6822 (3)0.52514 (14)0.27784 (7)0.0201 (5)
H27A0.57830.49480.25640.024*
H27B0.63650.58710.28520.024*
C280.8670 (3)0.53087 (13)0.25012 (7)0.0184 (5)
C290.8732 (3)0.52698 (13)0.19981 (8)0.0197 (5)
H291.00060.52450.18760.024*
C300.7102 (3)0.52606 (13)0.16160 (7)0.0185 (4)
C310.7301 (3)0.47902 (14)0.11619 (8)0.0214 (5)
H310.84700.44580.11180.026*
C320.5845 (3)0.48000 (14)0.07810 (8)0.0221 (5)
H320.60050.44710.04810.027*
C330.4132 (3)0.52956 (14)0.08374 (8)0.0214 (5)
C340.3894 (3)0.57657 (14)0.12784 (7)0.0207 (5)
H340.27270.61020.13170.025*
C350.5359 (3)0.57460 (14)0.16638 (7)0.0203 (5)
H350.51760.60670.19650.024*
C360.1135 (3)0.58699 (15)0.04526 (8)0.0268 (5)
H36A0.02750.57960.01470.040*
H36B0.15860.65000.04790.040*
H36C0.04080.57180.07460.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0184 (8)0.0352 (9)0.0293 (9)0.0018 (7)0.0038 (7)0.0026 (7)
O20.0298 (9)0.0303 (9)0.0224 (8)0.0040 (7)0.0051 (7)0.0049 (6)
O30.0190 (8)0.0375 (10)0.0316 (9)0.0025 (7)0.0057 (7)0.0020 (7)
O40.0313 (9)0.0285 (9)0.0200 (8)0.0075 (7)0.0034 (7)0.0018 (6)
C10.0190 (11)0.0134 (10)0.0248 (11)0.0002 (8)0.0009 (9)0.0007 (8)
C20.0211 (11)0.0151 (10)0.0209 (11)0.0019 (8)0.0016 (9)0.0001 (8)
C30.0256 (12)0.0184 (11)0.0320 (13)0.0009 (9)0.0017 (10)0.0032 (9)
C40.0392 (14)0.0192 (12)0.0275 (12)0.0014 (10)0.0125 (11)0.0008 (9)
C50.0428 (15)0.0212 (12)0.0222 (12)0.0095 (10)0.0032 (11)0.0017 (9)
C60.0301 (13)0.0182 (11)0.0258 (12)0.0049 (9)0.0057 (10)0.0001 (9)
C70.0228 (12)0.0161 (11)0.0227 (11)0.0065 (8)0.0022 (9)0.0016 (8)
C80.0188 (11)0.0207 (11)0.0230 (11)0.0024 (8)0.0034 (9)0.0009 (8)
C90.0163 (11)0.0214 (11)0.0231 (11)0.0001 (8)0.0007 (9)0.0002 (8)
C100.0163 (11)0.0155 (10)0.0240 (11)0.0015 (8)0.0019 (9)0.0009 (8)
C110.0163 (11)0.0173 (11)0.0231 (11)0.0010 (8)0.0031 (9)0.0018 (8)
C120.0186 (11)0.0162 (11)0.0227 (11)0.0024 (8)0.0035 (9)0.0023 (8)
C130.0229 (12)0.0174 (11)0.0226 (11)0.0006 (9)0.0044 (9)0.0019 (8)
C140.0273 (12)0.0191 (11)0.0185 (11)0.0019 (9)0.0028 (9)0.0023 (8)
C150.0239 (12)0.0201 (11)0.0186 (11)0.0036 (9)0.0006 (9)0.0010 (8)
C160.0204 (11)0.0176 (11)0.0237 (12)0.0002 (8)0.0024 (9)0.0017 (8)
C170.0229 (11)0.0176 (11)0.0175 (11)0.0028 (8)0.0039 (9)0.0003 (8)
C180.0262 (13)0.0367 (14)0.0280 (13)0.0040 (10)0.0058 (10)0.0001 (10)
C190.0167 (11)0.0141 (10)0.0270 (12)0.0012 (8)0.0019 (9)0.0009 (8)
C200.0211 (11)0.0144 (10)0.0218 (11)0.0017 (8)0.0013 (9)0.0021 (8)
C210.0209 (12)0.0193 (12)0.0328 (13)0.0026 (9)0.0023 (10)0.0012 (9)
C220.0332 (13)0.0192 (12)0.0288 (13)0.0052 (10)0.0054 (10)0.0012 (9)
C230.0388 (14)0.0186 (12)0.0226 (12)0.0022 (10)0.0003 (10)0.0003 (9)
C240.0284 (12)0.0177 (11)0.0244 (12)0.0012 (9)0.0043 (10)0.0001 (8)
C250.0211 (11)0.0158 (10)0.0228 (11)0.0032 (8)0.0011 (9)0.0009 (8)
C260.0208 (11)0.0224 (12)0.0246 (11)0.0017 (9)0.0039 (9)0.0003 (9)
C270.0186 (11)0.0202 (11)0.0217 (11)0.0009 (9)0.0028 (9)0.0003 (8)
C280.0171 (11)0.0148 (10)0.0233 (11)0.0012 (8)0.0023 (9)0.0009 (8)
C290.0201 (11)0.0148 (11)0.0246 (11)0.0008 (8)0.0047 (9)0.0007 (8)
C300.0209 (11)0.0161 (10)0.0190 (11)0.0016 (8)0.0048 (9)0.0028 (8)
C310.0233 (12)0.0190 (11)0.0226 (11)0.0045 (9)0.0070 (9)0.0035 (8)
C320.0299 (12)0.0197 (11)0.0169 (11)0.0030 (9)0.0040 (9)0.0010 (8)
C330.0261 (12)0.0190 (11)0.0191 (11)0.0007 (9)0.0002 (9)0.0035 (8)
C340.0219 (11)0.0181 (11)0.0226 (11)0.0041 (9)0.0049 (9)0.0017 (8)
C350.0255 (12)0.0177 (11)0.0183 (11)0.0009 (9)0.0044 (9)0.0009 (8)
C360.0251 (12)0.0270 (12)0.0279 (12)0.0031 (10)0.0026 (10)0.0032 (9)
Geometric parameters (Å, º) top
O1—C11.229 (2)C18—H18A0.9800
O2—C151.371 (2)C18—H18B0.9800
O2—C181.426 (3)C18—H18C0.9800
O3—C191.226 (2)C19—C201.494 (3)
O4—C331.374 (2)C19—C281.495 (3)
O4—C361.424 (2)C20—C211.400 (3)
C1—C101.489 (3)C20—C251.405 (3)
C1—C21.494 (3)C21—C221.387 (3)
C2—C31.401 (3)C21—H210.9500
C2—C71.404 (3)C22—C231.392 (3)
C3—C41.387 (3)C22—H220.9500
C3—H30.9500C23—C241.389 (3)
C4—C51.388 (3)C23—H230.9500
C4—H40.9500C24—C251.396 (3)
C5—C61.389 (3)C24—H240.9500
C5—H50.9500C25—C261.505 (3)
C6—C71.395 (3)C26—C271.532 (3)
C6—H60.9500C26—H26A0.9900
C7—C81.506 (3)C26—H26B0.9900
C8—C91.529 (3)C27—C281.507 (3)
C8—H8A0.9900C27—H27A0.9900
C8—H8B0.9900C27—H27B0.9900
C9—C101.512 (3)C28—C291.349 (3)
C9—H9A0.9900C29—C301.460 (3)
C9—H9B0.9900C29—H290.9500
C10—C111.343 (3)C30—C351.402 (3)
C11—C121.468 (3)C30—C311.412 (3)
C11—H110.9500C31—C321.375 (3)
C12—C171.398 (3)C31—H310.9500
C12—C131.405 (3)C32—C331.396 (3)
C13—C141.381 (3)C32—H320.9500
C13—H130.9500C33—C341.386 (3)
C14—C151.389 (3)C34—C351.388 (3)
C14—H140.9500C34—H340.9500
C15—C161.392 (3)C35—H350.9500
C16—C171.392 (3)C36—H36A0.9800
C16—H160.9500C36—H36B0.9800
C17—H170.9500C36—H36C0.9800
C15—O2—C18117.43 (16)H18B—C18—H18C109.5
C33—O4—C36116.96 (16)O3—C19—C20120.56 (19)
O1—C1—C10122.05 (18)O3—C19—C28122.16 (19)
O1—C1—C2120.08 (19)C20—C19—C28117.21 (17)
C10—C1—C2117.80 (17)C21—C20—C25120.44 (19)
C3—C2—C7120.22 (19)C21—C20—C19119.04 (18)
C3—C2—C1119.34 (18)C25—C20—C19120.51 (18)
C7—C2—C1120.41 (18)C22—C21—C20120.1 (2)
C4—C3—C2120.3 (2)C22—C21—H21119.9
C4—C3—H3119.9C20—C21—H21119.9
C2—C3—H3119.9C21—C22—C23119.7 (2)
C5—C4—C3119.6 (2)C21—C22—H22120.2
C5—C4—H4120.2C23—C22—H22120.2
C3—C4—H4120.2C24—C23—C22120.5 (2)
C4—C5—C6120.5 (2)C24—C23—H23119.8
C4—C5—H5119.8C22—C23—H23119.8
C6—C5—H5119.8C23—C24—C25120.7 (2)
C5—C6—C7120.8 (2)C23—C24—H24119.6
C5—C6—H6119.6C25—C24—H24119.6
C7—C6—H6119.6C24—C25—C20118.59 (19)
C6—C7—C2118.61 (19)C24—C25—C26122.15 (18)
C6—C7—C8122.30 (18)C20—C25—C26119.27 (18)
C2—C7—C8119.09 (18)C25—C26—C27111.00 (17)
C7—C8—C9110.93 (17)C25—C26—H26A109.4
C7—C8—H8A109.5C27—C26—H26A109.4
C9—C8—H8A109.5C25—C26—H26B109.4
C7—C8—H8B109.5C27—C26—H26B109.4
C9—C8—H8B109.5H26A—C26—H26B108.0
H8A—C8—H8B108.0C28—C27—C26111.27 (17)
C10—C9—C8110.85 (17)C28—C27—H27A109.4
C10—C9—H9A109.5C26—C27—H27A109.4
C8—C9—H9A109.5C28—C27—H27B109.4
C10—C9—H9B109.5C26—C27—H27B109.4
C8—C9—H9B109.5H27A—C27—H27B108.0
H9A—C9—H9B108.1C29—C28—C19117.47 (18)
C11—C10—C1117.53 (18)C29—C28—C27124.72 (19)
C11—C10—C9125.45 (19)C19—C28—C27117.81 (17)
C1—C10—C9117.02 (17)C28—C29—C30128.69 (19)
C10—C11—C12129.27 (19)C28—C29—H29115.7
C10—C11—H11115.4C30—C29—H29115.7
C12—C11—H11115.4C35—C30—C31117.31 (19)
C17—C12—C13117.51 (19)C35—C30—C29122.98 (18)
C17—C12—C11122.97 (18)C31—C30—C29119.60 (18)
C13—C12—C11119.34 (18)C32—C31—C30121.70 (19)
C14—C13—C12121.27 (19)C32—C31—H31119.1
C14—C13—H13119.4C30—C31—H31119.1
C12—C13—H13119.4C31—C32—C33119.71 (19)
C13—C14—C15120.21 (19)C31—C32—H32120.1
C13—C14—H14119.9C33—C32—H32120.1
C15—C14—H14119.9O4—C33—C34124.49 (19)
O2—C15—C14115.78 (18)O4—C33—C32115.54 (18)
O2—C15—C16124.29 (19)C34—C33—C32120.0 (2)
C14—C15—C16119.9 (2)C33—C34—C35120.11 (19)
C15—C16—C17119.39 (19)C33—C34—H34119.9
C15—C16—H16120.3C35—C34—H34119.9
C17—C16—H16120.3C34—C35—C30121.19 (19)
C16—C17—C12121.67 (19)C34—C35—H35119.4
C16—C17—H17119.2C30—C35—H35119.4
C12—C17—H17119.2O4—C36—H36A109.5
O2—C18—H18A109.5O4—C36—H36B109.5
O2—C18—H18B109.5H36A—C36—H36B109.5
H18A—C18—H18B109.5O4—C36—H36C109.5
O2—C18—H18C109.5H36A—C36—H36C109.5
H18A—C18—H18C109.5H36B—C36—H36C109.5
O1—C1—C2—C315.4 (3)O3—C19—C20—C2116.0 (3)
C10—C1—C2—C3161.88 (18)C28—C19—C20—C21160.95 (18)
O1—C1—C2—C7166.67 (19)O3—C19—C20—C25165.3 (2)
C10—C1—C2—C716.1 (3)C28—C19—C20—C2517.7 (3)
C7—C2—C3—C40.6 (3)C25—C20—C21—C220.7 (3)
C1—C2—C3—C4177.35 (18)C19—C20—C21—C22177.95 (19)
C2—C3—C4—C51.1 (3)C20—C21—C22—C230.2 (3)
C3—C4—C5—C60.6 (3)C21—C22—C23—C240.9 (3)
C4—C5—C6—C70.6 (3)C22—C23—C24—C251.5 (3)
C5—C6—C7—C21.1 (3)C23—C24—C25—C201.0 (3)
C5—C6—C7—C8179.15 (19)C23—C24—C25—C26179.12 (19)
C3—C2—C7—C60.5 (3)C21—C20—C25—C240.1 (3)
C1—C2—C7—C6178.42 (18)C19—C20—C25—C24178.53 (18)
C3—C2—C7—C8179.74 (18)C21—C20—C25—C26179.76 (18)
C1—C2—C7—C81.8 (3)C19—C20—C25—C261.6 (3)
C6—C7—C8—C9142.08 (19)C24—C25—C26—C27142.0 (2)
C2—C7—C8—C938.1 (2)C20—C25—C26—C2738.1 (3)
C7—C8—C9—C1056.1 (2)C25—C26—C27—C2854.7 (2)
O1—C1—C10—C117.2 (3)O3—C19—C28—C294.3 (3)
C2—C1—C10—C11175.64 (17)C20—C19—C28—C29178.81 (17)
O1—C1—C10—C9172.68 (19)O3—C19—C28—C27175.23 (19)
C2—C1—C10—C94.5 (3)C20—C19—C28—C271.7 (3)
C8—C9—C10—C11140.1 (2)C26—C27—C28—C29143.1 (2)
C8—C9—C10—C140.1 (2)C26—C27—C28—C1937.4 (2)
C1—C10—C11—C12172.93 (19)C19—C28—C29—C30172.60 (19)
C9—C10—C11—C126.9 (3)C27—C28—C29—C306.9 (3)
C10—C11—C12—C1735.3 (3)C28—C29—C30—C3535.2 (3)
C10—C11—C12—C13149.7 (2)C28—C29—C30—C31148.7 (2)
C17—C12—C13—C140.6 (3)C35—C30—C31—C320.4 (3)
C11—C12—C13—C14175.92 (18)C29—C30—C31—C32176.69 (18)
C12—C13—C14—C151.5 (3)C30—C31—C32—C330.9 (3)
C18—O2—C15—C14169.11 (19)C36—O4—C33—C346.9 (3)
C18—O2—C15—C1610.1 (3)C36—O4—C33—C32172.37 (18)
C13—C14—C15—O2177.76 (18)C31—C32—C33—O4178.49 (17)
C13—C14—C15—C161.5 (3)C31—C32—C33—C340.8 (3)
O2—C15—C16—C17178.62 (18)O4—C33—C34—C35179.09 (18)
C14—C15—C16—C170.5 (3)C32—C33—C34—C350.1 (3)
C15—C16—C17—C120.4 (3)C33—C34—C35—C300.5 (3)
C13—C12—C17—C160.3 (3)C31—C30—C35—C340.3 (3)
C11—C12—C17—C16174.79 (18)C29—C30—C35—C34175.87 (18)
Hydrogen-bond geometry (Å, º) top
Cg1–Cg3 are the centroids of the C20–C25, C2–C7 and C12–C17 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
C13—H13···Cg1i0.952.703.486 (2)140
C21—H21···Cg2ii0.952.973.595 (2)124
C31—H31···Cg2iii0.952.643.411 (2)139
C36—H36B···Cg30.982.883.592 (2)131
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x+3/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H16O2
Mr264.31
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)6.8289 (4), 14.7444 (8), 26.7258 (14)
β (°) 93.757 (5)
V3)2685.2 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.40 × 0.20 × 0.10
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.766, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
18691, 6195, 3813
Rint0.054
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.187, 0.99
No. of reflections6195
No. of parameters361
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.25

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1–Cg3 are the centroids of the C20–C25, C2–C7 and C12–C17 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
C13—H13···Cg1i0.952.703.486 (2)140
C21—H21···Cg2ii0.952.973.595 (2)124
C31—H31···Cg2iii0.952.643.411 (2)139
C36—H36B···Cg30.982.883.592 (2)131
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x+3/2, y1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: aasiri2@kau.edu.sa.

Acknowledgements

The authors are grateful to King Abdulaziz University for providing research facilities. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDimmock, J. R., Zello, G. A., Oloo, E. O., Quail, J. W., Kraatz, H.-B., Perjési, P., Aradi, F., Tákacs-Novák, K., Allen, T. M., Santos, C. L., Balzarini, J., De Clerq, E. & Stables, J. P. (2002). J. Med. Chem. 45, 3103–3111.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVera-DiVaio, M. A. F., Freitas, A. C. C., Castro, F. H. C., de Albuquerque, S., Cabral, L. M., Rodrigues, C. R., Albuquerque, M. G., Martins, R. C. A., Henriques, M. G. M. O. & Dias, L. R. S. (2009). Bioorg. Med. Chem. 17, 295–302.  Web of Science PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds