metal-organic compounds
3-(3-Acetylanilino)-1-ferrocenylpropan-1-one
a'Vinča' Institute of Nuclear Sciences, Laboratory of Theoretical Physics and Condensed Matter Physics, University of Belgrade, PO Box 522, 11001 Belgrade, Serbia, bDepartment of Chemistry, Faculty of Science, University of Kragujevac, R. Domanovića 12, 34000 Kragujevac, Serbia, and cDepartment of Physics, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia
*Correspondence e-mail: snovak@vin.bg.ac.rs
The title ferrocene-containing Mannich base, [Fe(C5H5)(C16H16NO2)], crystallizes with two independent molecules (A and B) in the Molecules A and B have similar conformations. The dihedral angles between the best planes of the benzene and substituted cyclopentadienyl rings are 88.59 (9) and 84.39 (10)° in A and B, respectively. In the crystal, the independent molecules form centrosymmetric dimers via corresponding N—H⋯O hydrogen bonds. The dimers further arrange via C—H⋯π and C—H⋯O interactions. There are no significant interactions between the A and B molecules.
Related literature
For the physico-chemical properties of ferrocene-based compounds, see: Togni & Hayashi (1995). For related structures and details of the synthesis, see: Damljanović et al. (2011); Pejović et al. (2012); Stevanović et al. (2012); Leka et al. (2012a,b,c).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999), PLATON (Spek, 2009) and PARST (Nardelli, 1995).
Supporting information
https://doi.org/10.1107/S1600536812028796/bt5949sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812028796/bt5949Isup2.hkl
An aza-Michael addition of arylamines to a conjugated enone, acryloylferrocene, has been achieved by ultrasonic irradiation of the mixture of these reactants and the catalyst - montmorillonite K-10. This solvent-free reaction, yielding ferrocene containing Mannich bases (3-(arylamino)-1-ferrocenylpropan-1-ones), has been performed through the use of a simple ultrasonic cleaner. The details of the synthesis are described by Pejović et al. (2012b).
H atoms bonded to C atoms were placed at geometrically calculated positions and refined using a riding model. C—H distances were fixed to 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl C atoms, respectively. The Uiso(H) values were set to 1.2 times Ueq of the corresponding aromatic and methylene C atoms. The Ueq values of the H atoms attached to methyl C atoms were set equal to 1.5 times Ueq of the parent atom. H atoms attached to N atoms were refined isotropically.
Derivatives of ferrocene have attracted great interest due to their physical, chemical and biological properties (Togni & Hayashi, 1995). In the course of our studies of different ferrocene derivatives containing two or more heteroatoms, we have synthesized and determined the crystal structures of a series of 3-(arylamino)-1-ferrocenylpropan-1-ones (Damljanović et al. 2011, Pejović et al. 2012, Stevanović et al. 2012 Leka et al. 2012a,b,c). The present derivative 1-ferrocenyl-3-(3-acetylphenylamino)propan-1-one, crystallizes with two independent molecules (A and B) in the
(Fig. 1). The cyclopentadienyl rings (Cp) within the Fc unit of molecules A and B take a nearly eclipsed geometry; the corresponding torsion angle C1—Cg1—Cg2—C6 has a value of 2.8 and 3.2°, respectively (Cg is centroid of the corresponding Cp ring). Both molecules display a conformation similar to that of previously reported derivatives containing meta-substituted phenyl rings.The torsion angles C1—C11—C12—C13, C11—C12—C13—N1 and C12—C13—N1—C4 within the aliphatic fragment are -172.0 (2)/167.2 (2), 68.4 (3)/-70.4 (3) and 76.0 (4)/-77.0 (4)° (first value corresponds to molecule A, while the second one corresponds to molecule B). Inversion related molecules arrange into AA and BB dimers via corresponding N1—H1n···O1 hydrogen bonds. The AA and BB dimers further arrange into separate chains via dissimilar C—H···O interactions. In these interactions the acetyl O2 atom engages as an acceptor. On the other hand, the C—H donors engaged in these interactions are not equivalent as the A molecules use cyclopentadienyl while B molecules use phenyl fragments (Fig. 2). The molecules of the same type also interact by relatively strong C—H···π interaction which in both cases include the unsubstituted Cp ring, C7a— H7a···Cg2ai: H···Cg 2.98 Å, H—Perp 2.91 Å, X—H···Cg 137°, (i = -x, y + 1/2, -z + 1/2) and C7b—H7b···Cg2 bii H···Cg 2.96 Å H—Perp 2.72 Å, X—H···Cg 148 °, (ii = -x + 1, y - 1/2, -z + 3/2). There are no significant interactions between the A and B molecules.
For the physico-chemical properties of ferrocene-based compounds, see: Togni & Hayashi (1995). For related structures and details of the synthesis, see: Damljanović et al. (2011); Pejović et al. (2012); Stevanović et al. 2012); Leka et al. (2012a,b,c).
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell
CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999), PLATON (Spek, 2009) and PARST (Nardelli, 1995).Fig. 1. The molecular structure of the title compound with atom labels and 40% probability displacement ellipsoids for non-H atoms. | |
Fig. 2. The interconnection of AA dimers (a) and BB dimers (b) into corresponding chains via dissimilar C—H···O interactions. |
[Fe(C5H5)(C16H16NO2)] | F(000) = 1568 |
Mr = 375.24 | Dx = 1.414 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 7645 reflections |
a = 22.7768 (8) Å | θ = 3.0–29.0° |
b = 7.3978 (1) Å | µ = 0.87 mm−1 |
c = 22.2118 (7) Å | T = 293 K |
β = 109.642 (4)° | Prismatic, orange |
V = 3524.87 (19) Å3 | 0.14 × 0.10 × 0.08 mm |
Z = 8 |
Oxford Diffraction Xcalibur, Sapphire3, Gemini diffractometer | 8197 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 6146 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.029 |
Detector resolution: 16.3280 pixels mm-1 | θmax = 29.0°, θmin = 3.0° |
ω scans | h = −29→17 |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) | k = −10→10 |
Tmin = 0.947, Tmax = 1.000 | l = −28→29 |
21526 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.057 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.112 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.13 | w = 1/[σ2(Fo2) + (0.0329P)2 + 1.5937P] where P = (Fo2 + 2Fc2)/3 |
8197 reflections | (Δ/σ)max = 0.001 |
461 parameters | Δρmax = 0.29 e Å−3 |
0 restraints | Δρmin = −0.36 e Å−3 |
[Fe(C5H5)(C16H16NO2)] | V = 3524.87 (19) Å3 |
Mr = 375.24 | Z = 8 |
Monoclinic, P21/c | Mo Kα radiation |
a = 22.7768 (8) Å | µ = 0.87 mm−1 |
b = 7.3978 (1) Å | T = 293 K |
c = 22.2118 (7) Å | 0.14 × 0.10 × 0.08 mm |
β = 109.642 (4)° |
Oxford Diffraction Xcalibur, Sapphire3, Gemini diffractometer | 8197 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) | 6146 reflections with I > 2σ(I) |
Tmin = 0.947, Tmax = 1.000 | Rint = 0.029 |
21526 measured reflections |
R[F2 > 2σ(F2)] = 0.057 | 0 restraints |
wR(F2) = 0.112 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.13 | Δρmax = 0.29 e Å−3 |
8197 reflections | Δρmin = −0.36 e Å−3 |
461 parameters |
Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. 'CrysAlisPro, (Oxford Diffraction, 2009)' |
x | y | z | Uiso*/Ueq | ||
Fe1A | −0.081087 (18) | 0.18406 (5) | 0.305745 (18) | 0.04314 (12) | |
O1A | −0.02446 (10) | 0.2106 (3) | 0.48588 (10) | 0.0623 (6) | |
O2A | 0.23814 (11) | 0.3642 (3) | 0.37407 (12) | 0.0775 (7) | |
N1A | 0.11138 (14) | 0.1132 (4) | 0.50418 (14) | 0.0629 (8) | |
C1A | −0.06883 (12) | 0.3385 (3) | 0.38385 (13) | 0.0423 (6) | |
C2A | −0.06635 (14) | 0.4463 (3) | 0.33120 (14) | 0.0486 (7) | |
H2A | −0.0325 | 0.5151 | 0.3302 | 0.058* | |
C3A | −0.12352 (15) | 0.4306 (4) | 0.28136 (16) | 0.0597 (8) | |
H3A | −0.1343 | 0.4872 | 0.2417 | 0.072* | |
C4A | −0.16201 (15) | 0.3133 (4) | 0.30205 (17) | 0.0621 (8) | |
H4A | −0.2025 | 0.2795 | 0.2781 | 0.074* | |
C5A | −0.12901 (13) | 0.2562 (4) | 0.36479 (15) | 0.0532 (7) | |
H5A | −0.1438 | 0.1786 | 0.3894 | 0.064* | |
C6A | −0.01325 (17) | −0.0078 (4) | 0.32782 (16) | 0.0658 (9) | |
H6A | 0.0170 | −0.0251 | 0.3677 | 0.079* | |
C7A | −0.00816 (17) | 0.1032 (5) | 0.27946 (19) | 0.0699 (10) | |
H7A | 0.0263 | 0.1732 | 0.2814 | 0.084* | |
C8A | −0.0624 (2) | 0.0925 (6) | 0.22836 (18) | 0.0834 (12) | |
H8A | −0.0709 | 0.1544 | 0.1899 | 0.100* | |
C9A | −0.10267 (18) | −0.0259 (6) | 0.2435 (2) | 0.0933 (15) | |
H9A | −0.1426 | −0.0578 | 0.2172 | 0.112* | |
C10A | −0.0718 (2) | −0.0885 (4) | 0.3058 (2) | 0.0819 (13) | |
H10A | −0.0877 | −0.1696 | 0.3283 | 0.098* | |
C11A | −0.01706 (13) | 0.2991 (3) | 0.44233 (13) | 0.0455 (6) | |
C12A | 0.04656 (13) | 0.3730 (4) | 0.44832 (13) | 0.0476 (7) | |
H12A | 0.0455 | 0.5039 | 0.4507 | 0.057* | |
H12B | 0.0561 | 0.3414 | 0.4103 | 0.057* | |
C13A | 0.09779 (14) | 0.3020 (4) | 0.50651 (14) | 0.0592 (8) | |
H13A | 0.1355 | 0.3703 | 0.5117 | 0.071* | |
H13B | 0.0860 | 0.3238 | 0.5440 | 0.071* | |
C14A | 0.14484 (13) | 0.0446 (4) | 0.46782 (13) | 0.0479 (7) | |
C15A | 0.17757 (12) | 0.1524 (4) | 0.43880 (12) | 0.0450 (6) | |
H15A | 0.1748 | 0.2775 | 0.4413 | 0.054* | |
C16A | 0.21447 (12) | 0.0782 (4) | 0.40605 (12) | 0.0457 (6) | |
C17A | 0.21819 (14) | −0.1082 (4) | 0.40162 (14) | 0.0568 (8) | |
H17A | 0.2428 | −0.1597 | 0.3802 | 0.068* | |
C18A | 0.18474 (15) | −0.2168 (4) | 0.42941 (15) | 0.0614 (8) | |
H18A | 0.1867 | −0.3418 | 0.4261 | 0.074* | |
C19A | 0.14905 (14) | −0.1431 (4) | 0.46150 (14) | 0.0554 (7) | |
H19A | 0.1270 | −0.2189 | 0.4796 | 0.066* | |
C20A | 0.24742 (13) | 0.2031 (4) | 0.37585 (13) | 0.0517 (7) | |
C21A | 0.29297 (16) | 0.1271 (5) | 0.34724 (17) | 0.0735 (10) | |
H21A | 0.2714 | 0.0505 | 0.3118 | 0.110* | |
H21B | 0.3240 | 0.0578 | 0.3789 | 0.110* | |
H21C | 0.3128 | 0.2241 | 0.3327 | 0.110* | |
Fe1B | 0.584630 (19) | 0.44297 (5) | 0.692237 (17) | 0.04318 (12) | |
O1B | 0.53611 (10) | 0.3022 (3) | 0.51869 (9) | 0.0588 (5) | |
O2B | 0.27338 (13) | 0.0162 (3) | 0.62706 (13) | 0.0863 (8) | |
N1B | 0.39339 (14) | 0.3325 (4) | 0.50188 (13) | 0.0618 (7) | |
C1B | 0.58556 (13) | 0.2491 (3) | 0.62822 (12) | 0.0415 (6) | |
C2B | 0.59017 (15) | 0.1705 (4) | 0.68891 (13) | 0.0531 (8) | |
H2B | 0.5623 | 0.0889 | 0.6964 | 0.064* | |
C3B | 0.64465 (16) | 0.2398 (4) | 0.73505 (15) | 0.0626 (9) | |
H3B | 0.6589 | 0.2115 | 0.7784 | 0.075* | |
C4B | 0.67359 (15) | 0.3584 (4) | 0.70438 (15) | 0.0588 (8) | |
H4B | 0.7102 | 0.4221 | 0.7241 | 0.071* | |
C5B | 0.63833 (13) | 0.3650 (4) | 0.63939 (13) | 0.0492 (7) | |
H5B | 0.6476 | 0.4333 | 0.6086 | 0.059* | |
C6B | 0.50605 (16) | 0.5941 (5) | 0.6572 (2) | 0.0779 (11) | |
H6B | 0.4756 | 0.5806 | 0.6172 | 0.093* | |
C7B | 0.5077 (2) | 0.5053 (5) | 0.7140 (3) | 0.111 (2) | |
H7B | 0.4791 | 0.4222 | 0.7192 | 0.134* | |
C8B | 0.5628 (3) | 0.5707 (6) | 0.76194 (19) | 0.0965 (16) | |
H8B | 0.5769 | 0.5373 | 0.8048 | 0.116* | |
C9B | 0.59092 (17) | 0.6895 (4) | 0.73422 (18) | 0.0696 (10) | |
H9B | 0.6276 | 0.7518 | 0.7550 | 0.084* | |
C10B | 0.55702 (16) | 0.7029 (4) | 0.67149 (17) | 0.0609 (8) | |
H10B | 0.5671 | 0.7760 | 0.6423 | 0.073* | |
C11B | 0.53347 (13) | 0.2336 (3) | 0.56780 (12) | 0.0427 (6) | |
C12B | 0.47645 (13) | 0.1280 (4) | 0.56710 (13) | 0.0470 (7) | |
H12C | 0.4868 | 0.0004 | 0.5715 | 0.056* | |
H12D | 0.4650 | 0.1635 | 0.6037 | 0.056* | |
C13B | 0.42102 (14) | 0.1555 (4) | 0.50708 (13) | 0.0547 (8) | |
H13C | 0.4340 | 0.1353 | 0.4703 | 0.066* | |
H13D | 0.3896 | 0.0657 | 0.5059 | 0.066* | |
C14B | 0.35504 (13) | 0.3833 (4) | 0.53600 (12) | 0.0466 (7) | |
C15B | 0.32807 (12) | 0.2599 (4) | 0.56590 (12) | 0.0462 (7) | |
H15B | 0.3371 | 0.1376 | 0.5648 | 0.055* | |
C16B | 0.28760 (12) | 0.3157 (4) | 0.59755 (12) | 0.0458 (6) | |
C17B | 0.27401 (14) | 0.4969 (4) | 0.59914 (14) | 0.0583 (8) | |
H17B | 0.2470 | 0.5357 | 0.6200 | 0.070* | |
C18B | 0.30080 (16) | 0.6205 (4) | 0.56956 (15) | 0.0651 (9) | |
H18B | 0.2918 | 0.7427 | 0.5708 | 0.078* | |
C19B | 0.34035 (15) | 0.5658 (4) | 0.53854 (15) | 0.0606 (8) | |
H19B | 0.3577 | 0.6514 | 0.5189 | 0.073* | |
C20B | 0.26079 (14) | 0.1741 (5) | 0.62884 (14) | 0.0570 (8) | |
C21B | 0.21885 (16) | 0.2309 (5) | 0.66479 (16) | 0.0763 (10) | |
H21D | 0.2039 | 0.1258 | 0.6805 | 0.114* | |
H21E | 0.1841 | 0.2973 | 0.6368 | 0.114* | |
H21F | 0.2416 | 0.3062 | 0.7001 | 0.114* | |
H1NB | 0.4136 (15) | 0.412 (4) | 0.4938 (15) | 0.067 (12)* | |
H1NA | 0.0876 (16) | 0.046 (5) | 0.5099 (16) | 0.069 (12)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Fe1A | 0.0454 (2) | 0.0316 (2) | 0.0589 (2) | 0.00040 (17) | 0.02608 (19) | −0.00628 (17) |
O1A | 0.0670 (14) | 0.0692 (14) | 0.0641 (13) | −0.0013 (11) | 0.0396 (11) | 0.0046 (11) |
O2A | 0.0756 (17) | 0.0597 (15) | 0.1129 (19) | 0.0065 (13) | 0.0524 (14) | 0.0192 (14) |
N1A | 0.0641 (19) | 0.0639 (18) | 0.0759 (18) | 0.0081 (15) | 0.0438 (15) | 0.0074 (15) |
C1A | 0.0450 (16) | 0.0299 (13) | 0.0610 (17) | 0.0024 (11) | 0.0298 (13) | −0.0096 (12) |
C2A | 0.0534 (18) | 0.0280 (13) | 0.0715 (18) | 0.0014 (12) | 0.0303 (15) | 0.0003 (13) |
C3A | 0.060 (2) | 0.0422 (17) | 0.073 (2) | 0.0126 (15) | 0.0184 (16) | 0.0042 (15) |
C4A | 0.0450 (18) | 0.0497 (18) | 0.091 (2) | 0.0066 (15) | 0.0228 (17) | −0.0142 (17) |
C5A | 0.0469 (17) | 0.0449 (16) | 0.080 (2) | 0.0004 (13) | 0.0380 (16) | −0.0093 (15) |
C6A | 0.067 (2) | 0.0545 (19) | 0.074 (2) | 0.0249 (18) | 0.0217 (18) | −0.0140 (17) |
C7A | 0.070 (2) | 0.059 (2) | 0.103 (3) | −0.0033 (18) | 0.058 (2) | −0.020 (2) |
C8A | 0.105 (3) | 0.087 (3) | 0.067 (2) | 0.023 (3) | 0.040 (2) | −0.015 (2) |
C9A | 0.059 (2) | 0.081 (3) | 0.129 (4) | 0.002 (2) | 0.017 (2) | −0.068 (3) |
C10A | 0.104 (3) | 0.0265 (16) | 0.147 (4) | 0.0020 (18) | 0.084 (3) | −0.013 (2) |
C11A | 0.0554 (17) | 0.0337 (14) | 0.0595 (17) | −0.0009 (13) | 0.0355 (14) | −0.0115 (13) |
C12A | 0.0508 (17) | 0.0402 (15) | 0.0593 (17) | −0.0036 (13) | 0.0283 (14) | −0.0121 (13) |
C13A | 0.0544 (19) | 0.070 (2) | 0.0595 (18) | −0.0013 (16) | 0.0279 (15) | −0.0161 (16) |
C14A | 0.0415 (16) | 0.0521 (17) | 0.0500 (15) | 0.0049 (13) | 0.0153 (12) | 0.0026 (13) |
C15A | 0.0404 (15) | 0.0420 (15) | 0.0521 (16) | 0.0053 (12) | 0.0147 (12) | −0.0007 (12) |
C16A | 0.0393 (15) | 0.0503 (17) | 0.0451 (15) | 0.0043 (13) | 0.0112 (12) | −0.0005 (13) |
C17A | 0.058 (2) | 0.0585 (19) | 0.0576 (18) | 0.0153 (16) | 0.0246 (15) | −0.0003 (15) |
C18A | 0.071 (2) | 0.0426 (17) | 0.072 (2) | 0.0066 (15) | 0.0260 (17) | 0.0025 (15) |
C19A | 0.0573 (19) | 0.0503 (18) | 0.0631 (18) | 0.0006 (15) | 0.0262 (15) | 0.0071 (14) |
C20A | 0.0394 (16) | 0.061 (2) | 0.0536 (17) | 0.0037 (14) | 0.0143 (13) | 0.0045 (15) |
C21A | 0.065 (2) | 0.085 (2) | 0.086 (2) | −0.0001 (19) | 0.0458 (19) | 0.000 (2) |
Fe1B | 0.0552 (3) | 0.0314 (2) | 0.0494 (2) | 0.01005 (17) | 0.02617 (19) | 0.00179 (16) |
O1B | 0.0706 (14) | 0.0640 (13) | 0.0508 (11) | −0.0013 (11) | 0.0322 (10) | 0.0074 (10) |
O2B | 0.108 (2) | 0.0609 (15) | 0.114 (2) | 0.0019 (15) | 0.0685 (17) | −0.0018 (14) |
N1B | 0.0643 (19) | 0.0634 (19) | 0.0683 (17) | 0.0170 (15) | 0.0365 (14) | 0.0158 (14) |
C1B | 0.0535 (17) | 0.0294 (13) | 0.0509 (15) | 0.0117 (12) | 0.0297 (13) | 0.0010 (11) |
C2B | 0.075 (2) | 0.0303 (14) | 0.0614 (18) | 0.0166 (14) | 0.0330 (16) | 0.0084 (13) |
C3B | 0.080 (2) | 0.0477 (18) | 0.0513 (17) | 0.0283 (17) | 0.0113 (16) | 0.0068 (14) |
C4B | 0.0520 (19) | 0.0482 (17) | 0.073 (2) | 0.0169 (15) | 0.0174 (16) | −0.0005 (16) |
C5B | 0.0515 (17) | 0.0440 (16) | 0.0606 (18) | 0.0114 (13) | 0.0300 (14) | 0.0011 (13) |
C6B | 0.0431 (19) | 0.068 (2) | 0.111 (3) | 0.0168 (18) | 0.0103 (19) | −0.039 (2) |
C7B | 0.123 (4) | 0.0350 (18) | 0.244 (6) | −0.012 (2) | 0.152 (4) | −0.026 (3) |
C8B | 0.173 (5) | 0.069 (3) | 0.079 (3) | 0.048 (3) | 0.084 (3) | 0.009 (2) |
C9B | 0.067 (2) | 0.053 (2) | 0.085 (3) | 0.0127 (17) | 0.0195 (19) | −0.0221 (18) |
C10B | 0.073 (2) | 0.0359 (16) | 0.081 (2) | 0.0176 (16) | 0.0355 (18) | 0.0045 (16) |
C11B | 0.0549 (17) | 0.0315 (13) | 0.0518 (16) | 0.0119 (12) | 0.0312 (13) | 0.0015 (12) |
C12B | 0.0552 (18) | 0.0378 (14) | 0.0568 (16) | 0.0083 (13) | 0.0307 (14) | 0.0018 (13) |
C13B | 0.0579 (19) | 0.0591 (19) | 0.0567 (17) | 0.0085 (15) | 0.0318 (15) | −0.0066 (14) |
C14B | 0.0431 (16) | 0.0531 (17) | 0.0415 (14) | 0.0116 (13) | 0.0113 (12) | 0.0025 (13) |
C15B | 0.0449 (16) | 0.0459 (16) | 0.0465 (15) | 0.0111 (13) | 0.0135 (12) | −0.0030 (12) |
C16B | 0.0385 (15) | 0.0538 (17) | 0.0424 (14) | 0.0069 (13) | 0.0100 (11) | −0.0091 (13) |
C17B | 0.0517 (19) | 0.062 (2) | 0.0617 (19) | 0.0115 (16) | 0.0203 (15) | −0.0132 (16) |
C18B | 0.070 (2) | 0.0454 (17) | 0.076 (2) | 0.0168 (16) | 0.0198 (18) | −0.0056 (16) |
C19B | 0.061 (2) | 0.0530 (19) | 0.0670 (19) | 0.0085 (16) | 0.0207 (16) | 0.0079 (16) |
C20B | 0.0475 (18) | 0.070 (2) | 0.0546 (17) | 0.0027 (16) | 0.0184 (14) | −0.0096 (16) |
C21B | 0.068 (2) | 0.100 (3) | 0.074 (2) | 0.010 (2) | 0.0410 (18) | 0.001 (2) |
Fe1A—C1A | 2.017 (2) | Fe1B—C8B | 2.014 (3) |
Fe1A—C2A | 2.017 (3) | Fe1B—C7B | 2.022 (3) |
Fe1A—C8A | 2.021 (3) | Fe1B—C2B | 2.022 (3) |
Fe1A—C7A | 2.027 (3) | Fe1B—C1B | 2.025 (2) |
Fe1A—C10A | 2.027 (3) | Fe1B—C10B | 2.028 (3) |
Fe1A—C9A | 2.028 (3) | Fe1B—C6B | 2.031 (3) |
Fe1A—C6A | 2.033 (3) | Fe1B—C9B | 2.031 (3) |
Fe1A—C5A | 2.039 (3) | Fe1B—C3B | 2.039 (3) |
Fe1A—C3A | 2.050 (3) | Fe1B—C5B | 2.043 (3) |
Fe1A—C4A | 2.053 (3) | Fe1B—C4B | 2.050 (3) |
O1A—C11A | 1.226 (3) | O1B—C11B | 1.223 (3) |
O2A—C20A | 1.209 (3) | O2B—C20B | 1.206 (4) |
N1A—C14A | 1.380 (4) | N1B—C14B | 1.387 (4) |
N1A—C13A | 1.435 (4) | N1B—C13B | 1.441 (4) |
N1A—H1NA | 0.78 (3) | N1B—H1NB | 0.80 (3) |
C1A—C5A | 1.428 (4) | C1B—C5B | 1.429 (4) |
C1A—C2A | 1.432 (4) | C1B—C2B | 1.439 (3) |
C1A—C11A | 1.460 (4) | C1B—C11B | 1.467 (4) |
C2A—C3A | 1.402 (4) | C2B—C3B | 1.413 (4) |
C2A—H2A | 0.9300 | C2B—H2B | 0.9300 |
C3A—C4A | 1.416 (4) | C3B—C4B | 1.404 (4) |
C3A—H3A | 0.9300 | C3B—H3B | 0.9300 |
C4A—C5A | 1.408 (4) | C4B—C5B | 1.397 (4) |
C4A—H4A | 0.9300 | C4B—H4B | 0.9300 |
C5A—H5A | 0.9300 | C5B—H5B | 0.9300 |
C6A—C7A | 1.388 (5) | C6B—C10B | 1.360 (5) |
C6A—C10A | 1.392 (5) | C6B—C7B | 1.413 (6) |
C6A—H6A | 0.9300 | C6B—H6B | 0.9300 |
C7A—C8A | 1.370 (5) | C7B—C8B | 1.430 (6) |
C7A—H7A | 0.9300 | C7B—H7B | 0.9300 |
C8A—C9A | 1.389 (6) | C8B—C9B | 1.352 (5) |
C8A—H8A | 0.9300 | C8B—H8B | 0.9300 |
C9A—C10A | 1.403 (5) | C9B—C10B | 1.351 (5) |
C9A—H9A | 0.9300 | C9B—H9B | 0.9300 |
C10A—H10A | 0.9300 | C10B—H10B | 0.9300 |
C11A—C12A | 1.512 (4) | C11B—C12B | 1.511 (4) |
C12A—C13A | 1.515 (4) | C12B—C13B | 1.510 (4) |
C12A—H12A | 0.9700 | C12B—H12C | 0.9700 |
C12A—H12B | 0.9700 | C12B—H12D | 0.9700 |
C13A—H13A | 0.9700 | C13B—H13C | 0.9700 |
C13A—H13B | 0.9700 | C13B—H13D | 0.9700 |
C14A—C15A | 1.389 (4) | C14B—C15B | 1.388 (4) |
C14A—C19A | 1.402 (4) | C14B—C19B | 1.397 (4) |
C15A—C16A | 1.396 (4) | C15B—C16B | 1.396 (3) |
C15A—H15A | 0.9300 | C15B—H15B | 0.9300 |
C16A—C17A | 1.387 (4) | C16B—C17B | 1.379 (4) |
C16A—C20A | 1.485 (4) | C16B—C20B | 1.497 (4) |
C17A—C18A | 1.387 (4) | C17B—C18B | 1.382 (4) |
C17A—H17A | 0.9300 | C17B—H17B | 0.9300 |
C18A—C19A | 1.362 (4) | C18B—C19B | 1.366 (4) |
C18A—H18A | 0.9300 | C18B—H18B | 0.9300 |
C19A—H19A | 0.9300 | C19B—H19B | 0.9300 |
C20A—C21A | 1.497 (4) | C20B—C21B | 1.497 (4) |
C21A—H21A | 0.9600 | C21B—H21D | 0.9600 |
C21A—H21B | 0.9600 | C21B—H21E | 0.9600 |
C21A—H21C | 0.9600 | C21B—H21F | 0.9600 |
C1A—Fe1A—C2A | 41.59 (10) | C8B—Fe1B—C7B | 41.51 (18) |
C1A—Fe1A—C8A | 155.99 (16) | C8B—Fe1B—C2B | 122.03 (15) |
C2A—Fe1A—C8A | 119.86 (16) | C7B—Fe1B—C2B | 107.80 (14) |
C1A—Fe1A—C7A | 121.67 (13) | C8B—Fe1B—C1B | 159.39 (18) |
C2A—Fe1A—C7A | 106.81 (13) | C7B—Fe1B—C1B | 122.96 (17) |
C8A—Fe1A—C7A | 39.57 (14) | C2B—Fe1B—C1B | 41.66 (10) |
C1A—Fe1A—C10A | 125.37 (16) | C8B—Fe1B—C10B | 65.91 (14) |
C2A—Fe1A—C10A | 161.63 (17) | C7B—Fe1B—C10B | 67.09 (14) |
C8A—Fe1A—C10A | 67.38 (16) | C2B—Fe1B—C10B | 162.81 (14) |
C7A—Fe1A—C10A | 67.14 (14) | C1B—Fe1B—C10B | 126.00 (12) |
C1A—Fe1A—C9A | 162.29 (19) | C8B—Fe1B—C6B | 67.84 (17) |
C2A—Fe1A—C9A | 155.16 (19) | C7B—Fe1B—C6B | 40.80 (17) |
C8A—Fe1A—C9A | 40.11 (16) | C2B—Fe1B—C6B | 126.34 (14) |
C7A—Fe1A—C9A | 67.15 (15) | C1B—Fe1B—C6B | 109.68 (12) |
C10A—Fe1A—C9A | 40.49 (16) | C10B—Fe1B—C6B | 39.15 (13) |
C1A—Fe1A—C6A | 108.29 (12) | C8B—Fe1B—C9B | 39.04 (15) |
C2A—Fe1A—C6A | 124.23 (13) | C7B—Fe1B—C9B | 67.59 (15) |
C8A—Fe1A—C6A | 67.11 (15) | C2B—Fe1B—C9B | 156.34 (14) |
C7A—Fe1A—C6A | 39.97 (13) | C1B—Fe1B—C9B | 160.48 (14) |
C10A—Fe1A—C6A | 40.10 (14) | C10B—Fe1B—C9B | 38.87 (13) |
C9A—Fe1A—C6A | 67.67 (15) | C6B—Fe1B—C9B | 66.34 (13) |
C1A—Fe1A—C5A | 41.22 (10) | C8B—Fe1B—C3B | 106.71 (15) |
C2A—Fe1A—C5A | 69.07 (11) | C7B—Fe1B—C3B | 123.75 (19) |
C8A—Fe1A—C5A | 161.03 (16) | C2B—Fe1B—C3B | 40.72 (12) |
C7A—Fe1A—C5A | 158.43 (15) | C1B—Fe1B—C3B | 69.00 (11) |
C10A—Fe1A—C5A | 109.76 (14) | C10B—Fe1B—C3B | 155.95 (15) |
C9A—Fe1A—C5A | 125.43 (16) | C6B—Fe1B—C3B | 161.99 (17) |
C6A—Fe1A—C5A | 123.73 (14) | C9B—Fe1B—C3B | 120.99 (14) |
C1A—Fe1A—C3A | 68.90 (12) | C8B—Fe1B—C5B | 157.6 (2) |
C2A—Fe1A—C3A | 40.32 (12) | C7B—Fe1B—C5B | 159.5 (2) |
C8A—Fe1A—C3A | 106.78 (15) | C2B—Fe1B—C5B | 68.95 (12) |
C7A—Fe1A—C3A | 123.06 (14) | C1B—Fe1B—C5B | 41.12 (11) |
C10A—Fe1A—C3A | 157.63 (17) | C10B—Fe1B—C5B | 109.70 (12) |
C9A—Fe1A—C3A | 121.11 (17) | C6B—Fe1B—C5B | 123.78 (15) |
C6A—Fe1A—C3A | 159.64 (15) | C9B—Fe1B—C5B | 123.63 (14) |
C5A—Fe1A—C3A | 68.32 (13) | C3B—Fe1B—C5B | 67.84 (12) |
C1A—Fe1A—C4A | 68.50 (12) | C8B—Fe1B—C4B | 122.05 (18) |
C2A—Fe1A—C4A | 68.03 (12) | C7B—Fe1B—C4B | 159.4 (2) |
C8A—Fe1A—C4A | 124.38 (16) | C2B—Fe1B—C4B | 68.25 (13) |
C7A—Fe1A—C4A | 159.59 (15) | C1B—Fe1B—C4B | 68.46 (12) |
C10A—Fe1A—C4A | 123.70 (15) | C10B—Fe1B—C4B | 122.47 (14) |
C9A—Fe1A—C4A | 108.72 (14) | C6B—Fe1B—C4B | 157.43 (17) |
C6A—Fe1A—C4A | 159.05 (15) | C9B—Fe1B—C4B | 107.43 (14) |
C5A—Fe1A—C4A | 40.23 (12) | C3B—Fe1B—C4B | 40.15 (12) |
C3A—Fe1A—C4A | 40.36 (12) | C5B—Fe1B—C4B | 39.92 (11) |
C14A—N1A—C13A | 123.2 (3) | C14B—N1B—C13B | 122.7 (3) |
C14A—N1A—H1NA | 114 (3) | C14B—N1B—H1NB | 116 (2) |
C13A—N1A—H1NA | 117 (3) | C13B—N1B—H1NB | 114 (2) |
C5A—C1A—C2A | 107.0 (2) | C5B—C1B—C2B | 106.7 (2) |
C5A—C1A—C11A | 125.9 (3) | C5B—C1B—C11B | 125.5 (2) |
C2A—C1A—C11A | 126.6 (2) | C2B—C1B—C11B | 127.4 (3) |
C5A—C1A—Fe1A | 70.23 (15) | C5B—C1B—Fe1B | 70.11 (15) |
C2A—C1A—Fe1A | 69.22 (14) | C2B—C1B—Fe1B | 69.09 (14) |
C11A—C1A—Fe1A | 119.28 (17) | C11B—C1B—Fe1B | 120.10 (17) |
C3A—C2A—C1A | 108.5 (3) | C3B—C2B—C1B | 107.6 (3) |
C3A—C2A—Fe1A | 71.10 (16) | C3B—C2B—Fe1B | 70.28 (16) |
C1A—C2A—Fe1A | 69.19 (14) | C1B—C2B—Fe1B | 69.25 (14) |
C3A—C2A—H2A | 125.7 | C3B—C2B—H2B | 126.2 |
C1A—C2A—H2A | 125.7 | C1B—C2B—H2B | 126.2 |
Fe1A—C2A—H2A | 125.5 | Fe1B—C2B—H2B | 125.8 |
C2A—C3A—C4A | 107.8 (3) | C4B—C3B—C2B | 108.4 (3) |
C2A—C3A—Fe1A | 68.58 (15) | C4B—C3B—Fe1B | 70.33 (16) |
C4A—C3A—Fe1A | 69.95 (17) | C2B—C3B—Fe1B | 69.00 (16) |
C2A—C3A—H3A | 126.1 | C4B—C3B—H3B | 125.8 |
C4A—C3A—H3A | 126.1 | C2B—C3B—H3B | 125.8 |
Fe1A—C3A—H3A | 127.0 | Fe1B—C3B—H3B | 126.5 |
C5A—C4A—C3A | 108.8 (3) | C5B—C4B—C3B | 108.8 (3) |
C5A—C4A—Fe1A | 69.34 (16) | C5B—C4B—Fe1B | 69.76 (16) |
C3A—C4A—Fe1A | 69.69 (17) | C3B—C4B—Fe1B | 69.52 (18) |
C5A—C4A—H4A | 125.6 | C5B—C4B—H4B | 125.6 |
C3A—C4A—H4A | 125.6 | C3B—C4B—H4B | 125.6 |
Fe1A—C4A—H4A | 127.0 | Fe1B—C4B—H4B | 126.7 |
C4A—C5A—C1A | 107.8 (3) | C4B—C5B—C1B | 108.4 (3) |
C4A—C5A—Fe1A | 70.43 (17) | C4B—C5B—Fe1B | 70.32 (16) |
C1A—C5A—Fe1A | 68.54 (14) | C1B—C5B—Fe1B | 68.77 (14) |
C4A—C5A—H5A | 126.1 | C4B—C5B—H5B | 125.8 |
C1A—C5A—H5A | 126.1 | C1B—C5B—H5B | 125.8 |
Fe1A—C5A—H5A | 126.5 | Fe1B—C5B—H5B | 126.7 |
C7A—C6A—C10A | 107.5 (3) | C10B—C6B—C7B | 107.6 (3) |
C7A—C6A—Fe1A | 69.79 (18) | C10B—C6B—Fe1B | 70.31 (18) |
C10A—C6A—Fe1A | 69.74 (18) | C7B—C6B—Fe1B | 69.3 (2) |
C7A—C6A—H6A | 126.2 | C10B—C6B—H6B | 126.2 |
C10A—C6A—H6A | 126.2 | C7B—C6B—H6B | 126.2 |
Fe1A—C6A—H6A | 125.8 | Fe1B—C6B—H6B | 125.8 |
C8A—C7A—C6A | 108.7 (3) | C6B—C7B—C8B | 105.1 (3) |
C8A—C7A—Fe1A | 70.0 (2) | C6B—C7B—Fe1B | 69.92 (19) |
C6A—C7A—Fe1A | 70.24 (17) | C8B—C7B—Fe1B | 68.9 (2) |
C8A—C7A—H7A | 125.7 | C6B—C7B—H7B | 127.5 |
C6A—C7A—H7A | 125.7 | C8B—C7B—H7B | 127.5 |
Fe1A—C7A—H7A | 125.7 | Fe1B—C7B—H7B | 125.3 |
C7A—C8A—C9A | 108.7 (4) | C9B—C8B—C7B | 108.2 (4) |
C7A—C8A—Fe1A | 70.45 (19) | C9B—C8B—Fe1B | 71.19 (19) |
C9A—C8A—Fe1A | 70.2 (2) | C7B—C8B—Fe1B | 69.6 (2) |
C7A—C8A—H8A | 125.6 | C9B—C8B—H8B | 125.9 |
C9A—C8A—H8A | 125.6 | C7B—C8B—H8B | 125.9 |
Fe1A—C8A—H8A | 125.3 | Fe1B—C8B—H8B | 125.0 |
C8A—C9A—C10A | 107.1 (3) | C10B—C9B—C8B | 108.9 (4) |
C8A—C9A—Fe1A | 69.7 (2) | C10B—C9B—Fe1B | 70.42 (18) |
C10A—C9A—Fe1A | 69.75 (19) | C8B—C9B—Fe1B | 69.8 (2) |
C8A—C9A—H9A | 126.4 | C10B—C9B—H9B | 125.6 |
C10A—C9A—H9A | 126.4 | C8B—C9B—H9B | 125.6 |
Fe1A—C9A—H9A | 125.7 | Fe1B—C9B—H9B | 125.8 |
C6A—C10A—C9A | 108.0 (3) | C9B—C10B—C6B | 110.2 (3) |
C6A—C10A—Fe1A | 70.17 (18) | C9B—C10B—Fe1B | 70.71 (18) |
C9A—C10A—Fe1A | 69.76 (19) | C6B—C10B—Fe1B | 70.54 (18) |
C6A—C10A—H10A | 126.0 | C9B—C10B—H10B | 124.9 |
C9A—C10A—H10A | 126.0 | C6B—C10B—H10B | 124.9 |
Fe1A—C10A—H10A | 125.6 | Fe1B—C10B—H10B | 125.4 |
O1A—C11A—C1A | 121.6 (3) | O1B—C11B—C1B | 121.1 (3) |
O1A—C11A—C12A | 120.4 (3) | O1B—C11B—C12B | 120.3 (3) |
C1A—C11A—C12A | 118.0 (2) | C1B—C11B—C12B | 118.5 (2) |
C11A—C12A—C13A | 113.0 (2) | C13B—C12B—C11B | 113.6 (2) |
C11A—C12A—H12A | 109.0 | C13B—C12B—H12C | 108.9 |
C13A—C12A—H12A | 109.0 | C11B—C12B—H12C | 108.9 |
C11A—C12A—H12B | 109.0 | C13B—C12B—H12D | 108.9 |
C13A—C12A—H12B | 109.0 | C11B—C12B—H12D | 108.9 |
H12A—C12A—H12B | 107.8 | H12C—C12B—H12D | 107.7 |
N1A—C13A—C12A | 114.9 (3) | N1B—C13B—C12B | 114.0 (2) |
N1A—C13A—H13A | 108.6 | N1B—C13B—H13C | 108.8 |
C12A—C13A—H13A | 108.6 | C12B—C13B—H13C | 108.8 |
N1A—C13A—H13B | 108.6 | N1B—C13B—H13D | 108.8 |
C12A—C13A—H13B | 108.6 | C12B—C13B—H13D | 108.8 |
H13A—C13A—H13B | 107.5 | H13C—C13B—H13D | 107.7 |
N1A—C14A—C15A | 123.2 (3) | N1B—C14B—C15B | 123.0 (3) |
N1A—C14A—C19A | 119.5 (3) | N1B—C14B—C19B | 119.2 (3) |
C15A—C14A—C19A | 117.2 (3) | C15B—C14B—C19B | 117.8 (3) |
C14A—C15A—C16A | 121.8 (3) | C14B—C15B—C16B | 121.3 (3) |
C14A—C15A—H15A | 119.1 | C14B—C15B—H15B | 119.3 |
C16A—C15A—H15A | 119.1 | C16B—C15B—H15B | 119.3 |
C17A—C16A—C15A | 119.3 (3) | C17B—C16B—C15B | 119.5 (3) |
C17A—C16A—C20A | 122.3 (3) | C17B—C16B—C20B | 122.6 (3) |
C15A—C16A—C20A | 118.4 (3) | C15B—C16B—C20B | 117.9 (3) |
C16A—C17A—C18A | 119.2 (3) | C16B—C17B—C18B | 119.5 (3) |
C16A—C17A—H17A | 120.4 | C16B—C17B—H17B | 120.3 |
C18A—C17A—H17A | 120.4 | C18B—C17B—H17B | 120.3 |
C19A—C18A—C17A | 121.0 (3) | C19B—C18B—C17B | 121.0 (3) |
C19A—C18A—H18A | 119.5 | C19B—C18B—H18B | 119.5 |
C17A—C18A—H18A | 119.5 | C17B—C18B—H18B | 119.5 |
C18A—C19A—C14A | 121.5 (3) | C18B—C19B—C14B | 120.9 (3) |
C18A—C19A—H19A | 119.3 | C18B—C19B—H19B | 119.5 |
C14A—C19A—H19A | 119.3 | C14B—C19B—H19B | 119.5 |
O2A—C20A—C16A | 121.3 (3) | O2B—C20B—C16B | 121.6 (3) |
O2A—C20A—C21A | 119.7 (3) | O2B—C20B—C21B | 119.4 (3) |
C16A—C20A—C21A | 119.1 (3) | C16B—C20B—C21B | 119.0 (3) |
C20A—C21A—H21A | 109.5 | C20B—C21B—H21D | 109.5 |
C20A—C21A—H21B | 109.5 | C20B—C21B—H21E | 109.5 |
H21A—C21A—H21B | 109.5 | H21D—C21B—H21E | 109.5 |
C20A—C21A—H21C | 109.5 | C20B—C21B—H21F | 109.5 |
H21A—C21A—H21C | 109.5 | H21D—C21B—H21F | 109.5 |
H21B—C21A—H21C | 109.5 | H21E—C21B—H21F | 109.5 |
Cg2A and Cg2B are the centroids of the C6A–C10A and C6B–C10B rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1A—H1NA···O1Ai | 0.78 (4) | 2.40 (3) | 3.162 (4) | 166 (3) |
N1B—H1NB···O1Bii | 0.80 (4) | 2.46 (3) | 3.253 (4) | 167 (3) |
C9A—H9A···O2Aiii | 0.93 | 2.49 | 3.403 (3) | 166 |
C12A—H12A···O1Aiv | 0.97 | 2.67 | 3.517 (4) | 146 |
C19A—H19A···O1Ai | 0.93 | 2.69 | 3.449 (4) | 139 |
C18B—H18B···O2Bv | 0.93 | 2.49 | 3.336 (4) | 152 |
C7A—H7A···Cg2Avi | 0.93 | 2.98 | 3.721 (4) | 137 |
C7B—H7B···Cg2Bvii | 0.93 | 2.96 | 3.781 (5) | 148 |
Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1, −y+1, −z+1; (iii) −x, y−1/2, −z+1/2; (iv) −x, −y+1, −z+1; (v) x, y+1, z; (vi) −x, y+1/2, −z+1/2; (vii) −x+1, y−1/2, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | [Fe(C5H5)(C16H16NO2)] |
Mr | 375.24 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 22.7768 (8), 7.3978 (1), 22.2118 (7) |
β (°) | 109.642 (4) |
V (Å3) | 3524.87 (19) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.87 |
Crystal size (mm) | 0.14 × 0.10 × 0.08 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur, Sapphire3, Gemini |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) |
Tmin, Tmax | 0.947, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 21526, 8197, 6146 |
Rint | 0.029 |
(sin θ/λ)max (Å−1) | 0.683 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.057, 0.112, 1.13 |
No. of reflections | 8197 |
No. of parameters | 461 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.29, −0.36 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999), PLATON (Spek, 2009) and PARST (Nardelli, 1995).
Cg2A and Cg2B are the centroids of the C6A–C10A and C6B–C10B rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1A—H1NA···O1Ai | 0.78 (4) | 2.40 (3) | 3.162 (4) | 166 (3) |
N1B—H1NB···O1Bii | 0.80 (4) | 2.46 (3) | 3.253 (4) | 167 (3) |
C9A—H9A···O2Aiii | 0.93 | 2.49 | 3.403 (3) | 166 |
C12A—H12A···O1Aiv | 0.97 | 2.67 | 3.517 (4) | 146 |
C19A—H19A···O1Ai | 0.93 | 2.69 | 3.449 (4) | 139 |
C18B—H18B···O2Bv | 0.93 | 2.49 | 3.336 (4) | 152 |
C7A—H7A···Cg2Avi | 0.93 | 2.98 | 3.721 (4) | 137 |
C7B—H7B···Cg2Bvii | 0.93 | 2.96 | 3.781 (5) | 148 |
Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1, −y+1, −z+1; (iii) −x, y−1/2, −z+1/2; (iv) −x, −y+1, −z+1; (v) x, y+1, z; (vi) −x, y+1/2, −z+1/2; (vii) −x+1, y−1/2, −z+3/2. |
Acknowledgements
This work was supported by the Ministry of Education and Science of the Republic of Serbia (project Nos. 172014, 172035 and 172034).
References
Damljanović, I., Stevanović, D., Pejović, A., Vukićević, M., Novaković, S. B., Bogdanović, G. A., Mihajlov-Krstev, T., Radulović, N. & Vukićević, R. D. (2011). J. Organomet. Chem. 696, 3703–3713. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Leka, Z., Novaković, S. B., Pejović, A., Bogdanović, G. A. & Vukićević, R. D. (2012c). Acta Cryst. E68, m231. Web of Science CSD CrossRef IUCr Journals Google Scholar
Leka, Z., Novaković, S. B., Stevanović, D., Bogdanović, G. A. & Vukićević, R. D. (2012a). Acta Cryst. E68, m229. Web of Science CSD CrossRef IUCr Journals Google Scholar
Leka, Z., Novaković, S. B., Stevanović, D., Bogdanović, G. A. & Vukićević, R. D. (2012b). Acta Cryst. E68, m230. Web of Science CSD CrossRef IUCr Journals Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Nardelli, M. (1995). J. Appl. Cryst. 28, 659. CrossRef IUCr Journals Google Scholar
Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England. Google Scholar
Pejović, A., Stevanović, D. I., Damljanović, I., Vukićević, M., Novaković, S. B., Bogdanović, G. A., Mihajilov-Krstev, T., Radulović, N. & Vukićević, R. D. (2012). Helv. Chim. Acta. Accepted. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stevanović, D., Pejović, A., Novaković, S. B., Bogdanović, G. A., Divjaković, V. & Vukićević, R. D. (2012). Acta Cryst. C68, m37–m40. Web of Science CSD CrossRef IUCr Journals Google Scholar
Togni, A. & Hayashi, T. (1995). In Ferrocenes: Homogenous Catalysis, Organic Synthesis, Materials Science. New York: VCH. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Derivatives of ferrocene have attracted great interest due to their physical, chemical and biological properties (Togni & Hayashi, 1995). In the course of our studies of different ferrocene derivatives containing two or more heteroatoms, we have synthesized and determined the crystal structures of a series of 3-(arylamino)-1-ferrocenylpropan-1-ones (Damljanović et al. 2011, Pejović et al. 2012, Stevanović et al. 2012 Leka et al. 2012a,b,c). The present derivative 1-ferrocenyl-3-(3-acetylphenylamino)propan-1-one, crystallizes with two independent molecules (A and B) in the asymmetric unit (Fig. 1). The cyclopentadienyl rings (Cp) within the Fc unit of molecules A and B take a nearly eclipsed geometry; the corresponding torsion angle C1—Cg1—Cg2—C6 has a value of 2.8 and 3.2°, respectively (Cg is centroid of the corresponding Cp ring). Both molecules display a conformation similar to that of previously reported derivatives containing meta-substituted phenyl rings.
The torsion angles C1—C11—C12—C13, C11—C12—C13—N1 and C12—C13—N1—C4 within the aliphatic fragment are -172.0 (2)/167.2 (2), 68.4 (3)/-70.4 (3) and 76.0 (4)/-77.0 (4)° (first value corresponds to molecule A, while the second one corresponds to molecule B). Inversion related molecules arrange into AA and BB dimers via corresponding N1—H1n···O1 hydrogen bonds. The AA and BB dimers further arrange into separate chains via dissimilar C—H···O interactions. In these interactions the acetyl O2 atom engages as an acceptor. On the other hand, the C—H donors engaged in these interactions are not equivalent as the A molecules use cyclopentadienyl while B molecules use phenyl fragments (Fig. 2). The molecules of the same type also interact by relatively strong C—H···π interaction which in both cases include the unsubstituted Cp ring, C7a— H7a···Cg2ai: H···Cg 2.98 Å, H—Perp 2.91 Å, X—H···Cg 137°, (i = -x, y + 1/2, -z + 1/2) and C7b—H7b···Cg2 bii H···Cg 2.96 Å H—Perp 2.72 Å, X—H···Cg 148 °, (ii = -x + 1, y - 1/2, -z + 3/2). There are no significant interactions between the A and B molecules.