metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(3-Acetyl­anilino)-1-ferrocenylpropan-1-one

a'Vinča' Institute of Nuclear Sciences, Laboratory of Theoretical Physics and Condensed Matter Physics, University of Belgrade, PO Box 522, 11001 Belgrade, Serbia, bDepartment of Chemistry, Faculty of Science, University of Kragujevac, R. Domanovića 12, 34000 Kragujevac, Serbia, and cDepartment of Physics, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia
*Correspondence e-mail: snovak@vin.bg.ac.rs

(Received 20 June 2012; accepted 25 June 2012; online 30 June 2012)

The title ferrocene-containing Mannich base, [Fe(C5H5)(C16H16NO2)], crystallizes with two independent mol­ecules (A and B) in the asymmetric unit. Mol­ecules A and B have similar conformations. The dihedral angles between the best planes of the benzene and substituted cyclo­penta­dienyl rings are 88.59 (9) and 84.39 (10)° in A and B, respectively. In the crystal, the independent mol­ecules form centrosymmetric dimers via corresponding N—H⋯O hydrogen bonds. The dimers further arrange via C—H⋯π and C—H⋯O inter­actions. There are no significant inter­actions between the A and B mol­ecules.

Related literature

For the physico-chemical properties of ferrocene-based compounds, see: Togni & Hayashi (1995[Togni, A. & Hayashi, T. (1995). In Ferrocenes: Homogenous Catalysis, Organic Synthesis, Materials Science. New York: VCH.]). For related structures and details of the synthesis, see: Damljanović et al. (2011[Damljanović, I., Stevanović, D., Pejović, A., Vukićević, M., Novaković, S. B., Bogdanović, G. A., Mihajlov-Krstev, T., Radulović, N. & Vukićević, R. D. (2011). J. Organomet. Chem. 696, 3703-3713.]); Pejović et al. (2012[Stevanović, D., Pejović, A., Novaković, S. B., Bogdanović, G. A., Divjaković, V. & Vukićević, R. D. (2012). Acta Cryst. C68, m37-m40.]); Stevanović et al. (2012[Pejović, A., Stevanović, D. I., Damljanović, I., Vukićević, M., Novaković, S. B., Bogdanović, G. A., Mihajilov-Krstev, T., Radulović, N. & Vukićević, R. D. (2012). Helv. Chim. Acta. Accepted.]); Leka et al. (2012a[Leka, Z., Novaković, S. B., Stevanović, D., Bogdanović, G. A. & Vukićević, R. D. (2012a). Acta Cryst. E68, m229.],b[Leka, Z., Novaković, S. B., Stevanović, D., Bogdanović, G. A. & Vukićević, R. D. (2012b). Acta Cryst. E68, m230.],c[Leka, Z., Novaković, S. B., Pejović, A., Bogdanović, G. A. & Vukićević, R. D. (2012c). Acta Cryst. E68, m231.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C5H5)(C16H16NO2)]

  • Mr = 375.24

  • Monoclinic, P 21 /c

  • a = 22.7768 (8) Å

  • b = 7.3978 (1) Å

  • c = 22.2118 (7) Å

  • β = 109.642 (4)°

  • V = 3524.87 (19) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.87 mm−1

  • T = 293 K

  • 0.14 × 0.10 × 0.08 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.947, Tmax = 1.000

  • 21526 measured reflections

  • 8197 independent reflections

  • 6146 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.112

  • S = 1.13

  • 8197 reflections

  • 461 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2A and Cg2B are the centroids of the C6A–C10A and C6B–C10B rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1NA⋯O1Ai 0.78 (4) 2.40 (3) 3.162 (4) 166 (3)
N1B—H1NB⋯O1Bii 0.80 (4) 2.46 (3) 3.253 (4) 167 (3)
C9A—H9A⋯O2Aiii 0.93 2.49 3.403 (3) 166
C12A—H12A⋯O1Aiv 0.97 2.67 3.517 (4) 146
C19A—H19A⋯O1Ai 0.93 2.69 3.449 (4) 139
C18B—H18B⋯O2Bv 0.93 2.49 3.336 (4) 152
C7A—H7ACg2Avi 0.93 2.98 3.721 (4) 137
C7B—H7BCg2Bvii 0.93 2.96 3.781 (5) 148
Symmetry codes: (i) -x, -y, -z+1; (ii) -x+1, -y+1, -z+1; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) -x, -y+1, -z+1; (v) x, y+1, z; (vi) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

Derivatives of ferrocene have attracted great interest due to their physical, chemical and biological properties (Togni & Hayashi, 1995). In the course of our studies of different ferrocene derivatives containing two or more heteroatoms, we have synthesized and determined the crystal structures of a series of 3-(arylamino)-1-ferrocenylpropan-1-ones (Damljanović et al. 2011, Pejović et al. 2012, Stevanović et al. 2012 Leka et al. 2012a,b,c). The present derivative 1-ferrocenyl-3-(3-acetylphenylamino)propan-1-one, crystallizes with two independent molecules (A and B) in the asymmetric unit (Fig. 1). The cyclopentadienyl rings (Cp) within the Fc unit of molecules A and B take a nearly eclipsed geometry; the corresponding torsion angle C1—Cg1—Cg2—C6 has a value of 2.8 and 3.2°, respectively (Cg is centroid of the corresponding Cp ring). Both molecules display a conformation similar to that of previously reported derivatives containing meta-substituted phenyl rings.

The torsion angles C1—C11—C12—C13, C11—C12—C13—N1 and C12—C13—N1—C4 within the aliphatic fragment are -172.0 (2)/167.2 (2), 68.4 (3)/-70.4 (3) and 76.0 (4)/-77.0 (4)° (first value corresponds to molecule A, while the second one corresponds to molecule B). Inversion related molecules arrange into AA and BB dimers via corresponding N1—H1n···O1 hydrogen bonds. The AA and BB dimers further arrange into separate chains via dissimilar C—H···O interactions. In these interactions the acetyl O2 atom engages as an acceptor. On the other hand, the C—H donors engaged in these interactions are not equivalent as the A molecules use cyclopentadienyl while B molecules use phenyl fragments (Fig. 2). The molecules of the same type also interact by relatively strong C—H···π interaction which in both cases include the unsubstituted Cp ring, C7a— H7a···Cg2ai: H···Cg 2.98 Å, H—Perp 2.91 Å, X—H···Cg 137°, (i = -x, y + 1/2, -z + 1/2) and C7b—H7b···Cg2 bii H···Cg 2.96 Å H—Perp 2.72 Å, X—H···Cg 148 °, (ii = -x + 1, y - 1/2, -z + 3/2). There are no significant interactions between the A and B molecules.

Related literature top

For the physico-chemical properties of ferrocene-based compounds, see: Togni & Hayashi (1995). For related structures and details of the synthesis, see: Damljanović et al. (2011); Pejović et al. (2012); Stevanović et al. 2012); Leka et al. (2012a,b,c).

Experimental top

An aza-Michael addition of arylamines to a conjugated enone, acryloylferrocene, has been achieved by ultrasonic irradiation of the mixture of these reactants and the catalyst - montmorillonite K-10. This solvent-free reaction, yielding ferrocene containing Mannich bases (3-(arylamino)-1-ferrocenylpropan-1-ones), has been performed through the use of a simple ultrasonic cleaner. The details of the synthesis are described by Pejović et al. (2012b).

Refinement top

H atoms bonded to C atoms were placed at geometrically calculated positions and refined using a riding model. C—H distances were fixed to 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl C atoms, respectively. The Uiso(H) values were set to 1.2 times Ueq of the corresponding aromatic and methylene C atoms. The Ueq values of the H atoms attached to methyl C atoms were set equal to 1.5 times Ueq of the parent atom. H atoms attached to N atoms were refined isotropically.

Structure description top

Derivatives of ferrocene have attracted great interest due to their physical, chemical and biological properties (Togni & Hayashi, 1995). In the course of our studies of different ferrocene derivatives containing two or more heteroatoms, we have synthesized and determined the crystal structures of a series of 3-(arylamino)-1-ferrocenylpropan-1-ones (Damljanović et al. 2011, Pejović et al. 2012, Stevanović et al. 2012 Leka et al. 2012a,b,c). The present derivative 1-ferrocenyl-3-(3-acetylphenylamino)propan-1-one, crystallizes with two independent molecules (A and B) in the asymmetric unit (Fig. 1). The cyclopentadienyl rings (Cp) within the Fc unit of molecules A and B take a nearly eclipsed geometry; the corresponding torsion angle C1—Cg1—Cg2—C6 has a value of 2.8 and 3.2°, respectively (Cg is centroid of the corresponding Cp ring). Both molecules display a conformation similar to that of previously reported derivatives containing meta-substituted phenyl rings.

The torsion angles C1—C11—C12—C13, C11—C12—C13—N1 and C12—C13—N1—C4 within the aliphatic fragment are -172.0 (2)/167.2 (2), 68.4 (3)/-70.4 (3) and 76.0 (4)/-77.0 (4)° (first value corresponds to molecule A, while the second one corresponds to molecule B). Inversion related molecules arrange into AA and BB dimers via corresponding N1—H1n···O1 hydrogen bonds. The AA and BB dimers further arrange into separate chains via dissimilar C—H···O interactions. In these interactions the acetyl O2 atom engages as an acceptor. On the other hand, the C—H donors engaged in these interactions are not equivalent as the A molecules use cyclopentadienyl while B molecules use phenyl fragments (Fig. 2). The molecules of the same type also interact by relatively strong C—H···π interaction which in both cases include the unsubstituted Cp ring, C7a— H7a···Cg2ai: H···Cg 2.98 Å, H—Perp 2.91 Å, X—H···Cg 137°, (i = -x, y + 1/2, -z + 1/2) and C7b—H7b···Cg2 bii H···Cg 2.96 Å H—Perp 2.72 Å, X—H···Cg 148 °, (ii = -x + 1, y - 1/2, -z + 3/2). There are no significant interactions between the A and B molecules.

For the physico-chemical properties of ferrocene-based compounds, see: Togni & Hayashi (1995). For related structures and details of the synthesis, see: Damljanović et al. (2011); Pejović et al. (2012); Stevanović et al. 2012); Leka et al. (2012a,b,c).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999), PLATON (Spek, 2009) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels and 40% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The interconnection of AA dimers (a) and BB dimers (b) into corresponding chains via dissimilar C—H···O interactions.
3-(3-Acetylanilino)-1-ferrocenylpropan-1-one top
Crystal data top
[Fe(C5H5)(C16H16NO2)]F(000) = 1568
Mr = 375.24Dx = 1.414 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7645 reflections
a = 22.7768 (8) Åθ = 3.0–29.0°
b = 7.3978 (1) ŵ = 0.87 mm1
c = 22.2118 (7) ÅT = 293 K
β = 109.642 (4)°Prismatic, orange
V = 3524.87 (19) Å30.14 × 0.10 × 0.08 mm
Z = 8
Data collection top
Oxford Diffraction Xcalibur, Sapphire3, Gemini
diffractometer
8197 independent reflections
Radiation source: Enhance (Mo) X-ray Source6146 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 16.3280 pixels mm-1θmax = 29.0°, θmin = 3.0°
ω scansh = 2917
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1010
Tmin = 0.947, Tmax = 1.000l = 2829
21526 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.13 w = 1/[σ2(Fo2) + (0.0329P)2 + 1.5937P]
where P = (Fo2 + 2Fc2)/3
8197 reflections(Δ/σ)max = 0.001
461 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
[Fe(C5H5)(C16H16NO2)]V = 3524.87 (19) Å3
Mr = 375.24Z = 8
Monoclinic, P21/cMo Kα radiation
a = 22.7768 (8) ŵ = 0.87 mm1
b = 7.3978 (1) ÅT = 293 K
c = 22.2118 (7) Å0.14 × 0.10 × 0.08 mm
β = 109.642 (4)°
Data collection top
Oxford Diffraction Xcalibur, Sapphire3, Gemini
diffractometer
8197 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
6146 reflections with I > 2σ(I)
Tmin = 0.947, Tmax = 1.000Rint = 0.029
21526 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.13Δρmax = 0.29 e Å3
8197 reflectionsΔρmin = 0.36 e Å3
461 parameters
Special details top

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. 'CrysAlisPro, (Oxford Diffraction, 2009)'

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe1A0.081087 (18)0.18406 (5)0.305745 (18)0.04314 (12)
O1A0.02446 (10)0.2106 (3)0.48588 (10)0.0623 (6)
O2A0.23814 (11)0.3642 (3)0.37407 (12)0.0775 (7)
N1A0.11138 (14)0.1132 (4)0.50418 (14)0.0629 (8)
C1A0.06883 (12)0.3385 (3)0.38385 (13)0.0423 (6)
C2A0.06635 (14)0.4463 (3)0.33120 (14)0.0486 (7)
H2A0.03250.51510.33020.058*
C3A0.12352 (15)0.4306 (4)0.28136 (16)0.0597 (8)
H3A0.13430.48720.24170.072*
C4A0.16201 (15)0.3133 (4)0.30205 (17)0.0621 (8)
H4A0.20250.27950.27810.074*
C5A0.12901 (13)0.2562 (4)0.36479 (15)0.0532 (7)
H5A0.14380.17860.38940.064*
C6A0.01325 (17)0.0078 (4)0.32782 (16)0.0658 (9)
H6A0.01700.02510.36770.079*
C7A0.00816 (17)0.1032 (5)0.27946 (19)0.0699 (10)
H7A0.02630.17320.28140.084*
C8A0.0624 (2)0.0925 (6)0.22836 (18)0.0834 (12)
H8A0.07090.15440.18990.100*
C9A0.10267 (18)0.0259 (6)0.2435 (2)0.0933 (15)
H9A0.14260.05780.21720.112*
C10A0.0718 (2)0.0885 (4)0.3058 (2)0.0819 (13)
H10A0.08770.16960.32830.098*
C11A0.01706 (13)0.2991 (3)0.44233 (13)0.0455 (6)
C12A0.04656 (13)0.3730 (4)0.44832 (13)0.0476 (7)
H12A0.04550.50390.45070.057*
H12B0.05610.34140.41030.057*
C13A0.09779 (14)0.3020 (4)0.50651 (14)0.0592 (8)
H13A0.13550.37030.51170.071*
H13B0.08600.32380.54400.071*
C14A0.14484 (13)0.0446 (4)0.46782 (13)0.0479 (7)
C15A0.17757 (12)0.1524 (4)0.43880 (12)0.0450 (6)
H15A0.17480.27750.44130.054*
C16A0.21447 (12)0.0782 (4)0.40605 (12)0.0457 (6)
C17A0.21819 (14)0.1082 (4)0.40162 (14)0.0568 (8)
H17A0.24280.15970.38020.068*
C18A0.18474 (15)0.2168 (4)0.42941 (15)0.0614 (8)
H18A0.18670.34180.42610.074*
C19A0.14905 (14)0.1431 (4)0.46150 (14)0.0554 (7)
H19A0.12700.21890.47960.066*
C20A0.24742 (13)0.2031 (4)0.37585 (13)0.0517 (7)
C21A0.29297 (16)0.1271 (5)0.34724 (17)0.0735 (10)
H21A0.27140.05050.31180.110*
H21B0.32400.05780.37890.110*
H21C0.31280.22410.33270.110*
Fe1B0.584630 (19)0.44297 (5)0.692237 (17)0.04318 (12)
O1B0.53611 (10)0.3022 (3)0.51869 (9)0.0588 (5)
O2B0.27338 (13)0.0162 (3)0.62706 (13)0.0863 (8)
N1B0.39339 (14)0.3325 (4)0.50188 (13)0.0618 (7)
C1B0.58556 (13)0.2491 (3)0.62822 (12)0.0415 (6)
C2B0.59017 (15)0.1705 (4)0.68891 (13)0.0531 (8)
H2B0.56230.08890.69640.064*
C3B0.64465 (16)0.2398 (4)0.73505 (15)0.0626 (9)
H3B0.65890.21150.77840.075*
C4B0.67359 (15)0.3584 (4)0.70438 (15)0.0588 (8)
H4B0.71020.42210.72410.071*
C5B0.63833 (13)0.3650 (4)0.63939 (13)0.0492 (7)
H5B0.64760.43330.60860.059*
C6B0.50605 (16)0.5941 (5)0.6572 (2)0.0779 (11)
H6B0.47560.58060.61720.093*
C7B0.5077 (2)0.5053 (5)0.7140 (3)0.111 (2)
H7B0.47910.42220.71920.134*
C8B0.5628 (3)0.5707 (6)0.76194 (19)0.0965 (16)
H8B0.57690.53730.80480.116*
C9B0.59092 (17)0.6895 (4)0.73422 (18)0.0696 (10)
H9B0.62760.75180.75500.084*
C10B0.55702 (16)0.7029 (4)0.67149 (17)0.0609 (8)
H10B0.56710.77600.64230.073*
C11B0.53347 (13)0.2336 (3)0.56780 (12)0.0427 (6)
C12B0.47645 (13)0.1280 (4)0.56710 (13)0.0470 (7)
H12C0.48680.00040.57150.056*
H12D0.46500.16350.60370.056*
C13B0.42102 (14)0.1555 (4)0.50708 (13)0.0547 (8)
H13C0.43400.13530.47030.066*
H13D0.38960.06570.50590.066*
C14B0.35504 (13)0.3833 (4)0.53600 (12)0.0466 (7)
C15B0.32807 (12)0.2599 (4)0.56590 (12)0.0462 (7)
H15B0.33710.13760.56480.055*
C16B0.28760 (12)0.3157 (4)0.59755 (12)0.0458 (6)
C17B0.27401 (14)0.4969 (4)0.59914 (14)0.0583 (8)
H17B0.24700.53570.62000.070*
C18B0.30080 (16)0.6205 (4)0.56956 (15)0.0651 (9)
H18B0.29180.74270.57080.078*
C19B0.34035 (15)0.5658 (4)0.53854 (15)0.0606 (8)
H19B0.35770.65140.51890.073*
C20B0.26079 (14)0.1741 (5)0.62884 (14)0.0570 (8)
C21B0.21885 (16)0.2309 (5)0.66479 (16)0.0763 (10)
H21D0.20390.12580.68050.114*
H21E0.18410.29730.63680.114*
H21F0.24160.30620.70010.114*
H1NB0.4136 (15)0.412 (4)0.4938 (15)0.067 (12)*
H1NA0.0876 (16)0.046 (5)0.5099 (16)0.069 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe1A0.0454 (2)0.0316 (2)0.0589 (2)0.00040 (17)0.02608 (19)0.00628 (17)
O1A0.0670 (14)0.0692 (14)0.0641 (13)0.0013 (11)0.0396 (11)0.0046 (11)
O2A0.0756 (17)0.0597 (15)0.1129 (19)0.0065 (13)0.0524 (14)0.0192 (14)
N1A0.0641 (19)0.0639 (18)0.0759 (18)0.0081 (15)0.0438 (15)0.0074 (15)
C1A0.0450 (16)0.0299 (13)0.0610 (17)0.0024 (11)0.0298 (13)0.0096 (12)
C2A0.0534 (18)0.0280 (13)0.0715 (18)0.0014 (12)0.0303 (15)0.0003 (13)
C3A0.060 (2)0.0422 (17)0.073 (2)0.0126 (15)0.0184 (16)0.0042 (15)
C4A0.0450 (18)0.0497 (18)0.091 (2)0.0066 (15)0.0228 (17)0.0142 (17)
C5A0.0469 (17)0.0449 (16)0.080 (2)0.0004 (13)0.0380 (16)0.0093 (15)
C6A0.067 (2)0.0545 (19)0.074 (2)0.0249 (18)0.0217 (18)0.0140 (17)
C7A0.070 (2)0.059 (2)0.103 (3)0.0033 (18)0.058 (2)0.020 (2)
C8A0.105 (3)0.087 (3)0.067 (2)0.023 (3)0.040 (2)0.015 (2)
C9A0.059 (2)0.081 (3)0.129 (4)0.002 (2)0.017 (2)0.068 (3)
C10A0.104 (3)0.0265 (16)0.147 (4)0.0020 (18)0.084 (3)0.013 (2)
C11A0.0554 (17)0.0337 (14)0.0595 (17)0.0009 (13)0.0355 (14)0.0115 (13)
C12A0.0508 (17)0.0402 (15)0.0593 (17)0.0036 (13)0.0283 (14)0.0121 (13)
C13A0.0544 (19)0.070 (2)0.0595 (18)0.0013 (16)0.0279 (15)0.0161 (16)
C14A0.0415 (16)0.0521 (17)0.0500 (15)0.0049 (13)0.0153 (12)0.0026 (13)
C15A0.0404 (15)0.0420 (15)0.0521 (16)0.0053 (12)0.0147 (12)0.0007 (12)
C16A0.0393 (15)0.0503 (17)0.0451 (15)0.0043 (13)0.0112 (12)0.0005 (13)
C17A0.058 (2)0.0585 (19)0.0576 (18)0.0153 (16)0.0246 (15)0.0003 (15)
C18A0.071 (2)0.0426 (17)0.072 (2)0.0066 (15)0.0260 (17)0.0025 (15)
C19A0.0573 (19)0.0503 (18)0.0631 (18)0.0006 (15)0.0262 (15)0.0071 (14)
C20A0.0394 (16)0.061 (2)0.0536 (17)0.0037 (14)0.0143 (13)0.0045 (15)
C21A0.065 (2)0.085 (2)0.086 (2)0.0001 (19)0.0458 (19)0.000 (2)
Fe1B0.0552 (3)0.0314 (2)0.0494 (2)0.01005 (17)0.02617 (19)0.00179 (16)
O1B0.0706 (14)0.0640 (13)0.0508 (11)0.0013 (11)0.0322 (10)0.0074 (10)
O2B0.108 (2)0.0609 (15)0.114 (2)0.0019 (15)0.0685 (17)0.0018 (14)
N1B0.0643 (19)0.0634 (19)0.0683 (17)0.0170 (15)0.0365 (14)0.0158 (14)
C1B0.0535 (17)0.0294 (13)0.0509 (15)0.0117 (12)0.0297 (13)0.0010 (11)
C2B0.075 (2)0.0303 (14)0.0614 (18)0.0166 (14)0.0330 (16)0.0084 (13)
C3B0.080 (2)0.0477 (18)0.0513 (17)0.0283 (17)0.0113 (16)0.0068 (14)
C4B0.0520 (19)0.0482 (17)0.073 (2)0.0169 (15)0.0174 (16)0.0005 (16)
C5B0.0515 (17)0.0440 (16)0.0606 (18)0.0114 (13)0.0300 (14)0.0011 (13)
C6B0.0431 (19)0.068 (2)0.111 (3)0.0168 (18)0.0103 (19)0.039 (2)
C7B0.123 (4)0.0350 (18)0.244 (6)0.012 (2)0.152 (4)0.026 (3)
C8B0.173 (5)0.069 (3)0.079 (3)0.048 (3)0.084 (3)0.009 (2)
C9B0.067 (2)0.053 (2)0.085 (3)0.0127 (17)0.0195 (19)0.0221 (18)
C10B0.073 (2)0.0359 (16)0.081 (2)0.0176 (16)0.0355 (18)0.0045 (16)
C11B0.0549 (17)0.0315 (13)0.0518 (16)0.0119 (12)0.0312 (13)0.0015 (12)
C12B0.0552 (18)0.0378 (14)0.0568 (16)0.0083 (13)0.0307 (14)0.0018 (13)
C13B0.0579 (19)0.0591 (19)0.0567 (17)0.0085 (15)0.0318 (15)0.0066 (14)
C14B0.0431 (16)0.0531 (17)0.0415 (14)0.0116 (13)0.0113 (12)0.0025 (13)
C15B0.0449 (16)0.0459 (16)0.0465 (15)0.0111 (13)0.0135 (12)0.0030 (12)
C16B0.0385 (15)0.0538 (17)0.0424 (14)0.0069 (13)0.0100 (11)0.0091 (13)
C17B0.0517 (19)0.062 (2)0.0617 (19)0.0115 (16)0.0203 (15)0.0132 (16)
C18B0.070 (2)0.0454 (17)0.076 (2)0.0168 (16)0.0198 (18)0.0056 (16)
C19B0.061 (2)0.0530 (19)0.0670 (19)0.0085 (16)0.0207 (16)0.0079 (16)
C20B0.0475 (18)0.070 (2)0.0546 (17)0.0027 (16)0.0184 (14)0.0096 (16)
C21B0.068 (2)0.100 (3)0.074 (2)0.010 (2)0.0410 (18)0.001 (2)
Geometric parameters (Å, º) top
Fe1A—C1A2.017 (2)Fe1B—C8B2.014 (3)
Fe1A—C2A2.017 (3)Fe1B—C7B2.022 (3)
Fe1A—C8A2.021 (3)Fe1B—C2B2.022 (3)
Fe1A—C7A2.027 (3)Fe1B—C1B2.025 (2)
Fe1A—C10A2.027 (3)Fe1B—C10B2.028 (3)
Fe1A—C9A2.028 (3)Fe1B—C6B2.031 (3)
Fe1A—C6A2.033 (3)Fe1B—C9B2.031 (3)
Fe1A—C5A2.039 (3)Fe1B—C3B2.039 (3)
Fe1A—C3A2.050 (3)Fe1B—C5B2.043 (3)
Fe1A—C4A2.053 (3)Fe1B—C4B2.050 (3)
O1A—C11A1.226 (3)O1B—C11B1.223 (3)
O2A—C20A1.209 (3)O2B—C20B1.206 (4)
N1A—C14A1.380 (4)N1B—C14B1.387 (4)
N1A—C13A1.435 (4)N1B—C13B1.441 (4)
N1A—H1NA0.78 (3)N1B—H1NB0.80 (3)
C1A—C5A1.428 (4)C1B—C5B1.429 (4)
C1A—C2A1.432 (4)C1B—C2B1.439 (3)
C1A—C11A1.460 (4)C1B—C11B1.467 (4)
C2A—C3A1.402 (4)C2B—C3B1.413 (4)
C2A—H2A0.9300C2B—H2B0.9300
C3A—C4A1.416 (4)C3B—C4B1.404 (4)
C3A—H3A0.9300C3B—H3B0.9300
C4A—C5A1.408 (4)C4B—C5B1.397 (4)
C4A—H4A0.9300C4B—H4B0.9300
C5A—H5A0.9300C5B—H5B0.9300
C6A—C7A1.388 (5)C6B—C10B1.360 (5)
C6A—C10A1.392 (5)C6B—C7B1.413 (6)
C6A—H6A0.9300C6B—H6B0.9300
C7A—C8A1.370 (5)C7B—C8B1.430 (6)
C7A—H7A0.9300C7B—H7B0.9300
C8A—C9A1.389 (6)C8B—C9B1.352 (5)
C8A—H8A0.9300C8B—H8B0.9300
C9A—C10A1.403 (5)C9B—C10B1.351 (5)
C9A—H9A0.9300C9B—H9B0.9300
C10A—H10A0.9300C10B—H10B0.9300
C11A—C12A1.512 (4)C11B—C12B1.511 (4)
C12A—C13A1.515 (4)C12B—C13B1.510 (4)
C12A—H12A0.9700C12B—H12C0.9700
C12A—H12B0.9700C12B—H12D0.9700
C13A—H13A0.9700C13B—H13C0.9700
C13A—H13B0.9700C13B—H13D0.9700
C14A—C15A1.389 (4)C14B—C15B1.388 (4)
C14A—C19A1.402 (4)C14B—C19B1.397 (4)
C15A—C16A1.396 (4)C15B—C16B1.396 (3)
C15A—H15A0.9300C15B—H15B0.9300
C16A—C17A1.387 (4)C16B—C17B1.379 (4)
C16A—C20A1.485 (4)C16B—C20B1.497 (4)
C17A—C18A1.387 (4)C17B—C18B1.382 (4)
C17A—H17A0.9300C17B—H17B0.9300
C18A—C19A1.362 (4)C18B—C19B1.366 (4)
C18A—H18A0.9300C18B—H18B0.9300
C19A—H19A0.9300C19B—H19B0.9300
C20A—C21A1.497 (4)C20B—C21B1.497 (4)
C21A—H21A0.9600C21B—H21D0.9600
C21A—H21B0.9600C21B—H21E0.9600
C21A—H21C0.9600C21B—H21F0.9600
C1A—Fe1A—C2A41.59 (10)C8B—Fe1B—C7B41.51 (18)
C1A—Fe1A—C8A155.99 (16)C8B—Fe1B—C2B122.03 (15)
C2A—Fe1A—C8A119.86 (16)C7B—Fe1B—C2B107.80 (14)
C1A—Fe1A—C7A121.67 (13)C8B—Fe1B—C1B159.39 (18)
C2A—Fe1A—C7A106.81 (13)C7B—Fe1B—C1B122.96 (17)
C8A—Fe1A—C7A39.57 (14)C2B—Fe1B—C1B41.66 (10)
C1A—Fe1A—C10A125.37 (16)C8B—Fe1B—C10B65.91 (14)
C2A—Fe1A—C10A161.63 (17)C7B—Fe1B—C10B67.09 (14)
C8A—Fe1A—C10A67.38 (16)C2B—Fe1B—C10B162.81 (14)
C7A—Fe1A—C10A67.14 (14)C1B—Fe1B—C10B126.00 (12)
C1A—Fe1A—C9A162.29 (19)C8B—Fe1B—C6B67.84 (17)
C2A—Fe1A—C9A155.16 (19)C7B—Fe1B—C6B40.80 (17)
C8A—Fe1A—C9A40.11 (16)C2B—Fe1B—C6B126.34 (14)
C7A—Fe1A—C9A67.15 (15)C1B—Fe1B—C6B109.68 (12)
C10A—Fe1A—C9A40.49 (16)C10B—Fe1B—C6B39.15 (13)
C1A—Fe1A—C6A108.29 (12)C8B—Fe1B—C9B39.04 (15)
C2A—Fe1A—C6A124.23 (13)C7B—Fe1B—C9B67.59 (15)
C8A—Fe1A—C6A67.11 (15)C2B—Fe1B—C9B156.34 (14)
C7A—Fe1A—C6A39.97 (13)C1B—Fe1B—C9B160.48 (14)
C10A—Fe1A—C6A40.10 (14)C10B—Fe1B—C9B38.87 (13)
C9A—Fe1A—C6A67.67 (15)C6B—Fe1B—C9B66.34 (13)
C1A—Fe1A—C5A41.22 (10)C8B—Fe1B—C3B106.71 (15)
C2A—Fe1A—C5A69.07 (11)C7B—Fe1B—C3B123.75 (19)
C8A—Fe1A—C5A161.03 (16)C2B—Fe1B—C3B40.72 (12)
C7A—Fe1A—C5A158.43 (15)C1B—Fe1B—C3B69.00 (11)
C10A—Fe1A—C5A109.76 (14)C10B—Fe1B—C3B155.95 (15)
C9A—Fe1A—C5A125.43 (16)C6B—Fe1B—C3B161.99 (17)
C6A—Fe1A—C5A123.73 (14)C9B—Fe1B—C3B120.99 (14)
C1A—Fe1A—C3A68.90 (12)C8B—Fe1B—C5B157.6 (2)
C2A—Fe1A—C3A40.32 (12)C7B—Fe1B—C5B159.5 (2)
C8A—Fe1A—C3A106.78 (15)C2B—Fe1B—C5B68.95 (12)
C7A—Fe1A—C3A123.06 (14)C1B—Fe1B—C5B41.12 (11)
C10A—Fe1A—C3A157.63 (17)C10B—Fe1B—C5B109.70 (12)
C9A—Fe1A—C3A121.11 (17)C6B—Fe1B—C5B123.78 (15)
C6A—Fe1A—C3A159.64 (15)C9B—Fe1B—C5B123.63 (14)
C5A—Fe1A—C3A68.32 (13)C3B—Fe1B—C5B67.84 (12)
C1A—Fe1A—C4A68.50 (12)C8B—Fe1B—C4B122.05 (18)
C2A—Fe1A—C4A68.03 (12)C7B—Fe1B—C4B159.4 (2)
C8A—Fe1A—C4A124.38 (16)C2B—Fe1B—C4B68.25 (13)
C7A—Fe1A—C4A159.59 (15)C1B—Fe1B—C4B68.46 (12)
C10A—Fe1A—C4A123.70 (15)C10B—Fe1B—C4B122.47 (14)
C9A—Fe1A—C4A108.72 (14)C6B—Fe1B—C4B157.43 (17)
C6A—Fe1A—C4A159.05 (15)C9B—Fe1B—C4B107.43 (14)
C5A—Fe1A—C4A40.23 (12)C3B—Fe1B—C4B40.15 (12)
C3A—Fe1A—C4A40.36 (12)C5B—Fe1B—C4B39.92 (11)
C14A—N1A—C13A123.2 (3)C14B—N1B—C13B122.7 (3)
C14A—N1A—H1NA114 (3)C14B—N1B—H1NB116 (2)
C13A—N1A—H1NA117 (3)C13B—N1B—H1NB114 (2)
C5A—C1A—C2A107.0 (2)C5B—C1B—C2B106.7 (2)
C5A—C1A—C11A125.9 (3)C5B—C1B—C11B125.5 (2)
C2A—C1A—C11A126.6 (2)C2B—C1B—C11B127.4 (3)
C5A—C1A—Fe1A70.23 (15)C5B—C1B—Fe1B70.11 (15)
C2A—C1A—Fe1A69.22 (14)C2B—C1B—Fe1B69.09 (14)
C11A—C1A—Fe1A119.28 (17)C11B—C1B—Fe1B120.10 (17)
C3A—C2A—C1A108.5 (3)C3B—C2B—C1B107.6 (3)
C3A—C2A—Fe1A71.10 (16)C3B—C2B—Fe1B70.28 (16)
C1A—C2A—Fe1A69.19 (14)C1B—C2B—Fe1B69.25 (14)
C3A—C2A—H2A125.7C3B—C2B—H2B126.2
C1A—C2A—H2A125.7C1B—C2B—H2B126.2
Fe1A—C2A—H2A125.5Fe1B—C2B—H2B125.8
C2A—C3A—C4A107.8 (3)C4B—C3B—C2B108.4 (3)
C2A—C3A—Fe1A68.58 (15)C4B—C3B—Fe1B70.33 (16)
C4A—C3A—Fe1A69.95 (17)C2B—C3B—Fe1B69.00 (16)
C2A—C3A—H3A126.1C4B—C3B—H3B125.8
C4A—C3A—H3A126.1C2B—C3B—H3B125.8
Fe1A—C3A—H3A127.0Fe1B—C3B—H3B126.5
C5A—C4A—C3A108.8 (3)C5B—C4B—C3B108.8 (3)
C5A—C4A—Fe1A69.34 (16)C5B—C4B—Fe1B69.76 (16)
C3A—C4A—Fe1A69.69 (17)C3B—C4B—Fe1B69.52 (18)
C5A—C4A—H4A125.6C5B—C4B—H4B125.6
C3A—C4A—H4A125.6C3B—C4B—H4B125.6
Fe1A—C4A—H4A127.0Fe1B—C4B—H4B126.7
C4A—C5A—C1A107.8 (3)C4B—C5B—C1B108.4 (3)
C4A—C5A—Fe1A70.43 (17)C4B—C5B—Fe1B70.32 (16)
C1A—C5A—Fe1A68.54 (14)C1B—C5B—Fe1B68.77 (14)
C4A—C5A—H5A126.1C4B—C5B—H5B125.8
C1A—C5A—H5A126.1C1B—C5B—H5B125.8
Fe1A—C5A—H5A126.5Fe1B—C5B—H5B126.7
C7A—C6A—C10A107.5 (3)C10B—C6B—C7B107.6 (3)
C7A—C6A—Fe1A69.79 (18)C10B—C6B—Fe1B70.31 (18)
C10A—C6A—Fe1A69.74 (18)C7B—C6B—Fe1B69.3 (2)
C7A—C6A—H6A126.2C10B—C6B—H6B126.2
C10A—C6A—H6A126.2C7B—C6B—H6B126.2
Fe1A—C6A—H6A125.8Fe1B—C6B—H6B125.8
C8A—C7A—C6A108.7 (3)C6B—C7B—C8B105.1 (3)
C8A—C7A—Fe1A70.0 (2)C6B—C7B—Fe1B69.92 (19)
C6A—C7A—Fe1A70.24 (17)C8B—C7B—Fe1B68.9 (2)
C8A—C7A—H7A125.7C6B—C7B—H7B127.5
C6A—C7A—H7A125.7C8B—C7B—H7B127.5
Fe1A—C7A—H7A125.7Fe1B—C7B—H7B125.3
C7A—C8A—C9A108.7 (4)C9B—C8B—C7B108.2 (4)
C7A—C8A—Fe1A70.45 (19)C9B—C8B—Fe1B71.19 (19)
C9A—C8A—Fe1A70.2 (2)C7B—C8B—Fe1B69.6 (2)
C7A—C8A—H8A125.6C9B—C8B—H8B125.9
C9A—C8A—H8A125.6C7B—C8B—H8B125.9
Fe1A—C8A—H8A125.3Fe1B—C8B—H8B125.0
C8A—C9A—C10A107.1 (3)C10B—C9B—C8B108.9 (4)
C8A—C9A—Fe1A69.7 (2)C10B—C9B—Fe1B70.42 (18)
C10A—C9A—Fe1A69.75 (19)C8B—C9B—Fe1B69.8 (2)
C8A—C9A—H9A126.4C10B—C9B—H9B125.6
C10A—C9A—H9A126.4C8B—C9B—H9B125.6
Fe1A—C9A—H9A125.7Fe1B—C9B—H9B125.8
C6A—C10A—C9A108.0 (3)C9B—C10B—C6B110.2 (3)
C6A—C10A—Fe1A70.17 (18)C9B—C10B—Fe1B70.71 (18)
C9A—C10A—Fe1A69.76 (19)C6B—C10B—Fe1B70.54 (18)
C6A—C10A—H10A126.0C9B—C10B—H10B124.9
C9A—C10A—H10A126.0C6B—C10B—H10B124.9
Fe1A—C10A—H10A125.6Fe1B—C10B—H10B125.4
O1A—C11A—C1A121.6 (3)O1B—C11B—C1B121.1 (3)
O1A—C11A—C12A120.4 (3)O1B—C11B—C12B120.3 (3)
C1A—C11A—C12A118.0 (2)C1B—C11B—C12B118.5 (2)
C11A—C12A—C13A113.0 (2)C13B—C12B—C11B113.6 (2)
C11A—C12A—H12A109.0C13B—C12B—H12C108.9
C13A—C12A—H12A109.0C11B—C12B—H12C108.9
C11A—C12A—H12B109.0C13B—C12B—H12D108.9
C13A—C12A—H12B109.0C11B—C12B—H12D108.9
H12A—C12A—H12B107.8H12C—C12B—H12D107.7
N1A—C13A—C12A114.9 (3)N1B—C13B—C12B114.0 (2)
N1A—C13A—H13A108.6N1B—C13B—H13C108.8
C12A—C13A—H13A108.6C12B—C13B—H13C108.8
N1A—C13A—H13B108.6N1B—C13B—H13D108.8
C12A—C13A—H13B108.6C12B—C13B—H13D108.8
H13A—C13A—H13B107.5H13C—C13B—H13D107.7
N1A—C14A—C15A123.2 (3)N1B—C14B—C15B123.0 (3)
N1A—C14A—C19A119.5 (3)N1B—C14B—C19B119.2 (3)
C15A—C14A—C19A117.2 (3)C15B—C14B—C19B117.8 (3)
C14A—C15A—C16A121.8 (3)C14B—C15B—C16B121.3 (3)
C14A—C15A—H15A119.1C14B—C15B—H15B119.3
C16A—C15A—H15A119.1C16B—C15B—H15B119.3
C17A—C16A—C15A119.3 (3)C17B—C16B—C15B119.5 (3)
C17A—C16A—C20A122.3 (3)C17B—C16B—C20B122.6 (3)
C15A—C16A—C20A118.4 (3)C15B—C16B—C20B117.9 (3)
C16A—C17A—C18A119.2 (3)C16B—C17B—C18B119.5 (3)
C16A—C17A—H17A120.4C16B—C17B—H17B120.3
C18A—C17A—H17A120.4C18B—C17B—H17B120.3
C19A—C18A—C17A121.0 (3)C19B—C18B—C17B121.0 (3)
C19A—C18A—H18A119.5C19B—C18B—H18B119.5
C17A—C18A—H18A119.5C17B—C18B—H18B119.5
C18A—C19A—C14A121.5 (3)C18B—C19B—C14B120.9 (3)
C18A—C19A—H19A119.3C18B—C19B—H19B119.5
C14A—C19A—H19A119.3C14B—C19B—H19B119.5
O2A—C20A—C16A121.3 (3)O2B—C20B—C16B121.6 (3)
O2A—C20A—C21A119.7 (3)O2B—C20B—C21B119.4 (3)
C16A—C20A—C21A119.1 (3)C16B—C20B—C21B119.0 (3)
C20A—C21A—H21A109.5C20B—C21B—H21D109.5
C20A—C21A—H21B109.5C20B—C21B—H21E109.5
H21A—C21A—H21B109.5H21D—C21B—H21E109.5
C20A—C21A—H21C109.5C20B—C21B—H21F109.5
H21A—C21A—H21C109.5H21D—C21B—H21F109.5
H21B—C21A—H21C109.5H21E—C21B—H21F109.5
Hydrogen-bond geometry (Å, º) top
Cg2A and Cg2B are the centroids of the C6A–C10A and C6B–C10B rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1A—H1NA···O1Ai0.78 (4)2.40 (3)3.162 (4)166 (3)
N1B—H1NB···O1Bii0.80 (4)2.46 (3)3.253 (4)167 (3)
C9A—H9A···O2Aiii0.932.493.403 (3)166
C12A—H12A···O1Aiv0.972.673.517 (4)146
C19A—H19A···O1Ai0.932.693.449 (4)139
C18B—H18B···O2Bv0.932.493.336 (4)152
C7A—H7A···Cg2Avi0.932.983.721 (4)137
C7B—H7B···Cg2Bvii0.932.963.781 (5)148
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z+1; (iii) x, y1/2, z+1/2; (iv) x, y+1, z+1; (v) x, y+1, z; (vi) x, y+1/2, z+1/2; (vii) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C16H16NO2)]
Mr375.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)22.7768 (8), 7.3978 (1), 22.2118 (7)
β (°) 109.642 (4)
V3)3524.87 (19)
Z8
Radiation typeMo Kα
µ (mm1)0.87
Crystal size (mm)0.14 × 0.10 × 0.08
Data collection
DiffractometerOxford Diffraction Xcalibur, Sapphire3, Gemini
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.947, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
21526, 8197, 6146
Rint0.029
(sin θ/λ)max1)0.683
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.112, 1.13
No. of reflections8197
No. of parameters461
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.36

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999), PLATON (Spek, 2009) and PARST (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
Cg2A and Cg2B are the centroids of the C6A–C10A and C6B–C10B rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1A—H1NA···O1Ai0.78 (4)2.40 (3)3.162 (4)166 (3)
N1B—H1NB···O1Bii0.80 (4)2.46 (3)3.253 (4)167 (3)
C9A—H9A···O2Aiii0.932.493.403 (3)166
C12A—H12A···O1Aiv0.972.673.517 (4)146
C19A—H19A···O1Ai0.932.693.449 (4)139
C18B—H18B···O2Bv0.932.493.336 (4)152
C7A—H7A···Cg2Avi0.932.983.721 (4)137
C7B—H7B···Cg2Bvii0.932.963.781 (5)148
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z+1; (iii) x, y1/2, z+1/2; (iv) x, y+1, z+1; (v) x, y+1, z; (vi) x, y+1/2, z+1/2; (vii) x+1, y1/2, z+3/2.
 

Acknowledgements

This work was supported by the Ministry of Education and Science of the Republic of Serbia (project Nos. 172014, 172035 and 172034).

References

First citationDamljanović, I., Stevanović, D., Pejović, A., Vukićević, M., Novaković, S. B., Bogdanović, G. A., Mihajlov-Krstev, T., Radulović, N. & Vukićević, R. D. (2011). J. Organomet. Chem. 696, 3703–3713.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLeka, Z., Novaković, S. B., Pejović, A., Bogdanović, G. A. & Vukićević, R. D. (2012c). Acta Cryst. E68, m231.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLeka, Z., Novaković, S. B., Stevanović, D., Bogdanović, G. A. & Vukićević, R. D. (2012a). Acta Cryst. E68, m229.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLeka, Z., Novaković, S. B., Stevanović, D., Bogdanović, G. A. & Vukićević, R. D. (2012b). Acta Cryst. E68, m230.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationPejović, A., Stevanović, D. I., Damljanović, I., Vukićević, M., Novaković, S. B., Bogdanović, G. A., Mihajilov-Krstev, T., Radulović, N. & Vukićević, R. D. (2012). Helv. Chim. Acta. Accepted.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStevanović, D., Pejović, A., Novaković, S. B., Bogdanović, G. A., Divjaković, V. & Vukićević, R. D. (2012). Acta Cryst. C68, m37–m40.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTogni, A. & Hayashi, T. (1995). In Ferrocenes: Homogenous Catalysis, Organic Synthesis, Materials Science. New York: VCH.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds