metal-organic compounds
1-Ferrocenyl-3-(2-methylanilino)propan-1-one
aFaculty of Metallurgy and Technology, University of Montenegro, Cetinjski put bb, 81000 Podgorica, Montenegro, b'Vinča' Institute of Nuclear Sciences, Laboratory of Theoretical Physics and Condensed Matter Physics, PO Box 522, University of Belgrade, 11001 Belgrade, Serbia, and cDepartment of Chemistry, Faculty of Science, University of Kragujevac, R. Domanovića 12, 34000 Kragujevac, Serbia
*Correspondence e-mail: zorica@ac.me
In the ferrocene-containing Mannich base, [Fe(C5H5)(C15H16NO)], the dihedral angle between the mean planes of the benzene ring and the substituted cyclopentadienyl ring is 84.63 (7)°. The conformation of the title compound significantly differs from those found in corresponding m-tolylamino and p-tolylamino derivatives. In the crystal, C—H⋯O interactions connect the molecules into chains, which further interact by means of C—H⋯π interactions. It is noteworthy that the amino H atom is shielded and is not involved in hydrogen bonding.
Related literature
For the physico-chemical properties of ferrocene-based compounds see: Togni & Hayashi (1995). For related structures and details of the synthesis, see: Damljanović et al. (2011); Pejović et al. (2012); Stevanović et al. (2012); Leka et al. (2012a,b,c).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999), PLATON (Spek, 2009) and PARST (Nardelli, 1995).
Supporting information
https://doi.org/10.1107/S1600536812028802/bt5950sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812028802/bt5950Isup2.hkl
The compound was obtained by an aza-Michael addition of the coresponding arylamine to acryloylferrocene. The reaction was performed by microwave (MW) irradiation (500 W/5 min) of a mixture of reactants and montmorillonite K-10, without a solvent as described by Damljanović et al. (2011).
H atoms bonded to C atoms were placed at geometrically calculated positions and refined using a riding model. C—H distances were fixed to 0.93, 0.97 and 0.96 Å from aromatic, methylene and methyl C atoms, respectively. The Uiso(H) values set to 1.2 times Ueq of the corresponding C atoms (1.5 for methyl groups). The H atom attached to the N atom was refined isotropically.
The title compound 1-Ferrocenyl-3-(o-tolylamino)propan-1-one (I), Fig. 1, shows considerable conformational differences in comparison to the crystal structures of two closely related derivatives, 1-Ferrocenyl-4-(m-tolylamino)propan-1-one (Pejović et al., 2012) and 1-Ferrocenyl-3-(p-tolylamino)propan-1-one (Leka et al., 2012b). The torsion angles C1—C11—C12—C13, C11—C12—C13—N1 and C12—C13—N1—C4 within the aliphatic fragment have the values of -161.7 (2), 78.9 (3) and 168.9 (2)°. The latter torsion angle which defines the final orientation of the phenyl ring significantly differs from the values found in m-tolylamino [69.4 (4)°] and p-tolylamino [70.6 (3)°] derivatives. On the other hand, the conformation of the title compound is closer to the one found in those 3-(arylamino)-1-ferrocenylpropan-1-ones which comprise other ortho substituted arylamino fragments, such as previously reported 1-Ferrocenyl-3-(2-acetylphenylamino)propan-1-one (Stevanović et al., 2012) and 1-Ferrocenyl-3-(2-nitrophenylamino)propan-1-one (Damljanović et al., 2011), [the torsion angle C12—C13—N1—C4 in these compounds has the value -176.1 (6) and -175.7 (6)° respectively]. In the molecule of (I) the phenyl ring is nearly orthogonally positioned with regard to substituted Cp ring. The dihedral angle between the mean planes of the phenyl ring and the substituted Cp ring is 84.63 (7)°. The Cp rings within the Fc unit display nearly eclipsed conformation with C1—Cg1—Cg2—C6 angle of 9.93° (Cg is centroid of the corresponding Cp ring). The molecules of (I) connect via C12–H12a···O1 interaction into zigzag chain extended along c axis (Fig. 2). The chains are further related by means of extensive C—H···π interactions, C19—H19···Cg1i: H···Cg 2.98 Å, H-Perp 2.87 Å, X—H···Cg 160°, (i = x, -y + 1/2, z - 1/2); C8—H8···Cg1ii: H···Cg 3.02 Å, H-Perp 2.84 Å, X—H···Cg 140° (ii = -x + 1, -y, -z + 1); C13—H13b···Cg1i: H···Cg 3.35 Å, H-Perp 2.87 Å, X—H···Cg 127°; C16—H16···Cg2iii: H···Cg 3.07 Å, H-Perp 2.97 Å, X—H···Cg 168 ° (iii = -x + 1, -y, -z + 1); C20—H20a···Cg2iii: H···Cg 3.38 Å, H-Perp 2.95 Å, X—H···Cg 140° (Cg1 and Cg2 are centroids of phenyl and unsubstituted Cp ring respectively).
For the physico-chemical properties of ferrocene-based compounds see: Togni & Hayashi (1995). For related structures and details of the synthesis, see: Damljanović et al. (2011); Pejović et al. (2012); Stevanović et al. (2012); Leka et al. (2012a,b,c).
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell
CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999), PLATON (Spek, 2009) and PARST (Nardelli, 1995).[Fe(C5H5)(C15H16NO)] | F(000) = 728 |
Mr = 347.23 | Dx = 1.417 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 3389 reflections |
a = 12.1343 (4) Å | θ = 3.3–28.9° |
b = 17.8010 (7) Å | µ = 0.93 mm−1 |
c = 7.5464 (2) Å | T = 293 K |
β = 92.946 (3)° | Prismatic, orange |
V = 1627.89 (9) Å3 | 0.22 × 0.18 × 0.12 mm |
Z = 4 |
Oxford Diffraction Xcalibur Sapphire3 Gemini diffractometer | 3694 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 2843 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.029 |
Detector resolution: 16.3280 pixels mm-1 | θmax = 29.0°, θmin = 3.3° |
ω scans | h = −15→16 |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009)' | k = −22→19 |
Tmin = 0.923, Tmax = 1.000 | l = −10→9 |
7605 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.097 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0396P)2 + 0.2313P] where P = (Fo2 + 2Fc2)/3 |
3694 reflections | (Δ/σ)max < 0.001 |
213 parameters | Δρmax = 0.28 e Å−3 |
0 restraints | Δρmin = −0.28 e Å−3 |
[Fe(C5H5)(C15H16NO)] | V = 1627.89 (9) Å3 |
Mr = 347.23 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 12.1343 (4) Å | µ = 0.93 mm−1 |
b = 17.8010 (7) Å | T = 293 K |
c = 7.5464 (2) Å | 0.22 × 0.18 × 0.12 mm |
β = 92.946 (3)° |
Oxford Diffraction Xcalibur Sapphire3 Gemini diffractometer | 3694 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009)' | 2843 reflections with I > 2σ(I) |
Tmin = 0.923, Tmax = 1.000 | Rint = 0.029 |
7605 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.097 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | Δρmax = 0.28 e Å−3 |
3694 reflections | Δρmin = −0.28 e Å−3 |
213 parameters |
Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. 'CrysAlisPro, (Oxford Diffraction, 2009)' |
x | y | z | Uiso*/Ueq | ||
Fe | 0.80589 (2) | 0.094395 (18) | 0.51346 (4) | 0.03546 (12) | |
O1 | 0.61741 (15) | 0.26845 (11) | 0.5452 (2) | 0.0615 (5) | |
N1 | 0.41087 (17) | 0.15206 (13) | 0.4050 (2) | 0.0427 (5) | |
C1 | 0.73752 (18) | 0.17593 (14) | 0.6608 (3) | 0.0382 (5) | |
C2 | 0.76352 (19) | 0.11125 (15) | 0.7678 (3) | 0.0445 (6) | |
H2 | 0.7136 | 0.0826 | 0.8284 | 0.053* | |
C3 | 0.8779 (2) | 0.09863 (17) | 0.7649 (3) | 0.0541 (7) | |
H3 | 0.9167 | 0.0604 | 0.8244 | 0.065* | |
C4 | 0.9240 (2) | 0.15390 (17) | 0.6566 (3) | 0.0538 (7) | |
H4 | 0.9980 | 0.1580 | 0.6319 | 0.065* | |
C5 | 0.83831 (19) | 0.20199 (14) | 0.5919 (3) | 0.0452 (6) | |
H5 | 0.8461 | 0.2432 | 0.5179 | 0.054* | |
C6 | 0.7064 (2) | 0.07479 (17) | 0.2926 (3) | 0.0570 (7) | |
H6 | 0.6430 | 0.1015 | 0.2583 | 0.068* | |
C7 | 0.7122 (2) | 0.01088 (18) | 0.4021 (3) | 0.0616 (8) | |
H7 | 0.6528 | −0.0122 | 0.4534 | 0.074* | |
C8 | 0.8221 (3) | −0.01211 (16) | 0.4207 (3) | 0.0595 (7) | |
H8 | 0.8489 | −0.0531 | 0.4860 | 0.071* | |
C9 | 0.8845 (2) | 0.03759 (17) | 0.3236 (3) | 0.0565 (7) | |
H9 | 0.9605 | 0.0354 | 0.3135 | 0.068* | |
C10 | 0.8143 (2) | 0.09090 (16) | 0.2445 (3) | 0.0551 (7) | |
H10 | 0.8351 | 0.1303 | 0.1724 | 0.066* | |
C11 | 0.62784 (18) | 0.20805 (14) | 0.6183 (3) | 0.0395 (5) | |
C12 | 0.52948 (18) | 0.16387 (15) | 0.6742 (3) | 0.0451 (6) | |
H12A | 0.5231 | 0.1704 | 0.8009 | 0.054* | |
H12B | 0.5430 | 0.1110 | 0.6531 | 0.054* | |
C13 | 0.42057 (18) | 0.18528 (15) | 0.5804 (3) | 0.0451 (6) | |
H13A | 0.3602 | 0.1681 | 0.6495 | 0.054* | |
H13B | 0.4157 | 0.2395 | 0.5705 | 0.054* | |
C14 | 0.31120 (17) | 0.15273 (13) | 0.3047 (3) | 0.0366 (5) | |
C15 | 0.30246 (19) | 0.11137 (14) | 0.1457 (3) | 0.0422 (6) | |
C16 | 0.2019 (2) | 0.10971 (17) | 0.0517 (3) | 0.0562 (7) | |
H16 | 0.1951 | 0.0822 | −0.0531 | 0.067* | |
C17 | 0.1113 (2) | 0.14773 (18) | 0.1089 (3) | 0.0621 (8) | |
H17 | 0.0443 | 0.1455 | 0.0436 | 0.075* | |
C18 | 0.1206 (2) | 0.18863 (17) | 0.2619 (3) | 0.0551 (7) | |
H18 | 0.0597 | 0.2144 | 0.3007 | 0.066* | |
C19 | 0.22021 (18) | 0.19193 (15) | 0.3598 (3) | 0.0442 (6) | |
H19 | 0.2262 | 0.2206 | 0.4629 | 0.053* | |
C20 | 0.4006 (2) | 0.06922 (17) | 0.0836 (3) | 0.0593 (7) | |
H20A | 0.3801 | 0.0429 | −0.0241 | 0.089* | |
H20B | 0.4254 | 0.0339 | 0.1731 | 0.089* | |
H20C | 0.4589 | 0.1040 | 0.0622 | 0.089* | |
H1N | 0.463 (2) | 0.1487 (15) | 0.361 (3) | 0.052 (9)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Fe | 0.04343 (19) | 0.0331 (2) | 0.02940 (16) | −0.00300 (14) | −0.00236 (12) | −0.00362 (14) |
O1 | 0.0637 (11) | 0.0499 (13) | 0.0697 (12) | −0.0005 (9) | −0.0097 (9) | 0.0184 (10) |
N1 | 0.0387 (11) | 0.0526 (14) | 0.0366 (9) | 0.0025 (10) | 0.0018 (9) | −0.0108 (10) |
C1 | 0.0475 (12) | 0.0382 (14) | 0.0286 (10) | −0.0034 (11) | −0.0008 (9) | −0.0081 (10) |
C2 | 0.0543 (14) | 0.0534 (17) | 0.0253 (10) | 0.0012 (12) | −0.0033 (9) | −0.0030 (10) |
C3 | 0.0615 (15) | 0.0616 (19) | 0.0371 (12) | 0.0104 (14) | −0.0174 (11) | −0.0100 (13) |
C4 | 0.0417 (13) | 0.066 (2) | 0.0525 (14) | −0.0044 (13) | −0.0062 (11) | −0.0228 (14) |
C5 | 0.0523 (13) | 0.0360 (14) | 0.0470 (12) | −0.0104 (11) | −0.0011 (11) | −0.0123 (11) |
C6 | 0.0605 (16) | 0.063 (2) | 0.0455 (13) | 0.0130 (14) | −0.0213 (12) | −0.0222 (14) |
C7 | 0.0712 (18) | 0.063 (2) | 0.0509 (15) | −0.0302 (16) | 0.0080 (13) | −0.0229 (15) |
C8 | 0.092 (2) | 0.0336 (15) | 0.0512 (14) | 0.0059 (15) | −0.0086 (14) | −0.0064 (12) |
C9 | 0.0569 (15) | 0.0592 (19) | 0.0537 (14) | 0.0019 (14) | 0.0053 (12) | −0.0216 (14) |
C10 | 0.0856 (19) | 0.0499 (17) | 0.0303 (11) | −0.0067 (15) | 0.0063 (12) | −0.0028 (12) |
C11 | 0.0498 (13) | 0.0404 (14) | 0.0276 (10) | −0.0020 (11) | −0.0043 (9) | −0.0072 (10) |
C12 | 0.0511 (13) | 0.0520 (16) | 0.0317 (10) | −0.0039 (12) | −0.0020 (10) | −0.0023 (11) |
C13 | 0.0446 (12) | 0.0535 (16) | 0.0372 (11) | 0.0015 (12) | 0.0017 (10) | −0.0112 (11) |
C14 | 0.0387 (11) | 0.0341 (13) | 0.0369 (11) | −0.0062 (10) | 0.0008 (9) | 0.0024 (10) |
C15 | 0.0497 (13) | 0.0415 (15) | 0.0354 (11) | −0.0109 (11) | 0.0018 (10) | −0.0002 (10) |
C16 | 0.0656 (17) | 0.0599 (19) | 0.0420 (12) | −0.0195 (14) | −0.0068 (12) | −0.0023 (13) |
C17 | 0.0501 (15) | 0.078 (2) | 0.0561 (15) | −0.0146 (15) | −0.0152 (12) | 0.0190 (15) |
C18 | 0.0456 (14) | 0.0583 (19) | 0.0612 (15) | 0.0025 (13) | 0.0007 (12) | 0.0160 (14) |
C19 | 0.0446 (13) | 0.0440 (15) | 0.0437 (12) | 0.0000 (11) | 0.0008 (10) | 0.0024 (11) |
C20 | 0.0690 (17) | 0.0640 (19) | 0.0454 (13) | −0.0064 (15) | 0.0067 (12) | −0.0200 (14) |
Fe—C7 | 2.028 (3) | C7—C8 | 1.395 (4) |
Fe—C1 | 2.031 (2) | C7—H7 | 0.9300 |
Fe—C9 | 2.031 (2) | C8—C9 | 1.397 (4) |
Fe—C8 | 2.034 (3) | C8—H8 | 0.9300 |
Fe—C2 | 2.034 (2) | C9—C10 | 1.389 (4) |
Fe—C5 | 2.037 (2) | C9—H9 | 0.9300 |
Fe—C6 | 2.037 (2) | C10—H10 | 0.9300 |
Fe—C10 | 2.039 (2) | C11—C12 | 1.507 (3) |
Fe—C4 | 2.045 (2) | C12—C13 | 1.515 (3) |
Fe—C3 | 2.049 (2) | C12—H12A | 0.9700 |
O1—C11 | 1.212 (3) | C12—H12B | 0.9700 |
N1—C14 | 1.393 (3) | C13—H13A | 0.9700 |
N1—C13 | 1.449 (3) | C13—H13B | 0.9700 |
N1—H1N | 0.74 (2) | C14—C19 | 1.388 (3) |
C1—C5 | 1.431 (3) | C14—C15 | 1.407 (3) |
C1—C2 | 1.432 (3) | C15—C16 | 1.380 (3) |
C1—C11 | 1.469 (3) | C15—C20 | 1.503 (3) |
C2—C3 | 1.408 (3) | C16—C17 | 1.379 (4) |
C2—H2 | 0.9300 | C16—H16 | 0.9300 |
C3—C4 | 1.413 (4) | C17—C18 | 1.365 (4) |
C3—H3 | 0.9300 | C17—H17 | 0.9300 |
C4—C5 | 1.414 (3) | C18—C19 | 1.385 (3) |
C4—H4 | 0.9300 | C18—H18 | 0.9300 |
C5—H5 | 0.9300 | C19—H19 | 0.9300 |
C6—C7 | 1.406 (4) | C20—H20A | 0.9600 |
C6—C10 | 1.406 (4) | C20—H20B | 0.9600 |
C6—H6 | 0.9300 | C20—H20C | 0.9600 |
C7—Fe—C1 | 120.96 (11) | C1—C5—Fe | 69.19 (13) |
C7—Fe—C9 | 67.46 (11) | C4—C5—H5 | 126.1 |
C1—Fe—C9 | 164.08 (11) | C1—C5—H5 | 126.1 |
C7—Fe—C8 | 40.19 (11) | Fe—C5—H5 | 126.2 |
C1—Fe—C8 | 154.66 (11) | C7—C6—C10 | 107.3 (2) |
C9—Fe—C8 | 40.20 (11) | C7—C6—Fe | 69.41 (14) |
C7—Fe—C2 | 109.60 (10) | C10—C6—Fe | 69.88 (14) |
C1—Fe—C2 | 41.25 (9) | C7—C6—H6 | 126.3 |
C9—Fe—C2 | 152.81 (11) | C10—C6—H6 | 126.3 |
C8—Fe—C2 | 119.71 (11) | Fe—C6—H6 | 126.0 |
C7—Fe—C5 | 154.91 (12) | C8—C7—C6 | 108.3 (2) |
C1—Fe—C5 | 41.17 (9) | C8—C7—Fe | 70.14 (15) |
C9—Fe—C5 | 125.61 (11) | C6—C7—Fe | 70.12 (15) |
C8—Fe—C5 | 162.90 (11) | C8—C7—H7 | 125.8 |
C2—Fe—C5 | 69.00 (10) | C6—C7—H7 | 125.8 |
C7—Fe—C6 | 40.47 (11) | Fe—C7—H7 | 125.5 |
C1—Fe—C6 | 109.19 (10) | C7—C8—C9 | 107.6 (3) |
C9—Fe—C6 | 67.52 (11) | C7—C8—Fe | 69.67 (16) |
C8—Fe—C6 | 67.82 (11) | C9—C8—Fe | 69.81 (15) |
C2—Fe—C6 | 128.99 (10) | C7—C8—H8 | 126.2 |
C5—Fe—C6 | 119.76 (11) | C9—C8—H8 | 126.2 |
C7—Fe—C10 | 67.72 (11) | Fe—C8—H8 | 125.9 |
C1—Fe—C10 | 127.57 (10) | C10—C9—C8 | 108.7 (2) |
C9—Fe—C10 | 39.91 (11) | C10—C9—Fe | 70.32 (14) |
C8—Fe—C10 | 67.56 (11) | C8—C9—Fe | 69.99 (15) |
C2—Fe—C10 | 166.37 (11) | C10—C9—H9 | 125.6 |
C5—Fe—C10 | 107.41 (11) | C8—C9—H9 | 125.6 |
C6—Fe—C10 | 40.37 (11) | Fe—C9—H9 | 125.6 |
C7—Fe—C4 | 164.04 (13) | C9—C10—C6 | 108.0 (2) |
C1—Fe—C4 | 68.63 (9) | C9—C10—Fe | 69.76 (14) |
C9—Fe—C4 | 106.77 (10) | C6—C10—Fe | 69.75 (13) |
C8—Fe—C4 | 125.95 (12) | C9—C10—H10 | 126.0 |
C2—Fe—C4 | 68.27 (10) | C6—C10—H10 | 126.0 |
C5—Fe—C4 | 40.53 (10) | Fe—C10—H10 | 126.0 |
C6—Fe—C4 | 152.92 (12) | O1—C11—C1 | 121.1 (2) |
C10—Fe—C4 | 118.16 (11) | O1—C11—C12 | 121.6 (2) |
C7—Fe—C3 | 127.89 (12) | C1—C11—C12 | 117.2 (2) |
C1—Fe—C3 | 68.51 (10) | C11—C12—C13 | 115.0 (2) |
C9—Fe—C3 | 118.55 (11) | C11—C12—H12A | 108.5 |
C8—Fe—C3 | 107.98 (11) | C13—C12—H12A | 108.5 |
C2—Fe—C3 | 40.32 (9) | C11—C12—H12B | 108.5 |
C5—Fe—C3 | 68.25 (11) | C13—C12—H12B | 108.5 |
C6—Fe—C3 | 166.04 (12) | H12A—C12—H12B | 107.5 |
C10—Fe—C3 | 151.91 (12) | N1—C13—C12 | 110.61 (18) |
C4—Fe—C3 | 40.37 (11) | N1—C13—H13A | 109.5 |
C14—N1—C13 | 121.34 (19) | C12—C13—H13A | 109.5 |
C14—N1—H1N | 120 (2) | N1—C13—H13B | 109.5 |
C13—N1—H1N | 115 (2) | C12—C13—H13B | 109.5 |
C5—C1—C2 | 107.3 (2) | H13A—C13—H13B | 108.1 |
C5—C1—C11 | 125.2 (2) | C19—C14—N1 | 121.6 (2) |
C2—C1—C11 | 127.4 (2) | C19—C14—C15 | 119.5 (2) |
C5—C1—Fe | 69.63 (13) | N1—C14—C15 | 118.9 (2) |
C2—C1—Fe | 69.49 (13) | C16—C15—C14 | 118.4 (2) |
C11—C1—Fe | 123.35 (14) | C16—C15—C20 | 121.5 (2) |
C3—C2—C1 | 108.0 (2) | C14—C15—C20 | 120.1 (2) |
C3—C2—Fe | 70.41 (13) | C17—C16—C15 | 121.8 (2) |
C1—C2—Fe | 69.26 (11) | C17—C16—H16 | 119.1 |
C3—C2—H2 | 126.0 | C15—C16—H16 | 119.1 |
C1—C2—H2 | 126.0 | C18—C17—C16 | 119.6 (2) |
Fe—C2—H2 | 125.9 | C18—C17—H17 | 120.2 |
C2—C3—C4 | 108.5 (2) | C16—C17—H17 | 120.2 |
C2—C3—Fe | 69.26 (12) | C17—C18—C19 | 120.4 (3) |
C4—C3—Fe | 69.64 (13) | C17—C18—H18 | 119.8 |
C2—C3—H3 | 125.7 | C19—C18—H18 | 119.8 |
C4—C3—H3 | 125.7 | C18—C19—C14 | 120.3 (2) |
Fe—C3—H3 | 126.9 | C18—C19—H19 | 119.8 |
C3—C4—C5 | 108.4 (2) | C14—C19—H19 | 119.8 |
C3—C4—Fe | 69.99 (14) | C15—C20—H20A | 109.5 |
C5—C4—Fe | 69.44 (13) | C15—C20—H20B | 109.5 |
C3—C4—H4 | 125.8 | H20A—C20—H20B | 109.5 |
C5—C4—H4 | 125.8 | C15—C20—H20C | 109.5 |
Fe—C4—H4 | 126.4 | H20A—C20—H20C | 109.5 |
C4—C5—C1 | 107.8 (2) | H20B—C20—H20C | 109.5 |
C4—C5—Fe | 70.03 (14) |
Cg is the centroid of the C14–C19 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C12—H12A···O1i | 0.97 | 2.38 | 3.182 (3) | 139 |
C19—H19···Cg1i | 0.93 | 2.98 | 3.838 (3) | 160 |
Symmetry code: (i) x, −y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Fe(C5H5)(C15H16NO)] |
Mr | 347.23 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 12.1343 (4), 17.8010 (7), 7.5464 (2) |
β (°) | 92.946 (3) |
V (Å3) | 1627.89 (9) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.93 |
Crystal size (mm) | 0.22 × 0.18 × 0.12 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur Sapphire3 Gemini |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction, 2009)' |
Tmin, Tmax | 0.923, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7605, 3694, 2843 |
Rint | 0.029 |
(sin θ/λ)max (Å−1) | 0.681 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.097, 1.04 |
No. of reflections | 3694 |
No. of parameters | 213 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.28, −0.28 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999), PLATON (Spek, 2009) and PARST (Nardelli, 1995).
Cg is the centroid of the C14–C19 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C12—H12A···O1i | 0.97 | 2.38 | 3.182 (3) | 139 |
C19—H19···Cg1i | 0.93 | 2.98 | 3.838 (3) | 160 |
Symmetry code: (i) x, −y+1/2, z+1/2. |
Acknowledgements
This work was supported by the Ministry of Education and Science of the Republic of Serbia (project Nos. 172014, 172035 and 172034).
References
Damljanović, I., Stevanović, D., Pejović, A., Vukićević, M., Novaković, S. B., Bogdanović, G. A., Mihajlov-Krstev, T., Radulović, N. & Vukićević, R. D. (2011). J. Organomet. Chem. 696, 3703–3713. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Leka, Z., Novaković, S. B., Pejović, A., Bogdanović, G. A. & Vukićević, R. D. (2012c). Acta Cryst. E68, m231. Web of Science CSD CrossRef IUCr Journals Google Scholar
Leka, Z., Novaković, S. B., Stevanović, D., Bogdanović, G. A. & Vukićević, R. D. (2012a). Acta Cryst. E68, m229. Web of Science CSD CrossRef IUCr Journals Google Scholar
Leka, Z., Novaković, S. B., Stevanović, D., Bogdanović, G. A. & Vukićević, R. D. (2012b). Acta Cryst. E68, m230. Web of Science CSD CrossRef IUCr Journals Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Nardelli, M. (1995). J. Appl. Cryst. 28, 659. CrossRef IUCr Journals Google Scholar
Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England. Google Scholar
Pejović, A., Stevanović, D., Damljanović, I., Vukićević, M., Novaković, S. B., Bogdanović, G. A., Mihajilov-Krstev, T., Radulović, N. & Vukićević, R. D. (2012). Helv. Chim. Acta. Accepted. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stevanović, D., Pejović, A., Novaković, S. B., Bogdanović, G. A., Divjaković, V. & Vukićević, R. D. (2012). Acta Cryst. C68, m37–m40. Web of Science CSD CrossRef IUCr Journals Google Scholar
Togni, A. & Hayashi, T. (1995). In Ferrocenes: Homogenous Catalysis, Organic Synthesis, Materials Science. New York: VCH. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound 1-Ferrocenyl-3-(o-tolylamino)propan-1-one (I), Fig. 1, shows considerable conformational differences in comparison to the crystal structures of two closely related derivatives, 1-Ferrocenyl-4-(m-tolylamino)propan-1-one (Pejović et al., 2012) and 1-Ferrocenyl-3-(p-tolylamino)propan-1-one (Leka et al., 2012b). The torsion angles C1—C11—C12—C13, C11—C12—C13—N1 and C12—C13—N1—C4 within the aliphatic fragment have the values of -161.7 (2), 78.9 (3) and 168.9 (2)°. The latter torsion angle which defines the final orientation of the phenyl ring significantly differs from the values found in m-tolylamino [69.4 (4)°] and p-tolylamino [70.6 (3)°] derivatives. On the other hand, the conformation of the title compound is closer to the one found in those 3-(arylamino)-1-ferrocenylpropan-1-ones which comprise other ortho substituted arylamino fragments, such as previously reported 1-Ferrocenyl-3-(2-acetylphenylamino)propan-1-one (Stevanović et al., 2012) and 1-Ferrocenyl-3-(2-nitrophenylamino)propan-1-one (Damljanović et al., 2011), [the torsion angle C12—C13—N1—C4 in these compounds has the value -176.1 (6) and -175.7 (6)° respectively]. In the molecule of (I) the phenyl ring is nearly orthogonally positioned with regard to substituted Cp ring. The dihedral angle between the mean planes of the phenyl ring and the substituted Cp ring is 84.63 (7)°. The Cp rings within the Fc unit display nearly eclipsed conformation with C1—Cg1—Cg2—C6 angle of 9.93° (Cg is centroid of the corresponding Cp ring). The molecules of (I) connect via C12–H12a···O1 interaction into zigzag chain extended along c axis (Fig. 2). The chains are further related by means of extensive C—H···π interactions, C19—H19···Cg1i: H···Cg 2.98 Å, H-Perp 2.87 Å, X—H···Cg 160°, (i = x, -y + 1/2, z - 1/2); C8—H8···Cg1ii: H···Cg 3.02 Å, H-Perp 2.84 Å, X—H···Cg 140° (ii = -x + 1, -y, -z + 1); C13—H13b···Cg1i: H···Cg 3.35 Å, H-Perp 2.87 Å, X—H···Cg 127°; C16—H16···Cg2iii: H···Cg 3.07 Å, H-Perp 2.97 Å, X—H···Cg 168 ° (iii = -x + 1, -y, -z + 1); C20—H20a···Cg2iii: H···Cg 3.38 Å, H-Perp 2.95 Å, X—H···Cg 140° (Cg1 and Cg2 are centroids of phenyl and unsubstituted Cp ring respectively).