metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Ferrocenyl-3-(2-methyl­anilino)propan-1-one

aFaculty of Metallurgy and Technology, University of Montenegro, Cetinjski put bb, 81000 Podgorica, Montenegro, b'Vinča' Institute of Nuclear Sciences, Laboratory of Theoretical Physics and Condensed Matter Physics, PO Box 522, University of Belgrade, 11001 Belgrade, Serbia, and cDepartment of Chemistry, Faculty of Science, University of Kragujevac, R. Domanovića 12, 34000 Kragujevac, Serbia
*Correspondence e-mail: zorica@ac.me

(Received 20 June 2012; accepted 25 June 2012; online 30 June 2012)

In the ferrocene-containing Mannich base, [Fe(C5H5)(C15H16NO)], the dihedral angle between the mean planes of the benzene ring and the substituted cyclo­penta­dienyl ring is 84.63 (7)°. The conformation of the title compound significantly differs from those found in corresponding m-tolyl­amino and p-tolyl­amino derivatives. In the crystal, C—H⋯O inter­actions connect the mol­ecules into chains, which further inter­act by means of C—H⋯π inter­actions. It is noteworthy that the amino H atom is shielded and is not involved in hydrogen bonding.

Related literature

For the physico-chemical properties of ferrocene-based compounds see: Togni & Hayashi (1995[Togni, A. & Hayashi, T. (1995). In Ferrocenes: Homogenous Catalysis, Organic Synthesis, Materials Science. New York: VCH.]). For related structures and details of the synthesis, see: Damljanović et al. (2011[Damljanović, I., Stevanović, D., Pejović, A., Vukićević, M., Novaković, S. B., Bogdanović, G. A., Mihajlov-Krstev, T., Radulović, N. & Vukićević, R. D. (2011). J. Organomet. Chem. 696, 3703-3713.]); Pejović et al. (2012[Pejović, A., Stevanović, D., Damljanović, I., Vukićević, M., Novaković, S. B., Bogdanović, G. A., Mihajilov-Krstev, T., Radulović, N. & Vukićević, R. D. (2012). Helv. Chim. Acta. Accepted.]); Stevanović et al. (2012[Stevanović, D., Pejović, A., Novaković, S. B., Bogdanović, G. A., Divjaković, V. & Vukićević, R. D. (2012). Acta Cryst. C68, m37-m40.]); Leka et al. (2012a[Leka, Z., Novaković, S. B., Stevanović, D., Bogdanović, G. A. & Vukićević, R. D. (2012a). Acta Cryst. E68, m229.],b[Leka, Z., Novaković, S. B., Stevanović, D., Bogdanović, G. A. & Vukićević, R. D. (2012b). Acta Cryst. E68, m230.],c[Leka, Z., Novaković, S. B., Pejović, A., Bogdanović, G. A. & Vukićević, R. D. (2012c). Acta Cryst. E68, m231.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C5H5)(C15H16NO)]

  • Mr = 347.23

  • Monoclinic, P 21 /c

  • a = 12.1343 (4) Å

  • b = 17.8010 (7) Å

  • c = 7.5464 (2) Å

  • β = 92.946 (3)°

  • V = 1627.89 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.93 mm−1

  • T = 293 K

  • 0.22 × 0.18 × 0.12 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.])' Tmin = 0.923, Tmax = 1.000

  • 7605 measured reflections

  • 3694 independent reflections

  • 2843 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.097

  • S = 1.04

  • 3694 reflections

  • 213 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C14–C19 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12A⋯O1i 0.97 2.38 3.182 (3) 139
C19—H19⋯Cg1i 0.93 2.98 3.838 (3) 160
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

The title compound 1-Ferrocenyl-3-(o-tolylamino)propan-1-one (I), Fig. 1, shows considerable conformational differences in comparison to the crystal structures of two closely related derivatives, 1-Ferrocenyl-4-(m-tolylamino)propan-1-one (Pejović et al., 2012) and 1-Ferrocenyl-3-(p-tolylamino)propan-1-one (Leka et al., 2012b). The torsion angles C1—C11—C12—C13, C11—C12—C13—N1 and C12—C13—N1—C4 within the aliphatic fragment have the values of -161.7 (2), 78.9 (3) and 168.9 (2)°. The latter torsion angle which defines the final orientation of the phenyl ring significantly differs from the values found in m-tolylamino [69.4 (4)°] and p-tolylamino [70.6 (3)°] derivatives. On the other hand, the conformation of the title compound is closer to the one found in those 3-(arylamino)-1-ferrocenylpropan-1-ones which comprise other ortho substituted arylamino fragments, such as previously reported 1-Ferrocenyl-3-(2-acetylphenylamino)propan-1-one (Stevanović et al., 2012) and 1-Ferrocenyl-3-(2-nitrophenylamino)propan-1-one (Damljanović et al., 2011), [the torsion angle C12—C13—N1—C4 in these compounds has the value -176.1 (6) and -175.7 (6)° respectively]. In the molecule of (I) the phenyl ring is nearly orthogonally positioned with regard to substituted Cp ring. The dihedral angle between the mean planes of the phenyl ring and the substituted Cp ring is 84.63 (7)°. The Cp rings within the Fc unit display nearly eclipsed conformation with C1—Cg1—Cg2—C6 angle of 9.93° (Cg is centroid of the corresponding Cp ring). The molecules of (I) connect via C12–H12a···O1 interaction into zigzag chain extended along c axis (Fig. 2). The chains are further related by means of extensive C—H···π interactions, C19—H19···Cg1i: H···Cg 2.98 Å, H-Perp 2.87 Å, X—H···Cg 160°, (i = x, -y + 1/2, z - 1/2); C8—H8···Cg1ii: H···Cg 3.02 Å, H-Perp 2.84 Å, X—H···Cg 140° (ii = -x + 1, -y, -z + 1); C13—H13b···Cg1i: H···Cg 3.35 Å, H-Perp 2.87 Å, X—H···Cg 127°; C16—H16···Cg2iii: H···Cg 3.07 Å, H-Perp 2.97 Å, X—H···Cg 168 ° (iii = -x + 1, -y, -z + 1); C20—H20a···Cg2iii: H···Cg 3.38 Å, H-Perp 2.95 Å, X—H···Cg 140° (Cg1 and Cg2 are centroids of phenyl and unsubstituted Cp ring respectively).

Related literature top

For the physico-chemical properties of ferrocene-based compounds see: Togni & Hayashi (1995). For related structures and details of the synthesis, see: Damljanović et al. (2011); Pejović et al. (2012); Stevanović et al. (2012); Leka et al. (2012a,b,c).

Experimental top

The compound was obtained by an aza-Michael addition of the coresponding arylamine to acryloylferrocene. The reaction was performed by microwave (MW) irradiation (500 W/5 min) of a mixture of reactants and montmorillonite K-10, without a solvent as described by Damljanović et al. (2011).

Refinement top

H atoms bonded to C atoms were placed at geometrically calculated positions and refined using a riding model. C—H distances were fixed to 0.93, 0.97 and 0.96 Å from aromatic, methylene and methyl C atoms, respectively. The Uiso(H) values set to 1.2 times Ueq of the corresponding C atoms (1.5 for methyl groups). The H atom attached to the N atom was refined isotropically.

Structure description top

The title compound 1-Ferrocenyl-3-(o-tolylamino)propan-1-one (I), Fig. 1, shows considerable conformational differences in comparison to the crystal structures of two closely related derivatives, 1-Ferrocenyl-4-(m-tolylamino)propan-1-one (Pejović et al., 2012) and 1-Ferrocenyl-3-(p-tolylamino)propan-1-one (Leka et al., 2012b). The torsion angles C1—C11—C12—C13, C11—C12—C13—N1 and C12—C13—N1—C4 within the aliphatic fragment have the values of -161.7 (2), 78.9 (3) and 168.9 (2)°. The latter torsion angle which defines the final orientation of the phenyl ring significantly differs from the values found in m-tolylamino [69.4 (4)°] and p-tolylamino [70.6 (3)°] derivatives. On the other hand, the conformation of the title compound is closer to the one found in those 3-(arylamino)-1-ferrocenylpropan-1-ones which comprise other ortho substituted arylamino fragments, such as previously reported 1-Ferrocenyl-3-(2-acetylphenylamino)propan-1-one (Stevanović et al., 2012) and 1-Ferrocenyl-3-(2-nitrophenylamino)propan-1-one (Damljanović et al., 2011), [the torsion angle C12—C13—N1—C4 in these compounds has the value -176.1 (6) and -175.7 (6)° respectively]. In the molecule of (I) the phenyl ring is nearly orthogonally positioned with regard to substituted Cp ring. The dihedral angle between the mean planes of the phenyl ring and the substituted Cp ring is 84.63 (7)°. The Cp rings within the Fc unit display nearly eclipsed conformation with C1—Cg1—Cg2—C6 angle of 9.93° (Cg is centroid of the corresponding Cp ring). The molecules of (I) connect via C12–H12a···O1 interaction into zigzag chain extended along c axis (Fig. 2). The chains are further related by means of extensive C—H···π interactions, C19—H19···Cg1i: H···Cg 2.98 Å, H-Perp 2.87 Å, X—H···Cg 160°, (i = x, -y + 1/2, z - 1/2); C8—H8···Cg1ii: H···Cg 3.02 Å, H-Perp 2.84 Å, X—H···Cg 140° (ii = -x + 1, -y, -z + 1); C13—H13b···Cg1i: H···Cg 3.35 Å, H-Perp 2.87 Å, X—H···Cg 127°; C16—H16···Cg2iii: H···Cg 3.07 Å, H-Perp 2.97 Å, X—H···Cg 168 ° (iii = -x + 1, -y, -z + 1); C20—H20a···Cg2iii: H···Cg 3.38 Å, H-Perp 2.95 Å, X—H···Cg 140° (Cg1 and Cg2 are centroids of phenyl and unsubstituted Cp ring respectively).

For the physico-chemical properties of ferrocene-based compounds see: Togni & Hayashi (1995). For related structures and details of the synthesis, see: Damljanović et al. (2011); Pejović et al. (2012); Stevanović et al. (2012); Leka et al. (2012a,b,c).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999), PLATON (Spek, 2009) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 40% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Segment of the crystal packing. The C12—H···O1 interactions connecting the molecules into chains are indicated by black dotted lines. C—H···π interactions are given in blue doted lines.
1-Ferrocenyl-3-(2-methylanilino)propan-1-one top
Crystal data top
[Fe(C5H5)(C15H16NO)]F(000) = 728
Mr = 347.23Dx = 1.417 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3389 reflections
a = 12.1343 (4) Åθ = 3.3–28.9°
b = 17.8010 (7) ŵ = 0.93 mm1
c = 7.5464 (2) ÅT = 293 K
β = 92.946 (3)°Prismatic, orange
V = 1627.89 (9) Å30.22 × 0.18 × 0.12 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Sapphire3 Gemini
diffractometer
3694 independent reflections
Radiation source: Enhance (Mo) X-ray Source2843 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 16.3280 pixels mm-1θmax = 29.0°, θmin = 3.3°
ω scansh = 1516
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)'
k = 2219
Tmin = 0.923, Tmax = 1.000l = 109
7605 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0396P)2 + 0.2313P]
where P = (Fo2 + 2Fc2)/3
3694 reflections(Δ/σ)max < 0.001
213 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
[Fe(C5H5)(C15H16NO)]V = 1627.89 (9) Å3
Mr = 347.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.1343 (4) ŵ = 0.93 mm1
b = 17.8010 (7) ÅT = 293 K
c = 7.5464 (2) Å0.22 × 0.18 × 0.12 mm
β = 92.946 (3)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3 Gemini
diffractometer
3694 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)'
2843 reflections with I > 2σ(I)
Tmin = 0.923, Tmax = 1.000Rint = 0.029
7605 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.28 e Å3
3694 reflectionsΔρmin = 0.28 e Å3
213 parameters
Special details top

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. 'CrysAlisPro, (Oxford Diffraction, 2009)'

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe0.80589 (2)0.094395 (18)0.51346 (4)0.03546 (12)
O10.61741 (15)0.26845 (11)0.5452 (2)0.0615 (5)
N10.41087 (17)0.15206 (13)0.4050 (2)0.0427 (5)
C10.73752 (18)0.17593 (14)0.6608 (3)0.0382 (5)
C20.76352 (19)0.11125 (15)0.7678 (3)0.0445 (6)
H20.71360.08260.82840.053*
C30.8779 (2)0.09863 (17)0.7649 (3)0.0541 (7)
H30.91670.06040.82440.065*
C40.9240 (2)0.15390 (17)0.6566 (3)0.0538 (7)
H40.99800.15800.63190.065*
C50.83831 (19)0.20199 (14)0.5919 (3)0.0452 (6)
H50.84610.24320.51790.054*
C60.7064 (2)0.07479 (17)0.2926 (3)0.0570 (7)
H60.64300.10150.25830.068*
C70.7122 (2)0.01088 (18)0.4021 (3)0.0616 (8)
H70.65280.01220.45340.074*
C80.8221 (3)0.01211 (16)0.4207 (3)0.0595 (7)
H80.84890.05310.48600.071*
C90.8845 (2)0.03759 (17)0.3236 (3)0.0565 (7)
H90.96050.03540.31350.068*
C100.8143 (2)0.09090 (16)0.2445 (3)0.0551 (7)
H100.83510.13030.17240.066*
C110.62784 (18)0.20805 (14)0.6183 (3)0.0395 (5)
C120.52948 (18)0.16387 (15)0.6742 (3)0.0451 (6)
H12A0.52310.17040.80090.054*
H12B0.54300.11100.65310.054*
C130.42057 (18)0.18528 (15)0.5804 (3)0.0451 (6)
H13A0.36020.16810.64950.054*
H13B0.41570.23950.57050.054*
C140.31120 (17)0.15273 (13)0.3047 (3)0.0366 (5)
C150.30246 (19)0.11137 (14)0.1457 (3)0.0422 (6)
C160.2019 (2)0.10971 (17)0.0517 (3)0.0562 (7)
H160.19510.08220.05310.067*
C170.1113 (2)0.14773 (18)0.1089 (3)0.0621 (8)
H170.04430.14550.04360.075*
C180.1206 (2)0.18863 (17)0.2619 (3)0.0551 (7)
H180.05970.21440.30070.066*
C190.22021 (18)0.19193 (15)0.3598 (3)0.0442 (6)
H190.22620.22060.46290.053*
C200.4006 (2)0.06922 (17)0.0836 (3)0.0593 (7)
H20A0.38010.04290.02410.089*
H20B0.42540.03390.17310.089*
H20C0.45890.10400.06220.089*
H1N0.463 (2)0.1487 (15)0.361 (3)0.052 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe0.04343 (19)0.0331 (2)0.02940 (16)0.00300 (14)0.00236 (12)0.00362 (14)
O10.0637 (11)0.0499 (13)0.0697 (12)0.0005 (9)0.0097 (9)0.0184 (10)
N10.0387 (11)0.0526 (14)0.0366 (9)0.0025 (10)0.0018 (9)0.0108 (10)
C10.0475 (12)0.0382 (14)0.0286 (10)0.0034 (11)0.0008 (9)0.0081 (10)
C20.0543 (14)0.0534 (17)0.0253 (10)0.0012 (12)0.0033 (9)0.0030 (10)
C30.0615 (15)0.0616 (19)0.0371 (12)0.0104 (14)0.0174 (11)0.0100 (13)
C40.0417 (13)0.066 (2)0.0525 (14)0.0044 (13)0.0062 (11)0.0228 (14)
C50.0523 (13)0.0360 (14)0.0470 (12)0.0104 (11)0.0011 (11)0.0123 (11)
C60.0605 (16)0.063 (2)0.0455 (13)0.0130 (14)0.0213 (12)0.0222 (14)
C70.0712 (18)0.063 (2)0.0509 (15)0.0302 (16)0.0080 (13)0.0229 (15)
C80.092 (2)0.0336 (15)0.0512 (14)0.0059 (15)0.0086 (14)0.0064 (12)
C90.0569 (15)0.0592 (19)0.0537 (14)0.0019 (14)0.0053 (12)0.0216 (14)
C100.0856 (19)0.0499 (17)0.0303 (11)0.0067 (15)0.0063 (12)0.0028 (12)
C110.0498 (13)0.0404 (14)0.0276 (10)0.0020 (11)0.0043 (9)0.0072 (10)
C120.0511 (13)0.0520 (16)0.0317 (10)0.0039 (12)0.0020 (10)0.0023 (11)
C130.0446 (12)0.0535 (16)0.0372 (11)0.0015 (12)0.0017 (10)0.0112 (11)
C140.0387 (11)0.0341 (13)0.0369 (11)0.0062 (10)0.0008 (9)0.0024 (10)
C150.0497 (13)0.0415 (15)0.0354 (11)0.0109 (11)0.0018 (10)0.0002 (10)
C160.0656 (17)0.0599 (19)0.0420 (12)0.0195 (14)0.0068 (12)0.0023 (13)
C170.0501 (15)0.078 (2)0.0561 (15)0.0146 (15)0.0152 (12)0.0190 (15)
C180.0456 (14)0.0583 (19)0.0612 (15)0.0025 (13)0.0007 (12)0.0160 (14)
C190.0446 (13)0.0440 (15)0.0437 (12)0.0000 (11)0.0008 (10)0.0024 (11)
C200.0690 (17)0.0640 (19)0.0454 (13)0.0064 (15)0.0067 (12)0.0200 (14)
Geometric parameters (Å, º) top
Fe—C72.028 (3)C7—C81.395 (4)
Fe—C12.031 (2)C7—H70.9300
Fe—C92.031 (2)C8—C91.397 (4)
Fe—C82.034 (3)C8—H80.9300
Fe—C22.034 (2)C9—C101.389 (4)
Fe—C52.037 (2)C9—H90.9300
Fe—C62.037 (2)C10—H100.9300
Fe—C102.039 (2)C11—C121.507 (3)
Fe—C42.045 (2)C12—C131.515 (3)
Fe—C32.049 (2)C12—H12A0.9700
O1—C111.212 (3)C12—H12B0.9700
N1—C141.393 (3)C13—H13A0.9700
N1—C131.449 (3)C13—H13B0.9700
N1—H1N0.74 (2)C14—C191.388 (3)
C1—C51.431 (3)C14—C151.407 (3)
C1—C21.432 (3)C15—C161.380 (3)
C1—C111.469 (3)C15—C201.503 (3)
C2—C31.408 (3)C16—C171.379 (4)
C2—H20.9300C16—H160.9300
C3—C41.413 (4)C17—C181.365 (4)
C3—H30.9300C17—H170.9300
C4—C51.414 (3)C18—C191.385 (3)
C4—H40.9300C18—H180.9300
C5—H50.9300C19—H190.9300
C6—C71.406 (4)C20—H20A0.9600
C6—C101.406 (4)C20—H20B0.9600
C6—H60.9300C20—H20C0.9600
C7—Fe—C1120.96 (11)C1—C5—Fe69.19 (13)
C7—Fe—C967.46 (11)C4—C5—H5126.1
C1—Fe—C9164.08 (11)C1—C5—H5126.1
C7—Fe—C840.19 (11)Fe—C5—H5126.2
C1—Fe—C8154.66 (11)C7—C6—C10107.3 (2)
C9—Fe—C840.20 (11)C7—C6—Fe69.41 (14)
C7—Fe—C2109.60 (10)C10—C6—Fe69.88 (14)
C1—Fe—C241.25 (9)C7—C6—H6126.3
C9—Fe—C2152.81 (11)C10—C6—H6126.3
C8—Fe—C2119.71 (11)Fe—C6—H6126.0
C7—Fe—C5154.91 (12)C8—C7—C6108.3 (2)
C1—Fe—C541.17 (9)C8—C7—Fe70.14 (15)
C9—Fe—C5125.61 (11)C6—C7—Fe70.12 (15)
C8—Fe—C5162.90 (11)C8—C7—H7125.8
C2—Fe—C569.00 (10)C6—C7—H7125.8
C7—Fe—C640.47 (11)Fe—C7—H7125.5
C1—Fe—C6109.19 (10)C7—C8—C9107.6 (3)
C9—Fe—C667.52 (11)C7—C8—Fe69.67 (16)
C8—Fe—C667.82 (11)C9—C8—Fe69.81 (15)
C2—Fe—C6128.99 (10)C7—C8—H8126.2
C5—Fe—C6119.76 (11)C9—C8—H8126.2
C7—Fe—C1067.72 (11)Fe—C8—H8125.9
C1—Fe—C10127.57 (10)C10—C9—C8108.7 (2)
C9—Fe—C1039.91 (11)C10—C9—Fe70.32 (14)
C8—Fe—C1067.56 (11)C8—C9—Fe69.99 (15)
C2—Fe—C10166.37 (11)C10—C9—H9125.6
C5—Fe—C10107.41 (11)C8—C9—H9125.6
C6—Fe—C1040.37 (11)Fe—C9—H9125.6
C7—Fe—C4164.04 (13)C9—C10—C6108.0 (2)
C1—Fe—C468.63 (9)C9—C10—Fe69.76 (14)
C9—Fe—C4106.77 (10)C6—C10—Fe69.75 (13)
C8—Fe—C4125.95 (12)C9—C10—H10126.0
C2—Fe—C468.27 (10)C6—C10—H10126.0
C5—Fe—C440.53 (10)Fe—C10—H10126.0
C6—Fe—C4152.92 (12)O1—C11—C1121.1 (2)
C10—Fe—C4118.16 (11)O1—C11—C12121.6 (2)
C7—Fe—C3127.89 (12)C1—C11—C12117.2 (2)
C1—Fe—C368.51 (10)C11—C12—C13115.0 (2)
C9—Fe—C3118.55 (11)C11—C12—H12A108.5
C8—Fe—C3107.98 (11)C13—C12—H12A108.5
C2—Fe—C340.32 (9)C11—C12—H12B108.5
C5—Fe—C368.25 (11)C13—C12—H12B108.5
C6—Fe—C3166.04 (12)H12A—C12—H12B107.5
C10—Fe—C3151.91 (12)N1—C13—C12110.61 (18)
C4—Fe—C340.37 (11)N1—C13—H13A109.5
C14—N1—C13121.34 (19)C12—C13—H13A109.5
C14—N1—H1N120 (2)N1—C13—H13B109.5
C13—N1—H1N115 (2)C12—C13—H13B109.5
C5—C1—C2107.3 (2)H13A—C13—H13B108.1
C5—C1—C11125.2 (2)C19—C14—N1121.6 (2)
C2—C1—C11127.4 (2)C19—C14—C15119.5 (2)
C5—C1—Fe69.63 (13)N1—C14—C15118.9 (2)
C2—C1—Fe69.49 (13)C16—C15—C14118.4 (2)
C11—C1—Fe123.35 (14)C16—C15—C20121.5 (2)
C3—C2—C1108.0 (2)C14—C15—C20120.1 (2)
C3—C2—Fe70.41 (13)C17—C16—C15121.8 (2)
C1—C2—Fe69.26 (11)C17—C16—H16119.1
C3—C2—H2126.0C15—C16—H16119.1
C1—C2—H2126.0C18—C17—C16119.6 (2)
Fe—C2—H2125.9C18—C17—H17120.2
C2—C3—C4108.5 (2)C16—C17—H17120.2
C2—C3—Fe69.26 (12)C17—C18—C19120.4 (3)
C4—C3—Fe69.64 (13)C17—C18—H18119.8
C2—C3—H3125.7C19—C18—H18119.8
C4—C3—H3125.7C18—C19—C14120.3 (2)
Fe—C3—H3126.9C18—C19—H19119.8
C3—C4—C5108.4 (2)C14—C19—H19119.8
C3—C4—Fe69.99 (14)C15—C20—H20A109.5
C5—C4—Fe69.44 (13)C15—C20—H20B109.5
C3—C4—H4125.8H20A—C20—H20B109.5
C5—C4—H4125.8C15—C20—H20C109.5
Fe—C4—H4126.4H20A—C20—H20C109.5
C4—C5—C1107.8 (2)H20B—C20—H20C109.5
C4—C5—Fe70.03 (14)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C14–C19 ring.
D—H···AD—HH···AD···AD—H···A
C12—H12A···O1i0.972.383.182 (3)139
C19—H19···Cg1i0.932.983.838 (3)160
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C15H16NO)]
Mr347.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)12.1343 (4), 17.8010 (7), 7.5464 (2)
β (°) 92.946 (3)
V3)1627.89 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.93
Crystal size (mm)0.22 × 0.18 × 0.12
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3 Gemini
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)'
Tmin, Tmax0.923, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7605, 3694, 2843
Rint0.029
(sin θ/λ)max1)0.681
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.097, 1.04
No. of reflections3694
No. of parameters213
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.28

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999), PLATON (Spek, 2009) and PARST (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C14–C19 ring.
D—H···AD—HH···AD···AD—H···A
C12—H12A···O1i0.972.383.182 (3)139
C19—H19···Cg1i0.932.983.838 (3)160
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the Ministry of Education and Science of the Republic of Serbia (project Nos. 172014, 172035 and 172034).

References

First citationDamljanović, I., Stevanović, D., Pejović, A., Vukićević, M., Novaković, S. B., Bogdanović, G. A., Mihajlov-Krstev, T., Radulović, N. & Vukićević, R. D. (2011). J. Organomet. Chem. 696, 3703–3713.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLeka, Z., Novaković, S. B., Pejović, A., Bogdanović, G. A. & Vukićević, R. D. (2012c). Acta Cryst. E68, m231.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLeka, Z., Novaković, S. B., Stevanović, D., Bogdanović, G. A. & Vukićević, R. D. (2012a). Acta Cryst. E68, m229.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLeka, Z., Novaković, S. B., Stevanović, D., Bogdanović, G. A. & Vukićević, R. D. (2012b). Acta Cryst. E68, m230.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationPejović, A., Stevanović, D., Damljanović, I., Vukićević, M., Novaković, S. B., Bogdanović, G. A., Mihajilov-Krstev, T., Radulović, N. & Vukićević, R. D. (2012). Helv. Chim. Acta. Accepted.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStevanović, D., Pejović, A., Novaković, S. B., Bogdanović, G. A., Divjaković, V. & Vukićević, R. D. (2012). Acta Cryst. C68, m37–m40.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTogni, A. & Hayashi, T. (1995). In Ferrocenes: Homogenous Catalysis, Organic Synthesis, Materials Science. New York: VCH.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds