organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(S)-(−)-2-(1H-Indol-3-yl)-N-(1-phenyl­eth­yl)acetamide

aCentro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, 72570, Puebla, Pue., Mexico
*Correspondence e-mail: angel.mendoza.m@gmail.com

(Received 21 June 2012; accepted 22 June 2012; online 30 June 2012)

In the title compound, C18H18N2O, the dihedral angle between the indole system and the phenyl ring is 17.2 (2)°. The crystal packing features two N—H⋯O hydrogen bonds, which link the mol­ecules into layers parallel to (001). The absolute configuration was determined by the synthetic procedure and was set according to the starting material.

Related literature

For background to the synthesis of chiral non-racemic acetamide indole compounds, see: Kochanowska-Karamyan & Hamann (2010[Kochanowska-Karamyan, A. J. & Hamann, M. T. (2010). Chem. Rev. 110, 4489-4497.]). For their use in the synthesis of nitro­gen heterocyclic compounds and indole alkaloids, see: Suárez-Castillo et al. (2006[Suárez-Castillo, O. R., Sánchez-Zavala, M., Meléndez-Rodríguez, M., Castelán-Duarte, L. E., Morales-Ríos, M. S. & Joseph-Nathan, P. (2006). Tetrahedron, 62, 3040-3051.]); Chiou et al. (2009[Chiou, W.-H., Lin, G.-H., Hsu, C.-C., Chaterpaul, S. & Ojima, I. (2009). Org. Lett. 11, 2659-2662.]).

[Scheme 1]

Experimental

Crystal data
  • C18H18N2O

  • Mr = 278.34

  • Orthorhombic, P 21 21 21

  • a = 7.307 (4) Å

  • b = 8.559 (4) Å

  • c = 25.674 (9) Å

  • V = 1605.7 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 298 K

  • 0.65 × 0.6 × 0.1 mm

Data collection
  • Siemens P4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.646, Tmax = 1

  • 2937 measured reflections

  • 2126 independent reflections

  • 1146 reflections with I > 2σ(I)

  • Rint = 0.045

  • 3 standard reflections every 97 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.161

  • S = 1.05

  • 2126 reflections

  • 199 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.89 (5) 2.03 (5) 2.891 (4) 163 (4)
N2—H2N⋯O1ii 0.96 (6) 1.91 (6) 2.847 (5) 164 (4)
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: XSCANS (Siemens, 1994[Siemens (1994). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The synthesis of chiral non racemic acetamides indole compounds is an original area of interest in organic chemistry (Kochanowska-Karamyan & Hamann, 2010) because they are useful intermediates for the synthesis of diverse interesting nitrogen heterocyclic compounds and indole alkaloids derivatives and natural products (Suárez-Castillo et al., 2006; Chiou et al., 2009).

In the title compound the N1 atom in a planar conformation from the plane between C9, H1N and C1 with an r.m.s. deviation of 0.012Å. The N1—C9 [1.322 (5) Å] and C9—O1 [1.254 (4) Å] distances show electron delocalization along the N1—C9—O1 system. The indole group shows a torsion angle of 102.1 (4)° from the plane placed by N1/C9/C10/C11 and phenyl ring C2—C7 shows a torsion angle of 92.3 (4)° from plane C9/N1/C1/C2. The crystal packing is stabilized by two hydrogen bond interactions [N1—H1N···O1 and N2—H2N···O1] linking the molecules into planes parallel to (0 0 1) (Table 1).

Related literature top

For background to the synthesis of chiral non-racemic acetamide indole compounds, see: Kochanowska-Karamyan & Hamann (2010). For their use in the synthesis of nitrogen heterocyclic compounds and indole alkaloids , see: Suárez-Castillo et al. (2006); Chiou et al. (2009).

Experimental top

The title compound, C18H18N2O, was obtained dissolving indolic acid (0.96 mmol, 0.277 g) and boric acid (0.30 mmol, 0.020 g) in 88 ml of toluene under N2 atmosphere. Once the mixture was colorless, (S)-(-)-phenylethylamine was added and heated under reflux by 16 h. After that, mixture was cooled and hexane (0.5 L) was added. Finally, white solid was obtained and crystalized from an ethyl acetate/diethylether solution; m. p. 94–96 °C. [α]D25 = -45.7° (c 1.5, CH2Cl2); IR (KBr)1643 cm-1. 1H NMR (CDCl3, 400 MHz) δ (p.p.m.), J(Hz) 9.24 (s, 1H), 7.48 (d, J=8.0, 1H),7.26 (d, J=8.4, 1H), 7.17–7.05 (m, 6H),6.85 (d, J=2.4, 1H), 6.32 (d, J=8.0, 1H), 5.12 (m, 1H), 3.69 (d, J=3.2, 2H), 1.24 (d, J=7.2, 3H). 13C NMR (CDCl3,100 MHz) δ (p.p.m.) 22.2, 33.8, 49.1, 108.2,112.1, 118.8–128.8, 136.9, 143.4, 171.8.

Refinement top

H atom bonded to N atoms were located in a difference Fourier map and they were isotropically refined. H atoms bonded to C atoms were placed in geometrical idealized positions and refined as riding on their parent atoms, with C—H = 0.93–0.98 Å and with Uiso(H) = 1.2 Ueq(C) or Ueq(H) = 1.5 Ueq(C) for methyl groups. In the absence of anomalous scatterers, the absolute configuration could not be determined. It was set according to the starting material and Friedel pairs were merged.

Structure description top

The synthesis of chiral non racemic acetamides indole compounds is an original area of interest in organic chemistry (Kochanowska-Karamyan & Hamann, 2010) because they are useful intermediates for the synthesis of diverse interesting nitrogen heterocyclic compounds and indole alkaloids derivatives and natural products (Suárez-Castillo et al., 2006; Chiou et al., 2009).

In the title compound the N1 atom in a planar conformation from the plane between C9, H1N and C1 with an r.m.s. deviation of 0.012Å. The N1—C9 [1.322 (5) Å] and C9—O1 [1.254 (4) Å] distances show electron delocalization along the N1—C9—O1 system. The indole group shows a torsion angle of 102.1 (4)° from the plane placed by N1/C9/C10/C11 and phenyl ring C2—C7 shows a torsion angle of 92.3 (4)° from plane C9/N1/C1/C2. The crystal packing is stabilized by two hydrogen bond interactions [N1—H1N···O1 and N2—H2N···O1] linking the molecules into planes parallel to (0 0 1) (Table 1).

For background to the synthesis of chiral non-racemic acetamide indole compounds, see: Kochanowska-Karamyan & Hamann (2010). For their use in the synthesis of nitrogen heterocyclic compounds and indole alkaloids , see: Suárez-Castillo et al. (2006); Chiou et al. (2009).

Computing details top

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS (Siemens, 1994); data reduction: XSCANS (Siemens, 1994); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound, with atom labels and 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Molecular packing of title compound, viewed down the a axis, showing hydrogen bonds and intramolecular interaction (dashed lines).
(S)-(-)-2-(1H-Indol-3-yl)-N-(1-phenylethyl)acetamide top
Crystal data top
C18H18N2OF(000) = 592
Mr = 278.34Dx = 1.151 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 24 reflections
a = 7.307 (4) Åθ = 12.6–22.7°
b = 8.559 (4) ŵ = 0.07 mm1
c = 25.674 (9) ÅT = 298 K
V = 1605.7 (13) Å3Prism, colourless
Z = 40.65 × 0.6 × 0.1 mm
Data collection top
Siemens P4
diffractometer
Rint = 0.045
Graphite monochromatorθmax = 27.5°, θmin = 2.5°
2θ/ω scansh = 29
Absorption correction: ψ scan
(North et al., 1968)
k = 411
Tmin = 0.646, Tmax = 1l = 1133
2937 measured reflections3 standard reflections every 97 reflections
2126 independent reflections intensity decay: 1%
1146 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0706P)2 + 0.0614P]
where P = (Fo2 + 2Fc2)/3
2126 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C18H18N2OV = 1605.7 (13) Å3
Mr = 278.34Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.307 (4) ŵ = 0.07 mm1
b = 8.559 (4) ÅT = 298 K
c = 25.674 (9) Å0.65 × 0.6 × 0.1 mm
Data collection top
Siemens P4
diffractometer
1146 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.045
Tmin = 0.646, Tmax = 13 standard reflections every 97 reflections
2937 measured reflections intensity decay: 1%
2126 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.161H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.15 e Å3
2126 reflectionsΔρmin = 0.15 e Å3
199 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3536 (4)1.0472 (3)0.73306 (10)0.0732 (8)
C90.4310 (5)0.9265 (4)0.74986 (14)0.0574 (9)
N10.5307 (5)0.8365 (4)0.71908 (12)0.0630 (8)
C20.4248 (5)0.7787 (4)0.62951 (15)0.0702 (11)
N20.0448 (5)0.6926 (4)0.81406 (16)0.0822 (10)
C10.5641 (6)0.8626 (4)0.66407 (15)0.0712 (11)
H10.55110.97490.65760.085*
C30.2953 (5)0.6773 (5)0.64922 (16)0.0714 (11)
H30.28740.66220.6850.086*
C120.1826 (5)0.7462 (4)0.86932 (15)0.0647 (10)
C110.2352 (5)0.8019 (4)0.81856 (14)0.0594 (9)
C100.4134 (5)0.8780 (4)0.80602 (14)0.0636 (10)
H10A0.51170.80610.81440.076*
H10B0.42780.96960.82790.076*
C170.0087 (6)0.6788 (4)0.86442 (18)0.0752 (11)
C180.0937 (5)0.7666 (5)0.78644 (16)0.0735 (11)
H180.08990.78870.7510.088*
C40.1767 (7)0.5977 (6)0.6164 (2)0.0978 (15)
H40.0910.52910.63030.117*
C160.0813 (7)0.6093 (6)0.9064 (2)0.0980 (15)
H160.19630.56410.90250.118*
C130.2681 (7)0.7464 (5)0.91787 (17)0.0867 (13)
H130.38310.7910.92230.104*
C70.4333 (8)0.7996 (6)0.57627 (19)0.1064 (17)
H70.51940.8670.56190.128*
C80.7594 (6)0.8189 (6)0.6517 (2)0.0986 (15)
H8A0.77630.70890.65720.148*
H8B0.84070.87610.67410.148*
H8C0.78560.84390.6160.148*
C150.0072 (10)0.6104 (7)0.9535 (2)0.121 (2)
H150.04880.56430.98220.146*
C140.1770 (10)0.6781 (7)0.9594 (2)0.1179 (18)
H140.23180.6780.99210.141*
C60.3115 (11)0.7186 (9)0.5442 (2)0.138 (2)
H60.31740.73330.50840.166*
C50.1852 (9)0.6192 (9)0.5639 (3)0.127 (2)
H50.10530.56640.54190.153*
H1N0.589 (6)0.757 (6)0.7342 (17)0.104 (16)*
H2N0.147 (8)0.659 (6)0.7935 (18)0.130 (18)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0751 (18)0.0429 (13)0.1016 (18)0.0091 (14)0.0245 (16)0.0040 (13)
C90.051 (2)0.0402 (18)0.080 (2)0.0085 (19)0.018 (2)0.0014 (17)
N10.072 (2)0.0403 (16)0.0771 (19)0.0031 (17)0.0018 (18)0.0044 (15)
C20.071 (3)0.057 (2)0.083 (3)0.021 (2)0.006 (2)0.0071 (19)
N20.060 (2)0.082 (2)0.105 (3)0.009 (2)0.013 (2)0.014 (2)
C10.084 (3)0.0426 (19)0.087 (3)0.000 (2)0.008 (2)0.0062 (18)
C30.061 (2)0.061 (2)0.092 (3)0.010 (2)0.001 (2)0.001 (2)
C120.064 (2)0.050 (2)0.080 (3)0.003 (2)0.006 (2)0.0140 (19)
C110.055 (2)0.0468 (18)0.076 (2)0.0019 (18)0.0107 (19)0.0103 (17)
C100.057 (2)0.0533 (18)0.081 (2)0.0030 (19)0.013 (2)0.0078 (18)
C170.073 (3)0.054 (2)0.099 (3)0.004 (2)0.006 (3)0.016 (2)
C180.062 (2)0.076 (2)0.083 (2)0.007 (2)0.013 (2)0.004 (2)
C40.075 (3)0.084 (3)0.135 (4)0.002 (3)0.012 (3)0.027 (3)
C160.090 (3)0.082 (3)0.122 (4)0.014 (3)0.029 (3)0.017 (3)
C130.099 (3)0.075 (3)0.086 (3)0.009 (3)0.010 (3)0.009 (2)
C70.120 (4)0.113 (4)0.086 (3)0.000 (4)0.020 (3)0.018 (3)
C80.065 (3)0.109 (4)0.121 (4)0.007 (3)0.015 (3)0.023 (3)
C150.155 (6)0.097 (4)0.112 (4)0.020 (4)0.034 (4)0.008 (3)
C140.150 (5)0.114 (4)0.090 (3)0.013 (5)0.001 (4)0.004 (3)
C60.148 (6)0.181 (7)0.085 (3)0.015 (6)0.009 (4)0.037 (4)
C50.103 (4)0.149 (6)0.130 (5)0.013 (5)0.022 (4)0.053 (5)
Geometric parameters (Å, º) top
O1—C91.254 (4)C10—H10B0.97
C9—N11.322 (5)C17—C161.395 (6)
C9—C101.506 (5)C18—H180.93
N1—C11.451 (5)C4—C51.361 (7)
N1—H1N0.89 (5)C4—H40.93
C2—C31.380 (5)C16—C151.372 (7)
C2—C71.380 (6)C16—H160.93
C2—C11.529 (5)C13—C141.387 (7)
N2—C171.356 (5)C13—H130.93
N2—C181.388 (5)C7—C61.396 (8)
N2—H2N0.96 (6)C7—H70.93
C1—C81.509 (6)C8—H8A0.96
C1—H10.98C8—H8B0.96
C3—C41.388 (6)C8—H8C0.96
C3—H30.93C15—C141.377 (8)
C12—C131.394 (6)C15—H150.93
C12—C171.401 (6)C14—H140.93
C12—C111.440 (5)C6—C51.353 (9)
C11—C181.357 (5)C6—H60.93
C11—C101.491 (5)C5—H50.93
C10—H10A0.97
O1—C9—N1121.5 (4)C16—C17—C12122.3 (5)
O1—C9—C10121.2 (4)C11—C18—N2110.3 (4)
N1—C9—C10117.3 (3)C11—C18—H18124.9
C9—N1—C1125.8 (3)N2—C18—H18124.9
C9—N1—H1N116 (3)C5—C4—C3120.4 (6)
C1—N1—H1N118 (3)C5—C4—H4119.8
C3—C2—C7118.4 (4)C3—C4—H4119.8
C3—C2—C1122.6 (4)C15—C16—C17117.1 (5)
C7—C2—C1118.9 (4)C15—C16—H16121.5
C17—N2—C18108.5 (3)C17—C16—H16121.5
C17—N2—H2N136 (3)C14—C13—C12118.2 (5)
C18—N2—H2N115 (3)C14—C13—H13120.9
N1—C1—C8109.0 (4)C12—C13—H13120.9
N1—C1—C2112.4 (3)C2—C7—C6119.4 (5)
C8—C1—C2113.1 (4)C2—C7—H7120.3
N1—C1—H1107.4C6—C7—H7120.3
C8—C1—H1107.4C1—C8—H8A109.5
C2—C1—H1107.4C1—C8—H8B109.5
C2—C3—C4120.9 (4)H8A—C8—H8B109.5
C2—C3—H3119.5C1—C8—H8C109.5
C4—C3—H3119.5H8A—C8—H8C109.5
C13—C12—C17119.1 (4)H8B—C8—H8C109.5
C13—C12—C11133.6 (4)C16—C15—C14121.7 (6)
C17—C12—C11107.3 (3)C16—C15—H15119.2
C18—C11—C12105.8 (3)C14—C15—H15119.2
C18—C11—C10129.2 (4)C15—C14—C13121.6 (6)
C12—C11—C10125.0 (3)C15—C14—H14119.2
C11—C10—C9113.7 (3)C13—C14—H14119.2
C11—C10—H10A108.8C5—C6—C7121.8 (6)
C9—C10—H10A108.8C5—C6—H6119.1
C11—C10—H10B108.8C7—C6—H6119.1
C9—C10—H10B108.8C6—C5—C4119.1 (6)
H10A—C10—H10B107.7C6—C5—H5120.5
N2—C17—C16129.6 (4)C4—C5—H5120.5
N2—C17—C12108.1 (4)
O1—C9—N1—C10.1 (5)C11—C12—C17—N20.5 (4)
C10—C9—N1—C1179.8 (3)C13—C12—C17—C161.0 (6)
C9—N1—C1—C8141.5 (4)C11—C12—C17—C16178.3 (4)
C9—N1—C1—C292.3 (4)C12—C11—C18—N20.2 (4)
C3—C2—C1—N16.3 (5)C10—C11—C18—N2178.6 (3)
C7—C2—C1—N1176.6 (4)C17—N2—C18—C110.6 (5)
C3—C2—C1—C8117.6 (4)C2—C3—C4—C50.5 (7)
C7—C2—C1—C859.5 (5)N2—C17—C16—C15179.1 (4)
C7—C2—C3—C40.2 (6)C12—C17—C16—C150.5 (7)
C1—C2—C3—C4176.9 (4)C17—C12—C13—C140.5 (6)
C13—C12—C11—C18179.4 (4)C11—C12—C13—C14178.7 (4)
C17—C12—C11—C180.2 (4)C3—C2—C7—C60.2 (7)
C13—C12—C11—C101.0 (6)C1—C2—C7—C6177.4 (5)
C17—C12—C11—C10178.3 (3)C17—C16—C15—C140.5 (8)
C18—C11—C10—C92.6 (5)C16—C15—C14—C131.0 (9)
C12—C11—C10—C9179.3 (3)C12—C13—C14—C150.5 (8)
O1—C9—C10—C1177.6 (4)C2—C7—C6—C50.3 (9)
N1—C9—C10—C11102.1 (4)C7—C6—C5—C40.0 (10)
C18—N2—C17—C16178.1 (4)C3—C4—C5—C60.4 (9)
C18—N2—C17—C120.7 (4)C11—C10—C9—N1102.1 (4)
C13—C12—C17—N2179.9 (4)C2—C1—N1—C992.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.89 (5)2.03 (5)2.891 (4)163 (4)
N2—H2N···O1ii0.96 (6)1.91 (6)2.847 (5)164 (4)
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC18H18N2O
Mr278.34
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)7.307 (4), 8.559 (4), 25.674 (9)
V3)1605.7 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.65 × 0.6 × 0.1
Data collection
DiffractometerSiemens P4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.646, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
2937, 2126, 1146
Rint0.045
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.161, 1.05
No. of reflections2126
No. of parameters199
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.15, 0.15

Computer programs: XSCANS (Siemens, 1994), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.89 (5)2.03 (5)2.891 (4)163 (4)
N2—H2N···O1ii0.96 (6)1.91 (6)2.847 (5)164 (4)
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x, y1/2, z+3/2.
 

Acknowledgements

We are grateful for financial support by projects VIEP-BUAP and CONACyT CB-2009–01/128747. JR and OR thank CONACyT for doctoral scholarships. Special thanks go to Dr Marcos Flores-Alamo (USAI/FQ/UNAM) for useful comments.

References

First citationChiou, W.-H., Lin, G.-H., Hsu, C.-C., Chaterpaul, S. & Ojima, I. (2009). Org. Lett. 11, 2659–2662.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKochanowska-Karamyan, A. J. & Hamann, M. T. (2010). Chem. Rev. 110, 4489–4497.  Web of Science CAS PubMed Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1994). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSuárez-Castillo, O. R., Sánchez-Zavala, M., Meléndez-Rodríguez, M., Castelán-Duarte, L. E., Morales-Ríos, M. S. & Joseph-Nathan, P. (2006). Tetrahedron, 62, 3040–3051.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds