organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Nitro-N-[(E)-thio­phen-2-yl­methyl­­idene]aniline

aChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah, Saudi Arabia, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 22 June 2012; accepted 22 June 2012; online 30 June 2012)

In the title compound, C11H8N2O2S, there is a twist in the mol­ecule, with the dihedral angle between the five- and six-membered rings being 31.77 (9)°. The nitro group is slightly twisted out of the plane of the benzene ring to which it is attached [O—N—C—C torsion angle = 9.0 (3)°]. The S and N atoms are syn. In the crystal, supra­molecular layers parallel to (-204) are formed by C—H⋯O and C—H⋯N inter­actions. These layers are connected into a three-dimensional architecture by ππ inter­actions occurring between centrosymmetrically related benzene rings [centroid–centroid distance = 3.6020 (11) Å].

Related literature

For background to 2-substituted thio­phenes, see: Kleemann et al. (2006[Kleemann, A., Engel, J. B., Kutscher, B. & Reichert, D. (2006). In Pharmaceutical Substances. New York, Stuttgart: Georg Thieme Verlag.]). For a related structure, see: Asiri et al. (2012[Asiri, A. M., Faidallah, H. M., Khan, K. A., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o1026.]).

[Scheme 1]

Experimental

Crystal data
  • C11H8N2O2S

  • Mr = 232.25

  • Monoclinic, C 2/c

  • a = 9.2754 (5) Å

  • b = 11.9983 (9) Å

  • c = 18.4996 (13) Å

  • β = 92.772 (6)°

  • V = 2056.4 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 100 K

  • 0.25 × 0.15 × 0.05 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.692, Tmax = 1.000

  • 8697 measured reflections

  • 2377 independent reflections

  • 1869 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.111

  • S = 1.04

  • 2377 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O2i 0.95 2.50 3.412 (2) 160
C2—H2⋯N1ii 0.95 2.62 3.556 (2) 169
Symmetry codes: (i) [x-1, -y+1, z-{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Among the various useful properties exhibited by thiophenes are their biological activities (Kleemann et al., 2006). In continuation of structural studies of thienyl derivatives (Asiri et al., 2012), herein the crystal structure determination of the title compound, (4-nitrophenyl)thiophene-2-ylmethylene-amine (I), is described.

In (I), Fig. 1, the conformation about the N1C5 bond [1.283 (2) Å] is E. A twist in the molecule is evident as seen in the value of the dihedral angle of 31.77 (9)° between the five- and six-membered rings. The major deviation from a planar torsion angle is -37.0 (3)° for C5—N1—C6—C11 indicating that the most significant twist occurs around the N1—C6 bond. The nitro group is slightly inclined with respect to the plane of the benzene ring to which it is attached as seen in the O2—N2—C9—C8 torsion angle of 9.0 (3)°. The S and N atoms are syn.

In the crystal packing, supramolecular layers parallel to (-2 0 4) are formed by C—H···O and C—H···N interactions, Table 1, which lead to 22-membered {···HC2H···ONC4N}2 synthons (Fig 2). Layers aggregate to form a three-dimensional architecture by ππ interactions occurring between centrosymmetrically related benzene rings [inter-centroid distance = 3.6020 (11) Å for symmetry operation 1 - x, 1 - y, 1 - z], Fig. 3.

Related literature top

For background to 2-substituted thiophenes, see: Kleemann et al. (2006). For a related structure, see: Asiri et al. (2012).

Experimental top

A mixture of thiophen-2-carboxaldehyde (1.1 g, 0.01 M) and p-nitroaniline (1.4 g, 0.0 1M) in ethanol (10 ml) was heated on a water bath for 30 min, the solid which separated out was filtered, dried and recrystallized from ethanol as yellow prisms; M. pt: 375–376 K. Yield: 96%.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95 Å, Uiso(H) = 1.2Ueq(C)] and were included in the refinement in the riding model approximation.

Structure description top

Among the various useful properties exhibited by thiophenes are their biological activities (Kleemann et al., 2006). In continuation of structural studies of thienyl derivatives (Asiri et al., 2012), herein the crystal structure determination of the title compound, (4-nitrophenyl)thiophene-2-ylmethylene-amine (I), is described.

In (I), Fig. 1, the conformation about the N1C5 bond [1.283 (2) Å] is E. A twist in the molecule is evident as seen in the value of the dihedral angle of 31.77 (9)° between the five- and six-membered rings. The major deviation from a planar torsion angle is -37.0 (3)° for C5—N1—C6—C11 indicating that the most significant twist occurs around the N1—C6 bond. The nitro group is slightly inclined with respect to the plane of the benzene ring to which it is attached as seen in the O2—N2—C9—C8 torsion angle of 9.0 (3)°. The S and N atoms are syn.

In the crystal packing, supramolecular layers parallel to (-2 0 4) are formed by C—H···O and C—H···N interactions, Table 1, which lead to 22-membered {···HC2H···ONC4N}2 synthons (Fig 2). Layers aggregate to form a three-dimensional architecture by ππ interactions occurring between centrosymmetrically related benzene rings [inter-centroid distance = 3.6020 (11) Å for symmetry operation 1 - x, 1 - y, 1 - z], Fig. 3.

For background to 2-substituted thiophenes, see: Kleemann et al. (2006). For a related structure, see: Asiri et al. (2012).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the supramolecular layer in the (-2 0 4) plane in (I) mediated by C—H···O and C—H···N interactions shown as orange and blue dashed lines, respectively.
[Figure 3] Fig. 3. A view in projection down the b axis of the unit-cell contents of (I), showing the stacking of supramolecular layers. The C—H···O, C—H···N and C—H—π interactions are shown as orange, blue and purple dashed lines, respectively.
4-Nitro-N-[(E)-thiophen-2-ylmethylidene]aniline top
Crystal data top
C11H8N2O2SF(000) = 960
Mr = 232.25Dx = 1.500 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2057 reflections
a = 9.2754 (5) Åθ = 2.8–27.5°
b = 11.9983 (9) ŵ = 0.30 mm1
c = 18.4996 (13) ÅT = 100 K
β = 92.772 (6)°Prism, yellow
V = 2056.4 (2) Å30.25 × 0.15 × 0.05 mm
Z = 8
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2377 independent reflections
Radiation source: SuperNova (Mo) X-ray Source1869 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.050
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.8°
ω scanh = 1112
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1315
Tmin = 0.692, Tmax = 1.000l = 2224
8697 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.049P)2 + 1.4742P]
where P = (Fo2 + 2Fc2)/3
2377 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C11H8N2O2SV = 2056.4 (2) Å3
Mr = 232.25Z = 8
Monoclinic, C2/cMo Kα radiation
a = 9.2754 (5) ŵ = 0.30 mm1
b = 11.9983 (9) ÅT = 100 K
c = 18.4996 (13) Å0.25 × 0.15 × 0.05 mm
β = 92.772 (6)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2377 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
1869 reflections with I > 2σ(I)
Tmin = 0.692, Tmax = 1.000Rint = 0.050
8697 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.04Δρmax = 0.29 e Å3
2377 reflectionsΔρmin = 0.31 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.22121 (5)0.35279 (4)0.24739 (3)0.01985 (16)
O10.94206 (15)0.49221 (12)0.60866 (8)0.0287 (4)
O20.92261 (17)0.65565 (13)0.55892 (8)0.0330 (4)
N10.45609 (16)0.40163 (13)0.36388 (8)0.0172 (3)
N20.88841 (17)0.55649 (14)0.56311 (9)0.0213 (4)
C10.1448 (2)0.24635 (16)0.19692 (10)0.0216 (4)
H10.06930.25670.16100.026*
C20.2041 (2)0.14558 (16)0.21402 (10)0.0191 (4)
H20.17420.07760.19160.023*
C30.3151 (2)0.15307 (15)0.26874 (10)0.0178 (4)
H30.36870.09090.28710.021*
C40.33686 (19)0.26104 (15)0.29257 (10)0.0165 (4)
C50.44640 (19)0.29889 (16)0.34505 (10)0.0168 (4)
H50.51280.24650.36610.020*
C60.56731 (19)0.43424 (15)0.41452 (10)0.0156 (4)
C70.6258 (2)0.54040 (16)0.40547 (10)0.0186 (4)
H70.59250.58520.36580.022*
C80.7316 (2)0.58087 (16)0.45373 (10)0.0195 (4)
H80.77160.65300.44770.023*
C90.77767 (19)0.51350 (16)0.51104 (9)0.0172 (4)
C100.7220 (2)0.40827 (16)0.52155 (10)0.0186 (4)
H100.75650.36370.56120.022*
C110.6151 (2)0.36890 (16)0.47345 (10)0.0190 (4)
H110.57420.29740.48050.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0209 (3)0.0158 (3)0.0223 (3)0.00164 (19)0.00515 (19)0.00144 (18)
O10.0258 (8)0.0328 (9)0.0264 (8)0.0027 (7)0.0107 (6)0.0029 (6)
O20.0361 (9)0.0281 (9)0.0334 (9)0.0135 (7)0.0118 (7)0.0019 (7)
N10.0164 (8)0.0180 (8)0.0169 (8)0.0001 (6)0.0022 (6)0.0005 (6)
N20.0182 (8)0.0258 (10)0.0196 (9)0.0014 (7)0.0017 (7)0.0019 (7)
C10.0191 (10)0.0246 (11)0.0203 (10)0.0014 (8)0.0060 (8)0.0028 (8)
C20.0213 (10)0.0182 (10)0.0175 (10)0.0024 (8)0.0015 (8)0.0021 (7)
C30.0190 (9)0.0158 (10)0.0183 (9)0.0004 (7)0.0019 (7)0.0011 (7)
C40.0160 (9)0.0173 (9)0.0160 (9)0.0010 (7)0.0002 (7)0.0003 (7)
C50.0161 (9)0.0183 (10)0.0161 (9)0.0014 (8)0.0002 (7)0.0023 (7)
C60.0133 (8)0.0174 (9)0.0160 (9)0.0012 (7)0.0003 (7)0.0033 (7)
C70.0176 (9)0.0203 (10)0.0176 (9)0.0011 (8)0.0008 (7)0.0040 (7)
C80.0189 (9)0.0181 (10)0.0214 (10)0.0040 (8)0.0003 (8)0.0006 (7)
C90.0124 (9)0.0243 (10)0.0148 (9)0.0006 (7)0.0009 (7)0.0035 (7)
C100.0202 (9)0.0190 (10)0.0165 (9)0.0016 (8)0.0014 (7)0.0008 (7)
C110.0220 (10)0.0165 (9)0.0184 (10)0.0003 (8)0.0001 (8)0.0005 (7)
Geometric parameters (Å, º) top
S1—C11.7150 (19)C4—C51.444 (2)
S1—C41.7246 (18)C5—H50.9500
O1—N21.230 (2)C6—C111.398 (3)
O2—N21.235 (2)C6—C71.397 (3)
N1—C51.283 (2)C7—C81.382 (3)
N1—C61.415 (2)C7—H70.9500
N2—C91.467 (2)C8—C91.384 (3)
C1—C21.359 (3)C8—H80.9500
C1—H10.9500C9—C101.382 (3)
C2—C31.411 (3)C10—C111.383 (3)
C2—H20.9500C10—H100.9500
C3—C41.380 (3)C11—H110.9500
C3—H30.9500
C1—S1—C491.13 (9)C4—C5—H5119.3
C5—N1—C6119.00 (16)C11—C6—C7119.63 (17)
O1—N2—O2123.41 (16)C11—C6—N1123.71 (17)
O1—N2—C9118.47 (16)C7—C6—N1116.58 (16)
O2—N2—C9118.12 (16)C8—C7—C6120.68 (17)
C2—C1—S1112.55 (15)C8—C7—H7119.7
C2—C1—H1123.7C6—C7—H7119.7
S1—C1—H1123.7C7—C8—C9118.21 (17)
C1—C2—C3112.54 (17)C7—C8—H8120.9
C1—C2—H2123.7C9—C8—H8120.9
C3—C2—H2123.7C10—C9—C8122.53 (17)
C4—C3—C2112.28 (17)C10—C9—N2118.91 (16)
C4—C3—H3123.9C8—C9—N2118.56 (17)
C2—C3—H3123.9C9—C10—C11118.88 (18)
C3—C4—C5126.67 (18)C9—C10—H10120.6
C3—C4—S1111.50 (14)C11—C10—H10120.6
C5—C4—S1121.73 (14)C10—C11—C6120.05 (18)
N1—C5—C4121.49 (17)C10—C11—H11120.0
N1—C5—H5119.3C6—C11—H11120.0
C4—S1—C1—C20.33 (16)N1—C6—C7—C8177.85 (16)
S1—C1—C2—C30.5 (2)C6—C7—C8—C90.0 (3)
C1—C2—C3—C40.5 (2)C7—C8—C9—C100.1 (3)
C2—C3—C4—C5176.49 (17)C7—C8—C9—N2179.10 (16)
C2—C3—C4—S10.2 (2)O1—N2—C9—C109.7 (3)
C1—S1—C4—C30.06 (15)O2—N2—C9—C10170.11 (18)
C1—S1—C4—C5176.43 (16)O1—N2—C9—C8171.17 (17)
C6—N1—C5—C4178.81 (16)O2—N2—C9—C89.0 (3)
C3—C4—C5—N1179.32 (19)C8—C9—C10—C110.6 (3)
S1—C4—C5—N14.7 (3)N2—C9—C10—C11178.44 (16)
C5—N1—C6—C1137.0 (3)C9—C10—C11—C61.3 (3)
C5—N1—C6—C7146.04 (18)C7—C6—C11—C101.4 (3)
C11—C6—C7—C80.8 (3)N1—C6—C11—C10178.30 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O2i0.952.503.412 (2)160
C2—H2···N1ii0.952.623.556 (2)169
Symmetry codes: (i) x1, y+1, z1/2; (ii) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H8N2O2S
Mr232.25
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)9.2754 (5), 11.9983 (9), 18.4996 (13)
β (°) 92.772 (6)
V3)2056.4 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.25 × 0.15 × 0.05
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.692, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8697, 2377, 1869
Rint0.050
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.111, 1.04
No. of reflections2377
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.31

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O2i0.952.503.412 (2)160
C2—H2···N1ii0.952.623.556 (2)169
Symmetry codes: (i) x1, y+1, z1/2; (ii) x+1/2, y1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: aasiri2@kau.edu.sa.

Acknowledgements

The authors are grateful to King Abdulaziz University for providing research facilities. The authors also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationAsiri, A. M., Faidallah, H. M., Khan, K. A., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o1026.  CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKleemann, A., Engel, J. B., Kutscher, B. & Reichert, D. (2006). In Pharmaceutical Substances. New York, Stuttgart: Georg Thieme Verlag.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds