organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(3Z)-1,1,1-Tri­fluoro-4-phenyl-4-[(2-{[(1Z)-4,4,4-tri­fluoro-3-oxo-1-phenyl­but-1-en-1-yl]amino}­eth­yl)amino]­but-3-en-2-one

aCenter of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, PO Box 80203, Jeddah 21589, Saudi Arabia, bChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah 21589, Saudi Arabia, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 22 June 2012; accepted 25 June 2012; online 30 June 2012)

In the title compound, C22H18F6N2O2, the five atoms comprising each O=C—C=C—N fragment are almost coplanar (the r.m.s. deviation for the fitted atoms being 0.008 and 0.002 Å) and form a dihedral angle of 47.70 (12)°. The phenyl ring attached to each of the O=C—C=C—N fragments is twisted out of the respective plane with dihedral angles of 64.46 (11) and 61.82 (10)°, respectively. An almost orthogonal relationship for the phenyl rings is indicated by the dihedral angle between them of 78.19 (14)°. The conformation about each ethyl­ene bond is Z, which allows for the formation of intra­molecular N—H⋯O hydrogen bonds which close S(6) loops. The most prominent feature of the crystal packing are N—H⋯O hydrogen bonds that result in supra­molecular chains along the a axis. The F atoms of one –CF3 groups are disordered over three sets of sites with site-occupation factors of 0.318 (4), 0.360 (10) and 0.322 (9).

Related literature

For the structure of the compound in which the CF3 substituents of the title compound are replaced by 2-thienyl groups, see: Asiri et al. (2011[Asiri, A. M., Al-Youbi, A. O., Faidallah, H. M. & Ng, S. W. (2011). Acta Cryst. E67, o2659-o2660.]).

[Scheme 1]

Experimental

Crystal data
  • C22H18F6N2O2

  • Mr = 456.38

  • Monoclinic, P 21 /c

  • a = 13.0411 (9) Å

  • b = 15.897 (1) Å

  • c = 10.9417 (9) Å

  • β = 112.306 (9)°

  • V = 2098.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 100 K

  • 0.35 × 0.15 × 0.15 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.538, Tmax = 1.000

  • 10523 measured reflections

  • 4845 independent reflections

  • 3146 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.165

  • S = 1.02

  • 4845 reflections

  • 309 parameters

  • 19 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.91 (3) 2.02 (3) 2.719 (3) 133 (3)
N1—H1⋯O1i 0.91 (3) 2.28 (3) 2.997 (3) 135 (3)
N2—H2⋯O2 0.88 (3) 2.02 (3) 2.709 (3) 134 (3)
N2—H2⋯O2ii 0.88 (3) 2.33 (3) 3.039 (3) 137 (3)
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Recently, some of us described the structure of the 2-thienyl derivative (Asiri et al., 2011) of the title compound, (I). Herein, the crystal and molecular structure of (I) is described which has –CF3 groups rather than thienyl substituents.

In (I), Fig. 1, the five atoms comprising each OC—CC—N fragment are co-planar with the r.m.s. deviation for the fitted atoms being 0.008 Å [for the plane containing the O1 atom] and 0.002 Å [O2]; the dihedral angle between the planes is 47.70 (12)°. The conformation about each ethylene bond is Z allowing for the formation of intramolecular N—H···O hydrogen bonds which close S(6) loops, Table 1; a similar conformation and S(6) loops were observed in the two independent molecules of the 2-thienyl derivative (Asiri et al., 2011). The attached phenyl ring is twisted out of the plane through the OC—CC—N fragment, forming dihedral angles of 64.46 (11) and 61.82 (10)°, respectively; the dihedral angle between the phenyl rings is 78.19 (14)°.

The crystal packing also features N—H···O hydrogen bonds so that each amine-H and each carbonyl-O atom is bifurcated, Table 1. The result is the formation of four-membered {···H···O}2 synthons and supramolecular chains along the a axis, Fig. 2.

Related literature top

For the structure of the compound in which the CF3 substituents of the title compound are replaced by 2-thienyl groups, see: Asiri et al. (2011).

Experimental top

A mixture of the N,N'-bis(1-ethylidene)ethane-1,2-diamine (0.01 M) in THF (30 ml) and trifluroacetic anhydride (0.025 M) was refluxed for 2 h. The solid which separated on cooling was recrystallized from ethanol. M. pt: 477–478 K. Yield: 70%.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95–0.99 Å, Uiso(H) = 1.2Ueq(C)] and were included in the refinement in the riding model approximation. The N-bound H-atoms were located in a difference were refined freely. One trifluoromethyl group is disordered over three positions in respect to the F atoms. The C—F distances were restrained to within 1.35±0.01 Å, and the F···F distances to 2.21±0.01 Å. The disordered F atoms were refined isotropically and the final site occupancies were 0.318 (4), 0.360 (10) and 0.322 (9) for the unprimed, primed and doubly primed atoms, respectively.

Structure description top

Recently, some of us described the structure of the 2-thienyl derivative (Asiri et al., 2011) of the title compound, (I). Herein, the crystal and molecular structure of (I) is described which has –CF3 groups rather than thienyl substituents.

In (I), Fig. 1, the five atoms comprising each OC—CC—N fragment are co-planar with the r.m.s. deviation for the fitted atoms being 0.008 Å [for the plane containing the O1 atom] and 0.002 Å [O2]; the dihedral angle between the planes is 47.70 (12)°. The conformation about each ethylene bond is Z allowing for the formation of intramolecular N—H···O hydrogen bonds which close S(6) loops, Table 1; a similar conformation and S(6) loops were observed in the two independent molecules of the 2-thienyl derivative (Asiri et al., 2011). The attached phenyl ring is twisted out of the plane through the OC—CC—N fragment, forming dihedral angles of 64.46 (11) and 61.82 (10)°, respectively; the dihedral angle between the phenyl rings is 78.19 (14)°.

The crystal packing also features N—H···O hydrogen bonds so that each amine-H and each carbonyl-O atom is bifurcated, Table 1. The result is the formation of four-membered {···H···O}2 synthons and supramolecular chains along the a axis, Fig. 2.

For the structure of the compound in which the CF3 substituents of the title compound are replaced by 2-thienyl groups, see: Asiri et al. (2011).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. The C1—CF3 group is disordered over three positions. The orientation with a site occupancy factor = 0.318 (4) is illustrated here.
[Figure 2] Fig. 2. A view of the supramolecular chain along the a axis in (I) mediated by N—H···O hydrogen bonds shown as blue dashed lines.
(3Z)-1,1,1-Trifluoro-4-phenyl-4-[(2-{[(1Z)-4,4,4-trifluoro-3-oxo- 1-phenylbut-1-en-1-yl]amino}ethyl)amino]but-3-en-2-one top
Crystal data top
C22H18F6N2O2F(000) = 936
Mr = 456.38Dx = 1.444 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2319 reflections
a = 13.0411 (9) Åθ = 2.4–27.5°
b = 15.897 (1) ŵ = 0.13 mm1
c = 10.9417 (9) ÅT = 100 K
β = 112.306 (9)°Prism, colourless
V = 2098.6 (3) Å30.35 × 0.15 × 0.15 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4845 independent reflections
Radiation source: SuperNova (Mo) X-ray Source3146 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.041
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.4°
ω scanh = 1616
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1520
Tmin = 0.538, Tmax = 1.000l = 1014
10523 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.165H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0641P)2 + 1.085P]
where P = (Fo2 + 2Fc2)/3
4845 reflections(Δ/σ)max = 0.002
309 parametersΔρmax = 0.51 e Å3
19 restraintsΔρmin = 0.50 e Å3
Crystal data top
C22H18F6N2O2V = 2098.6 (3) Å3
Mr = 456.38Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.0411 (9) ŵ = 0.13 mm1
b = 15.897 (1) ÅT = 100 K
c = 10.9417 (9) Å0.35 × 0.15 × 0.15 mm
β = 112.306 (9)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4845 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
3146 reflections with I > 2σ(I)
Tmin = 0.538, Tmax = 1.000Rint = 0.041
10523 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06019 restraints
wR(F2) = 0.165H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.51 e Å3
4845 reflectionsΔρmin = 0.50 e Å3
309 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O11.01821 (13)0.40373 (11)0.50828 (17)0.0287 (4)
O20.44440 (13)0.44780 (12)0.37678 (17)0.0304 (4)
N20.63608 (17)0.52490 (14)0.3995 (2)0.0276 (5)
N10.86126 (16)0.46861 (13)0.5887 (2)0.0253 (5)
F11.0661 (7)0.2668 (4)0.3981 (6)0.0556 (19)*0.318 (4)
F21.1419 (5)0.2588 (4)0.6132 (6)0.0514 (19)*0.318 (4)
F30.9898 (5)0.1853 (4)0.4922 (7)0.041 (2)*0.318 (4)
F1'1.0158 (7)0.2543 (4)0.3630 (4)0.0332 (16)*0.360 (10)
F2'1.1461 (3)0.2603 (3)0.5612 (7)0.0142 (13)*0.360 (10)
F3'1.0020 (5)0.1831 (3)0.5290 (9)0.0150 (14)*0.360 (10)
F1"0.9793 (7)0.2360 (5)0.3631 (5)0.055 (2)*0.322 (9)
F2"1.1364 (4)0.2625 (3)0.5098 (9)0.0290 (17)*0.322 (9)
F3"1.0224 (6)0.1860 (4)0.5657 (8)0.038 (2)*0.322 (9)
F40.35986 (14)0.28737 (11)0.28834 (17)0.0491 (5)
F50.37037 (12)0.31466 (10)0.10070 (16)0.0394 (4)
F60.26345 (11)0.38801 (10)0.16715 (15)0.0382 (4)
C11.0361 (2)0.25715 (17)0.4985 (3)0.0370 (7)
C20.98029 (19)0.33504 (16)0.5274 (2)0.0260 (6)
C30.8934 (2)0.32256 (17)0.5709 (3)0.0284 (6)
H30.87120.26660.57910.034*
C40.83811 (19)0.38913 (16)0.6026 (2)0.0252 (5)
C50.75063 (19)0.36831 (17)0.6547 (3)0.0277 (6)
C60.6563 (2)0.32548 (17)0.5745 (3)0.0314 (6)
H60.64800.30970.48750.038*
C70.5742 (2)0.30574 (19)0.6215 (3)0.0379 (7)
H70.50910.27730.56600.045*
C80.5872 (2)0.3275 (2)0.7495 (3)0.0409 (7)
H80.53100.31380.78150.049*
C90.6812 (2)0.3689 (2)0.8300 (3)0.0413 (7)
H90.69020.38320.91780.050*
C100.7632 (2)0.38983 (19)0.7832 (3)0.0347 (7)
H100.82780.41880.83880.042*
C110.80105 (19)0.54221 (16)0.6068 (3)0.0274 (6)
H11A0.85500.58490.65950.033*
H11B0.75510.52550.65690.033*
C120.72688 (19)0.58088 (16)0.4758 (3)0.0279 (6)
H12A0.69560.63430.49300.033*
H12B0.77200.59410.42320.033*
C130.62859 (19)0.47929 (17)0.2947 (2)0.0265 (6)
C140.71669 (19)0.48676 (17)0.2393 (2)0.0271 (6)
C150.7362 (2)0.56297 (19)0.1885 (3)0.0369 (7)
H150.69250.61100.18740.044*
C160.8199 (2)0.5682 (2)0.1397 (3)0.0437 (8)
H160.83350.62010.10530.052*
C170.8833 (2)0.4990 (2)0.1406 (3)0.0440 (8)
H170.94090.50340.10790.053*
C180.8634 (2)0.4231 (2)0.1890 (3)0.0396 (7)
H180.90740.37540.18960.047*
C190.7791 (2)0.41635 (19)0.2368 (3)0.0315 (6)
H190.76420.36370.26780.038*
C200.54108 (19)0.42385 (16)0.2348 (2)0.0267 (6)
H200.53970.39250.16030.032*
C210.45487 (19)0.41255 (16)0.2804 (2)0.0263 (6)
C220.3625 (2)0.35051 (17)0.2078 (3)0.0302 (6)
H10.918 (3)0.479 (2)0.562 (3)0.054 (10)*
H20.583 (3)0.5189 (19)0.430 (3)0.046 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0229 (9)0.0269 (10)0.0412 (10)0.0004 (8)0.0176 (8)0.0006 (8)
O20.0222 (8)0.0362 (11)0.0367 (10)0.0024 (8)0.0155 (8)0.0076 (9)
N20.0201 (10)0.0286 (12)0.0379 (12)0.0047 (9)0.0155 (9)0.0050 (10)
N10.0197 (10)0.0252 (12)0.0355 (11)0.0005 (9)0.0156 (9)0.0017 (10)
F40.0464 (10)0.0404 (10)0.0557 (11)0.0172 (9)0.0140 (9)0.0040 (9)
F50.0262 (8)0.0437 (10)0.0501 (9)0.0018 (7)0.0167 (7)0.0203 (8)
F60.0196 (7)0.0469 (10)0.0478 (9)0.0001 (7)0.0125 (7)0.0173 (8)
C10.0284 (14)0.0281 (15)0.0609 (19)0.0017 (12)0.0241 (14)0.0029 (14)
C20.0188 (11)0.0237 (14)0.0340 (13)0.0021 (10)0.0085 (10)0.0008 (11)
C30.0231 (12)0.0240 (14)0.0407 (14)0.0012 (11)0.0148 (11)0.0035 (12)
C40.0172 (11)0.0297 (14)0.0278 (12)0.0022 (11)0.0075 (10)0.0006 (11)
C50.0204 (11)0.0289 (14)0.0366 (13)0.0010 (11)0.0139 (11)0.0059 (12)
C60.0244 (12)0.0327 (15)0.0378 (14)0.0052 (12)0.0126 (11)0.0031 (12)
C70.0247 (13)0.0413 (17)0.0482 (16)0.0053 (13)0.0144 (12)0.0106 (14)
C80.0283 (14)0.0485 (19)0.0539 (18)0.0021 (14)0.0245 (14)0.0166 (15)
C90.0376 (15)0.056 (2)0.0385 (15)0.0001 (15)0.0235 (13)0.0081 (15)
C100.0254 (13)0.0469 (18)0.0321 (14)0.0035 (13)0.0114 (11)0.0032 (13)
C110.0224 (12)0.0255 (14)0.0392 (14)0.0042 (11)0.0170 (11)0.0078 (12)
C120.0230 (12)0.0236 (13)0.0419 (14)0.0031 (11)0.0178 (11)0.0036 (12)
C130.0218 (12)0.0253 (14)0.0340 (13)0.0052 (11)0.0123 (11)0.0027 (11)
C140.0214 (12)0.0322 (14)0.0287 (13)0.0039 (11)0.0105 (10)0.0007 (11)
C150.0333 (14)0.0386 (17)0.0404 (15)0.0017 (13)0.0159 (13)0.0055 (13)
C160.0382 (16)0.058 (2)0.0377 (15)0.0148 (16)0.0173 (13)0.0064 (15)
C170.0307 (14)0.071 (2)0.0371 (16)0.0130 (16)0.0208 (13)0.0074 (16)
C180.0277 (14)0.057 (2)0.0376 (15)0.0010 (14)0.0161 (12)0.0115 (14)
C190.0263 (13)0.0392 (16)0.0314 (13)0.0011 (12)0.0136 (11)0.0063 (12)
C200.0213 (12)0.0282 (14)0.0313 (13)0.0007 (11)0.0109 (10)0.0032 (11)
C210.0206 (12)0.0248 (13)0.0333 (13)0.0002 (11)0.0099 (11)0.0011 (11)
C220.0226 (12)0.0306 (15)0.0385 (14)0.0002 (11)0.0129 (11)0.0045 (12)
Geometric parameters (Å, º) top
O1—C21.249 (3)C7—C81.389 (4)
O2—C211.247 (3)C7—H70.9500
N2—C131.328 (3)C8—C91.376 (4)
N2—C121.463 (3)C8—H80.9500
N2—H20.88 (3)C9—C101.390 (4)
N1—C41.321 (3)C9—H90.9500
N1—C111.464 (3)C10—H100.9500
N1—H10.91 (3)C11—C121.521 (4)
F1—C11.308 (5)C11—H11A0.9900
F2—C11.471 (5)C11—H11B0.9900
F3—C11.282 (6)C12—H12A0.9900
F1'—C11.405 (5)C12—H12B0.9900
F2'—C11.335 (4)C13—C201.393 (4)
F3'—C11.345 (5)C13—C141.493 (3)
F1"—C11.422 (6)C14—C191.390 (4)
F2"—C11.269 (5)C14—C151.396 (4)
F3"—C11.397 (5)C15—C161.388 (4)
F4—C221.344 (3)C15—H150.9500
F5—C221.342 (3)C16—C171.374 (4)
F6—C221.336 (3)C16—H160.9500
C1—C21.529 (4)C17—C181.382 (4)
C2—C31.400 (3)C17—H170.9500
C3—C41.397 (4)C18—C191.389 (4)
C3—H30.9500C18—H180.9500
C4—C51.493 (3)C19—H190.9500
C5—C61.388 (4)C20—C211.404 (3)
C5—C101.395 (4)C20—H200.9500
C6—C71.388 (4)C21—C221.526 (4)
C6—H60.9500
C13—N2—C12127.1 (2)C9—C10—C5120.0 (3)
C13—N2—H2117 (2)C9—C10—H10120.0
C12—N2—H2116 (2)C5—C10—H10120.0
C4—N1—C11126.2 (2)N1—C11—C12112.2 (2)
C4—N1—H1118 (2)N1—C11—H11A109.2
C11—N1—H1116 (2)C12—C11—H11A109.2
F3—C1—F1110.2 (4)N1—C11—H11B109.2
F2'—C1—F3'107.3 (4)C12—C11—H11B109.2
F2"—C1—F3"109.6 (4)H11A—C11—H11B107.9
F2'—C1—F1'106.2 (3)N2—C12—C11112.3 (2)
F3'—C1—F1'106.6 (4)N2—C12—H12A109.1
F2"—C1—F1"103.1 (4)C11—C12—H12A109.1
F3"—C1—F1"103.7 (4)N2—C12—H12B109.1
F3—C1—F2109.4 (4)C11—C12—H12B109.1
F1—C1—F2103.4 (4)H12A—C12—H12B107.9
F2"—C1—C2118.6 (3)N2—C13—C20122.0 (2)
F3—C1—C2118.8 (4)N2—C13—C14119.4 (2)
F1—C1—C2113.3 (4)C20—C13—C14118.6 (2)
F2'—C1—C2111.5 (3)C19—C14—C15119.6 (2)
F3'—C1—C2115.5 (3)C19—C14—C13119.4 (2)
F3"—C1—C2112.4 (3)C15—C14—C13121.0 (2)
F1'—C1—C2109.3 (3)C16—C15—C14119.7 (3)
F1"—C1—C2107.8 (3)C16—C15—H15120.2
F2—C1—C2100.1 (3)C14—C15—H15120.2
O1—C2—C3127.2 (2)C17—C16—C15120.5 (3)
O1—C2—C1115.1 (2)C17—C16—H16119.8
C3—C2—C1117.7 (2)C15—C16—H16119.8
C4—C3—C2122.6 (2)C16—C17—C18120.2 (3)
C4—C3—H3118.7C16—C17—H17119.9
C2—C3—H3118.7C18—C17—H17119.9
N1—C4—C3122.3 (2)C17—C18—C19120.2 (3)
N1—C4—C5119.8 (2)C17—C18—H18119.9
C3—C4—C5117.9 (2)C19—C18—H18119.9
C6—C5—C10119.6 (2)C14—C19—C18119.9 (3)
C6—C5—C4119.3 (2)C14—C19—H19120.1
C10—C5—C4121.1 (2)C18—C19—H19120.1
C7—C6—C5120.0 (3)C13—C20—C21122.5 (2)
C7—C6—H6120.0C13—C20—H20118.7
C5—C6—H6120.0C21—C20—H20118.7
C6—C7—C8120.1 (3)O2—C21—C20127.1 (2)
C6—C7—H7120.0O2—C21—C22114.4 (2)
C8—C7—H7120.0C20—C21—C22118.6 (2)
C9—C8—C7120.2 (2)F6—C22—F5106.5 (2)
C9—C8—H8119.9F6—C22—F4106.8 (2)
C7—C8—H8119.9F5—C22—F4106.5 (2)
C8—C9—C10120.1 (3)F6—C22—C21110.9 (2)
C8—C9—H9119.9F5—C22—C21114.9 (2)
C10—C9—H9119.9F4—C22—C21110.7 (2)
F2"—C1—C2—O127.6 (6)C7—C8—C9—C100.6 (5)
F3—C1—C2—O1167.4 (4)C8—C9—C10—C50.5 (5)
F1—C1—C2—O135.7 (5)C6—C5—C10—C90.4 (4)
F2'—C1—C2—O152.0 (4)C4—C5—C10—C9179.2 (3)
F3'—C1—C2—O1174.8 (5)C4—N1—C11—C12104.0 (3)
F3"—C1—C2—O1157.3 (4)C13—N2—C12—C11103.8 (3)
F1'—C1—C2—O165.0 (5)N1—C11—C12—N266.1 (3)
F1"—C1—C2—O189.0 (5)C12—N2—C13—C20175.8 (2)
F2—C1—C2—O173.7 (4)C12—N2—C13—C143.7 (4)
F2"—C1—C2—C3152.8 (5)N2—C13—C14—C19118.6 (3)
F3—C1—C2—C312.2 (5)C20—C13—C14—C1960.9 (3)
F1—C1—C2—C3144.0 (4)N2—C13—C14—C1562.2 (3)
F2'—C1—C2—C3128.3 (4)C20—C13—C14—C15118.2 (3)
F3'—C1—C2—C35.5 (5)C19—C14—C15—C161.9 (4)
F3"—C1—C2—C323.1 (5)C13—C14—C15—C16179.0 (2)
F1'—C1—C2—C3114.7 (5)C14—C15—C16—C170.2 (4)
F1"—C1—C2—C390.7 (5)C15—C16—C17—C180.7 (4)
F2—C1—C2—C3106.6 (4)C16—C17—C18—C190.1 (4)
O1—C2—C3—C41.7 (4)C15—C14—C19—C182.7 (4)
C1—C2—C3—C4178.7 (2)C13—C14—C19—C18178.2 (2)
C11—N1—C4—C3173.6 (2)C17—C18—C19—C141.8 (4)
C11—N1—C4—C56.8 (4)N2—C13—C20—C210.3 (4)
C2—C3—C4—N12.8 (4)C14—C13—C20—C21179.8 (2)
C2—C3—C4—C5176.9 (2)C13—C20—C21—O20.7 (4)
N1—C4—C5—C6116.6 (3)C13—C20—C21—C22179.8 (2)
C3—C4—C5—C663.7 (3)O2—C21—C22—F656.6 (3)
N1—C4—C5—C1064.5 (3)C20—C21—C22—F6123.8 (3)
C3—C4—C5—C10115.1 (3)O2—C21—C22—F5177.4 (2)
C10—C5—C6—C71.2 (4)C20—C21—C22—F53.0 (4)
C4—C5—C6—C7179.9 (2)O2—C21—C22—F461.8 (3)
C5—C6—C7—C81.1 (4)C20—C21—C22—F4117.7 (3)
C6—C7—C8—C90.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.91 (3)2.02 (3)2.719 (3)133 (3)
N1—H1···O1i0.91 (3)2.28 (3)2.997 (3)135 (3)
N2—H2···O20.88 (3)2.02 (3)2.709 (3)134 (3)
N2—H2···O2ii0.88 (3)2.33 (3)3.039 (3)137 (3)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC22H18F6N2O2
Mr456.38
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)13.0411 (9), 15.897 (1), 10.9417 (9)
β (°) 112.306 (9)
V3)2098.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.35 × 0.15 × 0.15
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.538, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
10523, 4845, 3146
Rint0.041
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.165, 1.02
No. of reflections4845
No. of parameters309
No. of restraints19
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.51, 0.50

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.91 (3)2.02 (3)2.719 (3)133 (3)
N1—H1···O1i0.91 (3)2.28 (3)2.997 (3)135 (3)
N2—H2···O20.88 (3)2.02 (3)2.709 (3)134 (3)
N2—H2···O2ii0.88 (3)2.33 (3)3.039 (3)137 (3)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1.
 

Footnotes

Additional correspondence author, e-mail: aasiri2@kau.edu.sa.

Acknowledgements

The authors are grateful to King Abdulaziz University for providing research facilities. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAsiri, A. M., Al-Youbi, A. O., Faidallah, H. M. & Ng, S. W. (2011). Acta Cryst. E67, o2659–o2660.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds