organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4E)-N-[(2-Chloro­phen­yl)meth­­oxy]-1,3-di­methyl-2,6-di­phenyl­piperidin-4-imine

aCentre for Nanotechnology, Department of Chemistry, Kalasalingam University, Krishnankoil 626 126, Tamilnadu, India, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department and Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 25 June 2012; accepted 25 June 2012; online 30 June 2012)

In the title compound, C26H27ClN2O, the piperidine ring has a chair conformation and all of the ring substituents at Csp3 atoms occupy equatorial positions. The dihedral angle formed between the phenyl rings is 48.11 (9)°. The chloro­benzene ring occupies a position orthogonal to the meth­oxy(methyl­idene)amine residue [N—O—C—C torsion angle = −87.90 (15)°]. The conformation about the imine C=N bond [1.278 (2) Å] is E, and the chloro substituent is anti to the piperidine N atom. Helical supra­molecular chains along [010] are sustained by C—H⋯π inter­actions in the crystal packing.

Related literature

For the biological activity of mol­ecules having a 2,6-diaryl­piperidine core, see: Ramachandran et al. (2011[Ramachandran, R., Rani, M., Senthan, S., Jeong, Y.-T. & Kabilan, S. (2011). Eur. J. Med. Chem. 46, 1926-1934.]); Ramalingan et al. (2004[Ramalingan, C., Balasubramanian, S., Kabilan, S. & Vasudevan, M. (2004). Eur. J. Med. Chem. 39, 527-533.]). For the structure of the bromo derivative, see: Ramalingan et al. (2012[Ramalingan, C., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o2267.]). For the synthesis, see: Ramalingan et al. (2006[Ramalingan, C., Park, Y.-T. & Kabilan, S. (2006). Eur. J. Med. Chem. 41, 683-696.]).

[Scheme 1]

Experimental

Crystal data
  • C26H27ClN2O

  • Mr = 418.95

  • Monoclinic, C 2/c

  • a = 20.3043 (8) Å

  • b = 6.8811 (3) Å

  • c = 32.2244 (12) Å

  • β = 98.478 (4)°

  • V = 4453.1 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 100 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.846, Tmax = 1.000

  • 14305 measured reflections

  • 5108 independent reflections

  • 3847 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.118

  • S = 1.02

  • 5108 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C15–C20 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17⋯Cg1i 0.95 2.69 3.556 (2) 151
C3—H3⋯Cg2ii 0.95 2.90 3.6852 (19) 141
Symmetry codes: (i) [x+{\script{3\over 2}}, y+{\script{5\over 2}}, z+1]; (ii) [x+{\script{3\over 2}}, y+{\script{3\over 2}}, z+1].

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

A diverse range of molecules possessing a 2,6-diarylpiperidine core exhibit potent biological activities (Ramachandran et al., 2011; Ramalingan et al., 2004). In a wide search program towards generating efficient biological agents, the title compound, (I), was synthesized (Ramalingan et al., 2006). Herein, the crystal and molecular structure of (I) is described.

In (I), Fig. 1, the piperidine ring has a chair conformation and all of the ring-substituents occupy equatorial positions. In the bromo derivative (Ramalingan et al., 2012) all but the N-bound substituent, which occupies a bisectional position, also occupy equatorial positions, in accord with (I). The dihedral angle formed between the C15–C20 and C21–C26 phenyl rings is 48.11 (9)°, and each forms a dihedral angle of 64.68 (8) and 72.57 (9)°, respectively, with the chlorobenzene ring, which occupies a position orthogonal to the methoxy(methylidene)amine residue as seen in the N1—O1—C7—C6 torsion angle of -87.90 (15)°. The conformation about the imine C8N1 bond [1.278 (2) Å] is E. The chloro substituent is anti to the piperidine-N atom.

In the crystal packing, helical supramolecular chains along [0 1 0] are sustained by C—H···π interactions, Fig. 2 and Table 1. These assemble into a three-dimensional architecture without specific intermolecular interactions between the chains, Fig. 3.

Related literature top

For the biological activity of molecules having a 2,6-diarylpiperidine core, see: Ramachandran et al. (2011); Ramalingan et al. (2004). For the structure of the bromo derivative, see: Ramalingan et al. (2012). For the synthesis, see: Ramalingan et al. (2006).

Experimental top

For full details of the synthesis, refer to Ramalingan et al. (2006). Re-crystallization was performed by slow evaporation of an ethanolic solution of (I) which afforded colourless crystals. M.pt: 361–362 K.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95–0.99 Å, Uiso(H) = 1.2–1.5Ueq(C)] and were included in the refinement in the riding model approximation. Owing to poor agreement, two reflections, i.e. (0 1 0) and (1 2 10), were omitted from the final refinement.

Structure description top

A diverse range of molecules possessing a 2,6-diarylpiperidine core exhibit potent biological activities (Ramachandran et al., 2011; Ramalingan et al., 2004). In a wide search program towards generating efficient biological agents, the title compound, (I), was synthesized (Ramalingan et al., 2006). Herein, the crystal and molecular structure of (I) is described.

In (I), Fig. 1, the piperidine ring has a chair conformation and all of the ring-substituents occupy equatorial positions. In the bromo derivative (Ramalingan et al., 2012) all but the N-bound substituent, which occupies a bisectional position, also occupy equatorial positions, in accord with (I). The dihedral angle formed between the C15–C20 and C21–C26 phenyl rings is 48.11 (9)°, and each forms a dihedral angle of 64.68 (8) and 72.57 (9)°, respectively, with the chlorobenzene ring, which occupies a position orthogonal to the methoxy(methylidene)amine residue as seen in the N1—O1—C7—C6 torsion angle of -87.90 (15)°. The conformation about the imine C8N1 bond [1.278 (2) Å] is E. The chloro substituent is anti to the piperidine-N atom.

In the crystal packing, helical supramolecular chains along [0 1 0] are sustained by C—H···π interactions, Fig. 2 and Table 1. These assemble into a three-dimensional architecture without specific intermolecular interactions between the chains, Fig. 3.

For the biological activity of molecules having a 2,6-diarylpiperidine core, see: Ramachandran et al. (2011); Ramalingan et al. (2004). For the structure of the bromo derivative, see: Ramalingan et al. (2012). For the synthesis, see: Ramalingan et al. (2006).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the helical supramolecular chain in (I) sustained by C—H···π interactions which are shown as purple dashed lines.
[Figure 3] Fig. 3. A view in projection down the b axis of the unit-cell contents for (I). The C—H···π interactions are shown as purple dashed lines. One chain has been highlighted in space-filling mode.
(4E)-N-[(2-Chlorophenyl)methoxy]-1,3-dimethyl-2,6- diphenylpiperidin-4-imine top
Crystal data top
C26H27ClN2OF(000) = 1776
Mr = 418.95Dx = 1.250 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4543 reflections
a = 20.3043 (8) Åθ = 2.2–27.5°
b = 6.8811 (3) ŵ = 0.19 mm1
c = 32.2244 (12) ÅT = 100 K
β = 98.478 (4)°Prism, colourless
V = 4453.1 (3) Å30.30 × 0.25 × 0.20 mm
Z = 8
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
5108 independent reflections
Radiation source: SuperNova (Mo) X-ray Source3847 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.041
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.2°
ω scanh = 1926
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 88
Tmin = 0.846, Tmax = 1.000l = 4140
14305 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0478P)2 + 2.1668P]
where P = (Fo2 + 2Fc2)/3
5108 reflections(Δ/σ)max = 0.001
271 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C26H27ClN2OV = 4453.1 (3) Å3
Mr = 418.95Z = 8
Monoclinic, C2/cMo Kα radiation
a = 20.3043 (8) ŵ = 0.19 mm1
b = 6.8811 (3) ÅT = 100 K
c = 32.2244 (12) Å0.30 × 0.25 × 0.20 mm
β = 98.478 (4)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
5108 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
3847 reflections with I > 2σ(I)
Tmin = 0.846, Tmax = 1.000Rint = 0.041
14305 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.02Δρmax = 0.29 e Å3
5108 reflectionsΔρmin = 0.28 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.76604 (2)0.38812 (7)0.564062 (15)0.03838 (15)
O10.63144 (6)0.72592 (17)0.47058 (3)0.0276 (3)
N10.64825 (7)0.6556 (2)0.43184 (4)0.0244 (3)
N20.56479 (6)0.9658 (2)0.32797 (4)0.0210 (3)
C10.68498 (8)0.3178 (2)0.54424 (5)0.0233 (4)
C20.66062 (9)0.1447 (3)0.55791 (5)0.0287 (4)
H20.68800.06430.57730.034*
C30.59581 (9)0.0907 (3)0.54287 (5)0.0280 (4)
H30.57830.02710.55210.034*
C40.55655 (8)0.2081 (3)0.51448 (5)0.0258 (4)
H40.51220.17050.50410.031*
C50.58196 (8)0.3814 (2)0.50108 (5)0.0221 (4)
H50.55460.46100.48150.027*
C60.64648 (8)0.4393 (2)0.51585 (5)0.0199 (3)
C70.67419 (9)0.6302 (3)0.50347 (5)0.0256 (4)
H7A0.68150.71640.52830.031*
H7B0.71790.60710.49430.031*
C80.61070 (8)0.7273 (2)0.40023 (5)0.0227 (4)
C90.55388 (8)0.8646 (3)0.40074 (5)0.0260 (4)
H9A0.55500.91630.42950.031*
H9B0.51150.79290.39320.031*
C100.55575 (8)1.0353 (2)0.37012 (5)0.0219 (4)
H100.59401.12170.38100.026*
C110.62664 (8)0.8506 (2)0.33000 (5)0.0214 (4)
H110.66460.93320.34310.026*
C120.62416 (8)0.6675 (2)0.35738 (5)0.0223 (4)
H120.58580.58630.34430.027*
C130.68726 (9)0.5454 (3)0.35879 (5)0.0286 (4)
H13A0.68450.43230.37690.043*
H13B0.72610.62400.37000.043*
H13C0.69170.50160.33040.043*
C140.56727 (9)1.1334 (3)0.30007 (5)0.0288 (4)
H14A0.57491.08810.27230.043*
H14B0.60371.21990.31180.043*
H14C0.52501.20400.29750.043*
C150.49163 (8)1.1488 (2)0.36936 (5)0.0213 (3)
C160.49022 (8)1.3168 (2)0.39308 (5)0.0237 (4)
H160.53061.36910.40740.028*
C170.43008 (9)1.4094 (3)0.39607 (5)0.0271 (4)
H170.42961.52360.41260.033*
C180.37128 (9)1.3360 (3)0.37519 (5)0.0277 (4)
H180.33021.39750.37780.033*
C190.37231 (9)1.1719 (3)0.35031 (5)0.0295 (4)
H190.33201.12310.33520.035*
C200.43214 (8)1.0787 (3)0.34742 (5)0.0269 (4)
H200.43250.96630.33040.032*
C210.63939 (8)0.7940 (2)0.28645 (5)0.0220 (4)
C220.69737 (9)0.8528 (3)0.27206 (5)0.0283 (4)
H220.72910.92880.28970.034*
C230.70963 (10)0.8021 (3)0.23233 (6)0.0354 (5)
H230.74940.84420.22280.042*
C240.66437 (10)0.6911 (3)0.20661 (6)0.0346 (5)
H240.67270.65710.17930.042*
C250.60686 (10)0.6291 (3)0.22063 (6)0.0340 (4)
H250.57580.55110.20300.041*
C260.59421 (9)0.6802 (3)0.26037 (5)0.0289 (4)
H260.55450.63730.26980.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0221 (2)0.0391 (3)0.0494 (3)0.00554 (19)0.00987 (19)0.0090 (2)
O10.0368 (7)0.0258 (7)0.0208 (6)0.0004 (5)0.0067 (5)0.0050 (5)
N10.0284 (8)0.0227 (8)0.0231 (7)0.0036 (6)0.0070 (6)0.0011 (6)
N20.0207 (7)0.0217 (7)0.0205 (7)0.0014 (6)0.0030 (5)0.0023 (6)
C10.0201 (8)0.0235 (9)0.0254 (8)0.0021 (7)0.0002 (6)0.0009 (7)
C20.0303 (10)0.0243 (10)0.0293 (9)0.0004 (7)0.0023 (7)0.0061 (8)
C30.0324 (10)0.0208 (9)0.0302 (9)0.0057 (7)0.0029 (7)0.0031 (8)
C40.0230 (9)0.0264 (9)0.0271 (9)0.0069 (7)0.0005 (7)0.0020 (8)
C50.0224 (9)0.0249 (9)0.0182 (8)0.0005 (7)0.0002 (6)0.0003 (7)
C60.0230 (8)0.0215 (9)0.0154 (7)0.0013 (6)0.0042 (6)0.0005 (7)
C70.0275 (9)0.0259 (10)0.0222 (8)0.0054 (7)0.0000 (7)0.0034 (7)
C80.0211 (9)0.0205 (9)0.0264 (9)0.0034 (7)0.0036 (7)0.0053 (7)
C90.0264 (9)0.0273 (10)0.0256 (9)0.0020 (7)0.0088 (7)0.0045 (7)
C100.0217 (9)0.0226 (9)0.0211 (8)0.0029 (7)0.0017 (6)0.0015 (7)
C110.0178 (8)0.0231 (9)0.0230 (8)0.0016 (6)0.0020 (6)0.0004 (7)
C120.0191 (8)0.0241 (9)0.0238 (8)0.0010 (7)0.0033 (6)0.0025 (7)
C130.0287 (10)0.0310 (10)0.0266 (9)0.0065 (8)0.0058 (7)0.0053 (8)
C140.0345 (10)0.0281 (10)0.0244 (9)0.0041 (8)0.0057 (7)0.0051 (8)
C150.0237 (9)0.0211 (9)0.0194 (8)0.0012 (7)0.0041 (6)0.0016 (7)
C160.0292 (9)0.0235 (9)0.0187 (8)0.0060 (7)0.0047 (7)0.0001 (7)
C170.0384 (11)0.0199 (9)0.0255 (9)0.0007 (7)0.0129 (7)0.0006 (7)
C180.0287 (10)0.0285 (10)0.0275 (9)0.0063 (7)0.0092 (7)0.0026 (8)
C190.0229 (9)0.0339 (10)0.0309 (9)0.0002 (7)0.0008 (7)0.0027 (8)
C200.0251 (9)0.0260 (9)0.0295 (9)0.0011 (7)0.0031 (7)0.0078 (8)
C210.0223 (9)0.0219 (9)0.0213 (8)0.0037 (7)0.0018 (6)0.0038 (7)
C220.0309 (10)0.0261 (10)0.0286 (9)0.0006 (7)0.0069 (7)0.0043 (8)
C230.0391 (11)0.0359 (11)0.0347 (10)0.0077 (9)0.0173 (8)0.0091 (9)
C240.0441 (12)0.0369 (11)0.0234 (9)0.0187 (9)0.0069 (8)0.0024 (8)
C250.0356 (11)0.0360 (11)0.0273 (9)0.0094 (8)0.0058 (8)0.0036 (8)
C260.0233 (9)0.0362 (11)0.0261 (9)0.0011 (8)0.0004 (7)0.0018 (8)
Geometric parameters (Å, º) top
Cl1—C11.7439 (17)C12—C131.527 (2)
O1—N11.4266 (17)C12—H121.0000
O1—C71.4280 (19)C13—H13A0.9800
N1—C81.278 (2)C13—H13B0.9800
N2—C141.467 (2)C13—H13C0.9800
N2—C111.479 (2)C14—H14A0.9800
N2—C101.477 (2)C14—H14B0.9800
C1—C21.386 (2)C14—H14C0.9800
C1—C61.391 (2)C15—C161.389 (2)
C2—C31.384 (2)C15—C201.393 (2)
C2—H20.9500C16—C171.393 (2)
C3—C41.382 (2)C16—H160.9500
C3—H30.9500C17—C181.377 (3)
C4—C51.393 (2)C17—H170.9500
C4—H40.9500C18—C191.387 (3)
C5—C61.385 (2)C18—H180.9500
C5—H50.9500C19—C201.389 (2)
C6—C71.506 (2)C19—H190.9500
C7—H7A0.9900C20—H200.9500
C7—H7B0.9900C21—C261.391 (2)
C8—C91.493 (2)C21—C221.388 (2)
C8—C121.504 (2)C22—C231.385 (2)
C9—C101.538 (2)C22—H220.9500
C9—H9A0.9900C23—C241.375 (3)
C9—H9B0.9900C23—H230.9500
C10—C151.515 (2)C24—C251.380 (3)
C10—H101.0000C24—H240.9500
C11—C211.515 (2)C25—C261.388 (2)
C11—C121.543 (2)C25—H250.9500
C11—H111.0000C26—H260.9500
N1—O1—C7107.18 (12)C13—C12—C11111.60 (13)
C8—N1—O1112.01 (13)C8—C12—H12107.7
C14—N2—C11110.05 (12)C13—C12—H12107.7
C14—N2—C10109.23 (13)C11—C12—H12107.7
C11—N2—C10110.66 (12)C12—C13—H13A109.5
C2—C1—C6122.22 (15)C12—C13—H13B109.5
C2—C1—Cl1118.92 (13)H13A—C13—H13B109.5
C6—C1—Cl1118.84 (13)C12—C13—H13C109.5
C3—C2—C1118.97 (16)H13A—C13—H13C109.5
C3—C2—H2120.5H13B—C13—H13C109.5
C1—C2—H2120.5N2—C14—H14A109.5
C4—C3—C2120.05 (16)N2—C14—H14B109.5
C4—C3—H3120.0H14A—C14—H14B109.5
C2—C3—H3120.0N2—C14—H14C109.5
C3—C4—C5120.12 (16)H14A—C14—H14C109.5
C3—C4—H4119.9H14B—C14—H14C109.5
C5—C4—H4119.9C16—C15—C20118.76 (16)
C6—C5—C4120.97 (15)C16—C15—C10120.51 (15)
C6—C5—H5119.5C20—C15—C10120.56 (15)
C4—C5—H5119.5C15—C16—C17120.54 (16)
C5—C6—C1117.67 (15)C15—C16—H16119.7
C5—C6—C7122.10 (15)C17—C16—H16119.7
C1—C6—C7120.18 (14)C18—C17—C16120.28 (16)
O1—C7—C6112.89 (13)C18—C17—H17119.9
O1—C7—H7A109.0C16—C17—H17119.9
C6—C7—H7A109.0C17—C18—C19119.67 (16)
O1—C7—H7B109.0C17—C18—H18120.2
C6—C7—H7B109.0C19—C18—H18120.2
H7A—C7—H7B107.8C18—C19—C20120.18 (16)
N1—C8—C9127.36 (15)C18—C19—H19119.9
N1—C8—C12117.26 (15)C20—C19—H19119.9
C9—C8—C12115.38 (14)C19—C20—C15120.51 (16)
C8—C9—C10112.57 (13)C19—C20—H20119.7
C8—C9—H9A109.1C15—C20—H20119.7
C10—C9—H9A109.1C26—C21—C22118.62 (15)
C8—C9—H9B109.1C26—C21—C11121.13 (15)
C10—C9—H9B109.1C22—C21—C11120.25 (15)
H9A—C9—H9B107.8C23—C22—C21120.83 (18)
N2—C10—C15112.02 (13)C23—C22—H22119.6
N2—C10—C9111.17 (13)C21—C22—H22119.6
C15—C10—C9107.56 (13)C24—C23—C22120.14 (18)
N2—C10—H10108.7C24—C23—H23119.9
C15—C10—H10108.7C22—C23—H23119.9
C9—C10—H10108.7C23—C24—C25119.79 (17)
N2—C11—C21110.91 (13)C23—C24—H24120.1
N2—C11—C12111.35 (12)C25—C24—H24120.1
C21—C11—C12110.13 (13)C24—C25—C26120.29 (18)
N2—C11—H11108.1C24—C25—H25119.9
C21—C11—H11108.1C26—C25—H25119.9
C12—C11—H11108.1C21—C26—C25120.32 (17)
C8—C12—C13112.86 (14)C21—C26—H26119.8
C8—C12—C11109.08 (14)C25—C26—H26119.8
C7—O1—N1—C8177.41 (14)N1—C8—C12—C11131.39 (16)
C6—C1—C2—C30.0 (3)C9—C8—C12—C1149.02 (18)
Cl1—C1—C2—C3178.66 (13)N2—C11—C12—C855.90 (17)
C1—C2—C3—C40.4 (3)C21—C11—C12—C8179.37 (13)
C2—C3—C4—C50.3 (3)N2—C11—C12—C13178.71 (13)
C3—C4—C5—C60.1 (2)C21—C11—C12—C1355.24 (18)
C4—C5—C6—C10.4 (2)N2—C10—C15—C16138.80 (15)
C4—C5—C6—C7177.07 (15)C9—C10—C15—C1698.76 (17)
C2—C1—C6—C50.3 (2)N2—C10—C15—C2046.1 (2)
Cl1—C1—C6—C5179.05 (12)C9—C10—C15—C2076.34 (18)
C2—C1—C6—C7177.20 (16)C20—C15—C16—C172.3 (2)
Cl1—C1—C6—C71.5 (2)C10—C15—C16—C17172.88 (14)
N1—O1—C7—C687.90 (15)C15—C16—C17—C180.6 (2)
C5—C6—C7—O19.4 (2)C16—C17—C18—C191.5 (3)
C1—C6—C7—O1173.12 (14)C17—C18—C19—C201.9 (3)
O1—N1—C8—C91.6 (2)C18—C19—C20—C150.1 (3)
O1—N1—C8—C12178.88 (13)C16—C15—C20—C192.0 (2)
N1—C8—C9—C10133.48 (17)C10—C15—C20—C19173.19 (15)
C12—C8—C9—C1047.0 (2)N2—C11—C21—C2660.8 (2)
C14—N2—C10—C1560.47 (17)C12—C11—C21—C2662.9 (2)
C11—N2—C10—C15178.23 (13)N2—C11—C21—C22120.20 (16)
C14—N2—C10—C9179.16 (13)C12—C11—C21—C22116.07 (17)
C11—N2—C10—C957.86 (17)C26—C21—C22—C231.0 (3)
C8—C9—C10—N249.92 (19)C11—C21—C22—C23179.98 (16)
C8—C9—C10—C15172.88 (14)C21—C22—C23—C240.4 (3)
C14—N2—C11—C2154.15 (17)C22—C23—C24—C250.4 (3)
C10—N2—C11—C21174.97 (13)C23—C24—C25—C260.7 (3)
C14—N2—C11—C12177.17 (13)C22—C21—C26—C250.7 (3)
C10—N2—C11—C1262.01 (17)C11—C21—C26—C25179.72 (16)
N1—C8—C12—C136.7 (2)C24—C25—C26—C210.1 (3)
C9—C8—C12—C13173.67 (14)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C15–C20 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C17—H17···Cg1i0.952.693.556 (2)151
C3—H3···Cg2ii0.952.903.6852 (19)141
Symmetry codes: (i) x+3/2, y+5/2, z+1; (ii) x+3/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formulaC26H27ClN2O
Mr418.95
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)20.3043 (8), 6.8811 (3), 32.2244 (12)
β (°) 98.478 (4)
V3)4453.1 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.846, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
14305, 5108, 3847
Rint0.041
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.118, 1.02
No. of reflections5108
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.28

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C15–C20 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C17—H17···Cg1i0.952.693.556 (2)151
C3—H3···Cg2ii0.952.903.6852 (19)141
Symmetry codes: (i) x+3/2, y+5/2, z+1; (ii) x+3/2, y+3/2, z+1.
 

Footnotes

Additional correspondence author, e-mail: ramalinganc@gmail.com.

Acknowledgements

The authors are grateful for facilities provided by the Chairman/Management of Kalasalingam University, and thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationRamachandran, R., Rani, M., Senthan, S., Jeong, Y.-T. & Kabilan, S. (2011). Eur. J. Med. Chem. 46, 1926–1934.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRamalingan, C., Balasubramanian, S., Kabilan, S. & Vasudevan, M. (2004). Eur. J. Med. Chem. 39, 527–533.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRamalingan, C., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o2267.  CrossRef IUCr Journals Google Scholar
First citationRamalingan, C., Park, Y.-T. & Kabilan, S. (2006). Eur. J. Med. Chem. 41, 683–696.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds