organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

rac-2-[(2-Chloro­phen­yl)(4-chloro­phen­yl)meth­yl]-1,3-dioxolane

aDepartament of Pharmacy, Federal University of Paraná - UFPR, 81531-990, Curitiba - PR, Brazil, bDepartament of Science and Technology, State University of Santa Cruz - UESC, 45662-900, Ilhéus - BA, Brazil, cInstitute of Chemistry, University of Brasília - UnB, 70904-970, Brasília - DF, Brazil, and dDepartament of Chemistry, Federal University of Paraná - UFPR, 81531-990, Curitiba - PR, Brazil
*Correspondence e-mail: ccgatto@unb.br

(Received 16 May 2012; accepted 24 May 2012; online 13 June 2012)

The title compound, C16H14Cl2O2, is a chiral mitotane derivative that contains a dioxolane ring and crystallizes from methanol as a racemic mixture. It was obtained in high yield from mitotane and ethyl­eneglycol in alkaline medium, followed by neutralization with sulfuric acid and extraction with ethyl acetate. The mol­ecular structure is stabilized by an intra­molecular C— H⋯ O hydrogen bond. The dihedral angle between the aromatic rings is 80.1 (2)°. The dioxolane ring adopts a puckered envelope conformation with an O atom as the flap.

Related literature

For related dioxolane geometry, see: Bolte et al. (1997[Bolte, M., Marx, R. & Scholtyssik, M. (1997). Acta Cryst. C53, 1464-1466.]). For organochlorines, see: Smith & Bennett (1977[Smith, R. A. & Bennett, M. J. (1977). Acta Cryst. B33, 1126-1128.]); Canti­llana & Eriksson (2009[Cantillana, T. & Eriksson, L. (2009). Acta Cryst. E65, o297.]); Jabbar et al. (2006[Jabbar, M. A., Aritome, I., Shimakoshi, H. & Hisaeda, Y. (2006). Acta Cryst. C62, o663-o665.]). For dechlorination of organochlorine compounds, see: Grummitt et al. (1946[Grummitt, O., Buck, A. & Egan, R. (1946). Org. Synth. 26, 21-23.]). For their adrenolytic activity, see: Fassnacht et al. (2010[Fassnacht, M., Johanssen, S., Fenske, W., Weismann, D., Agha, A., Beuschlein, F., Fuhrer, D., Jurowich, C., Quinkler, M., Petersenn, S., Spahn, M., Hahner, S. & Allolio, B. (2010). J. Clin. Endocrinol. Metab. 95, 4925-4932.]); Berruti et al. (2005[Berruti, A., Terzolo, M., Sperone, P., Pia, A., Casa, S. D., Gross, D. J., Carnaghi, C., Casali, P., Porpiglia, F., Mantero, F., Reimondo, G., Angeli, A. & Dogliotti, L. (2005). Endocr. Relat. Cancer, 12, 657-666.]). For organochlorine as insecticide metabolites in bioremediation studies, see: Purnomo et al. (2011[Purnomo, A. S., Mori, T., Kamei, I. & Kondo, R. (2011). Int. Biodeterior. Biodegrad. 65, 921-930.]); Fuentes et al. (2010[Fuentes, M. S., Benimeli, C. S., Cuozzo, S. A. & Amoroso, M. J. (2010). Int. Biodeterior. Biodegrad. 64, 434-441.]); Matsumoto et al. (2009[Matsumoto, E., Kawanaka, Y., Yun, S. J. & Oyaizu, H. (2009). Appl. Microbiol. Biotechnol. 84, 205-16.]). For the use of mitotane [systematic name: 2-(2-chloro­phen­yl)-2-(4-chloro­phen­yl)-1,1-dichloro­ethane] in adrenocortical carcinoma treatment, see: Maluf et al. (2011[Maluf, D. F., Oliveira, B. H. & Lalli, E. (2011). Am. J. Cancer Res. 1, 222-232.]); Rosati et al. (2008)[Rosati, R., Cerrato, F., Doghman, M., Pianovski, M. A., Parise, G. A., Custodio, G., Zambetti, G. P., Ribeiro, R. C., Riccio, A., Figueiredo, B. C. & Lalli, E. (2008). Cancer Genet. Cytogenet. 186, 19-24.]; Terzolo et al. (2007[Terzolo, M., Angeli, A., Fassnacht, M., Daffara, F., Tauchmanova, L., Conton, P. A., Rossetto, R., Buci, L., Sperone, P., Grossrubatscher, E., Reimondo, G., Bollito, E., Papotti, M., Saeger, W., Hahner, S., Koschker, A. C., Arvat, E., Ambrosi, B., Loli, P., Lombardi, G., Mannelli, M., Bruzzi, P., Mantero, F., Allolio, B., Dogliotti, L. & Berruti, A. (2007). N. Engl. J. Med. 356, 2372-2380.]). For structure–activity studies of mitotane derivatives, see: Bleiberg & Larson (1973[Bleiberg, M. J. & Larson, P. S. (1973). J. Pharmacol. Exp. Ther. 121, 421-431.]); Schteingart et al. (1993[Schteingart, D. E., Sinsheimer, J. E., Counsell, R. E., Abrams, G. D., Mcclellan, N., Djanegara, T., Hines, J., Ruangwises, N., Benitez, R. & Wotring, L. L. (1993). Cancer Chemother. Pharmacol. 3, 459-466.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14Cl2O2

  • Mr = 309.17

  • Triclinic, [P \overline 1]

  • a = 7.5728 (2) Å

  • b = 10.2268 (2) Å

  • c = 11.2858 (2) Å

  • α = 63.357 (1)°

  • β = 84.021 (1)°

  • γ = 71.194 (1)°

  • V = 738.68 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.44 mm−1

  • T = 296 K

  • 0.59 × 0.56 × 0.29 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.783, Tmax = 0.883

  • 24953 measured reflections

  • 4556 independent reflections

  • 3654 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.117

  • S = 1.05

  • 4556 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O1 0.93 2.38 3.046 (2) 128

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, which crystallizes from methanol as a racemic mixture, has been obtained after C1 oxidation and dechlorination of 2-(2-chlorophenyl)-2-(4-chlorophenyl)-1,1-dichloroethane, also known as mitotane or o,p'-DDD. The reaction generated an additional structural feature in the molecule, the dioxolane ring. While organochlorine compounds are widely described in the literature as insecticide metabolites in bioremediation studies (Purnomo et al., 2011; Fuentes et al., 2010; Matsumoto et al., 2009), mitotane itself is a drug used exclusively for adrenocortical carcinoma treatment (Maluf et al., 2011; Rosati et al., 2008, Terzolo et al., 2007). However, mitotane therapy produces important side effects due to its toxicity. Therefore, derivatives have been prepared in order to overcome those limitations. Several studies of structure-activity relationship report that the substitution of the hydrogen at the C1 position of mitotane results in the loss of activity and the use of the o,p'-DDD isomer – which refers to a specific substitution pattern in the aromatic rings – leads to a better pharmacological effect than that provided by the m,p' and p,p' isomers (Bleiberg and Larson, 1973; Schteingart et al., 1993). Search for new compounds that keep the single hydrogen bound to C1 and also the o,p'-substitution in the aromatic rings is necessary for an improved treatment of this malignant cancer. The molecule described herein is a good example of a mitotane derivative that presents these structural features relevant for adrenolytic activity. The molecular structure of the title compound is depicted in Figure 1. Bond lenghts and angles are as expected. The dioxolane ring adopts a puckered envelope conformation with C2, O2, C4 and C5 in the same plane, with the O1 atom placed about 0.4661 (1) Å above it. The coplanar atoms of the dioxolane ring form a dihedral angle of 74.63 (3)° with p-chloro-phenyl ring and an angle of 9.83 (3)° with the o-chloro-phenyl ring. The angle between the aromatic groups is 80.1 (2)°. The molecular structure is stabilized by an intramolecular C— H··· O hydrogen bond interaction (C···O 3.046 (2)Å; C—H···O 128° ). Weak C—H···Cl is also observed.

Related literature top

For related dioxolane geometry, see: Bolte et al. (1997). For organochlorines, see: Smith & Bennett (1977); Cantillana & Eriksson (2009); Jabbar et al. (2006). For dechlorination of organochlorine compounds, see: Grummitt et al. (1946). For their adrenolytic activity, see: Fassnacht et al. (2010); Berruti et al. (2005). For organochlorine as insecticide metabolites in bioremediation studies, see: Purnomo et al. (2011); Fuentes et al. (2010); Matsumoto et al. (2009). For the use of mitotane [systematic name: 2-(2-chlorophenyl)-2-(4-chlorophenyl)-1,1-dichloroethane] in adrenocortical carcinoma treatment, see: Maluf et al. (2011); Rosati et al. (2008); Terzolo et al. (2007). For structure–activity studies of mitotane derivatives, see: Bleiberg & Larson (1973); Schteingart et al. (1993).

Experimental top

Mitotane (o,p'-DDD) was added to a mixture of ethylene glycol, KOH and water. The reaction was carried out overnight under reflux at 137°C. After this period, the reaction mixture was cooled down to room temperature and diluted with water. Concentrated sulfuric acid (98%) was then added to take the solution pH down to 3.0. The salt formed was removed by filtration on a Büchner funnel. The filtrate was extracted with ethyl acetate, the organic layer was concentrated by rotary evaporation and the oily yellow residue was redissolved in warm methanol (30°C). Thin, colorless plate-like crystals suitable for X-ray diffraction analysis were obtained from this methanol solution. Total reaction yield: 84%.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model, with C—H = 0.93—0.98 Å and Uiso(H) =1.2Ueq(C).

Structure description top

The title compound, which crystallizes from methanol as a racemic mixture, has been obtained after C1 oxidation and dechlorination of 2-(2-chlorophenyl)-2-(4-chlorophenyl)-1,1-dichloroethane, also known as mitotane or o,p'-DDD. The reaction generated an additional structural feature in the molecule, the dioxolane ring. While organochlorine compounds are widely described in the literature as insecticide metabolites in bioremediation studies (Purnomo et al., 2011; Fuentes et al., 2010; Matsumoto et al., 2009), mitotane itself is a drug used exclusively for adrenocortical carcinoma treatment (Maluf et al., 2011; Rosati et al., 2008, Terzolo et al., 2007). However, mitotane therapy produces important side effects due to its toxicity. Therefore, derivatives have been prepared in order to overcome those limitations. Several studies of structure-activity relationship report that the substitution of the hydrogen at the C1 position of mitotane results in the loss of activity and the use of the o,p'-DDD isomer – which refers to a specific substitution pattern in the aromatic rings – leads to a better pharmacological effect than that provided by the m,p' and p,p' isomers (Bleiberg and Larson, 1973; Schteingart et al., 1993). Search for new compounds that keep the single hydrogen bound to C1 and also the o,p'-substitution in the aromatic rings is necessary for an improved treatment of this malignant cancer. The molecule described herein is a good example of a mitotane derivative that presents these structural features relevant for adrenolytic activity. The molecular structure of the title compound is depicted in Figure 1. Bond lenghts and angles are as expected. The dioxolane ring adopts a puckered envelope conformation with C2, O2, C4 and C5 in the same plane, with the O1 atom placed about 0.4661 (1) Å above it. The coplanar atoms of the dioxolane ring form a dihedral angle of 74.63 (3)° with p-chloro-phenyl ring and an angle of 9.83 (3)° with the o-chloro-phenyl ring. The angle between the aromatic groups is 80.1 (2)°. The molecular structure is stabilized by an intramolecular C— H··· O hydrogen bond interaction (C···O 3.046 (2)Å; C—H···O 128° ). Weak C—H···Cl is also observed.

For related dioxolane geometry, see: Bolte et al. (1997). For organochlorines, see: Smith & Bennett (1977); Cantillana & Eriksson (2009); Jabbar et al. (2006). For dechlorination of organochlorine compounds, see: Grummitt et al. (1946). For their adrenolytic activity, see: Fassnacht et al. (2010); Berruti et al. (2005). For organochlorine as insecticide metabolites in bioremediation studies, see: Purnomo et al. (2011); Fuentes et al. (2010); Matsumoto et al. (2009). For the use of mitotane [systematic name: 2-(2-chlorophenyl)-2-(4-chlorophenyl)-1,1-dichloroethane] in adrenocortical carcinoma treatment, see: Maluf et al. (2011); Rosati et al. (2008); Terzolo et al. (2007). For structure–activity studies of mitotane derivatives, see: Bleiberg & Larson (1973); Schteingart et al. (1993).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids for non-H atoms.
rac-2-[(2-Chlorophenyl)(4-chlorophenyl)methyl]-1,3-dioxolane top
Crystal data top
C16H14Cl2O2Z = 2
Mr = 309.17F(000) = 320
Triclinic, P1Dx = 1.39 Mg m3
a = 7.5728 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.2268 (2) ÅCell parameters from 4556 reflections
c = 11.2858 (2) Åθ = 4.2–57.4°
α = 63.357 (1)°µ = 0.44 mm1
β = 84.021 (1)°T = 296 K
γ = 71.194 (1)°Block, colourless
V = 738.68 (3) Å30.59 × 0.56 × 0.29 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
4556 independent reflections
Radiation source: sealed tube3654 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
phi & ω scansθmax = 30.7°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1010
Tmin = 0.783, Tmax = 0.883k = 1414
24953 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0556P)2 + 0.1712P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
4556 reflectionsΔρmax = 0.37 e Å3
181 parametersΔρmin = 0.29 e Å3
0 restraints
Crystal data top
C16H14Cl2O2γ = 71.194 (1)°
Mr = 309.17V = 738.68 (3) Å3
Triclinic, P1Z = 2
a = 7.5728 (2) ÅMo Kα radiation
b = 10.2268 (2) ŵ = 0.44 mm1
c = 11.2858 (2) ÅT = 296 K
α = 63.357 (1)°0.59 × 0.56 × 0.29 mm
β = 84.021 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
4556 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3654 reflections with I > 2σ(I)
Tmin = 0.783, Tmax = 0.883Rint = 0.022
24953 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.05Δρmax = 0.37 e Å3
4556 reflectionsΔρmin = 0.29 e Å3
181 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.77214 (6)0.38255 (5)0.01175 (4)0.06217 (13)
Cl21.10734 (6)0.41352 (5)0.31682 (5)0.06334 (13)
C60.51390 (16)0.19844 (14)0.17862 (11)0.0346 (2)
H60.51310.25440.08180.041*
C130.65594 (16)0.04056 (14)0.21569 (11)0.0335 (2)
C150.86840 (19)0.19344 (15)0.37708 (13)0.0417 (3)
H150.91910.25450.46340.05*
C140.73344 (18)0.05219 (15)0.34448 (12)0.0379 (2)
H140.69380.01860.40980.046*
C70.57303 (16)0.28987 (14)0.23302 (13)0.0377 (2)
C160.92668 (18)0.24239 (15)0.27971 (14)0.0414 (3)
C20.31576 (17)0.19008 (16)0.21133 (13)0.0406 (3)
H20.23030.29320.19180.049*
C170.8485 (2)0.15571 (17)0.15211 (14)0.0479 (3)
H170.88570.19140.0880.058*
C180.7135 (2)0.01446 (16)0.12117 (13)0.0437 (3)
H180.66050.04460.03530.052*
C80.69189 (19)0.37655 (15)0.16361 (16)0.0458 (3)
C90.7506 (2)0.4593 (2)0.2126 (2)0.0655 (5)
H90.82870.51680.16390.079*
C50.1532 (2)0.0332 (2)0.34243 (16)0.0560 (4)
H5A0.0330.10520.34280.067*
H5B0.16530.06580.41770.067*
C120.5178 (2)0.28940 (17)0.35447 (16)0.0483 (3)
H120.43840.23330.40350.058*
C110.5776 (3)0.3703 (2)0.4049 (2)0.0630 (4)
H110.53970.36660.48720.076*
C40.1763 (3)0.0197 (2)0.21519 (17)0.0620 (4)
H4A0.25550.08220.22890.074*
H4B0.05630.03970.17650.074*
C100.6927 (3)0.4557 (2)0.3333 (2)0.0729 (5)
H100.73140.5110.36640.088*
O10.30232 (14)0.08905 (13)0.34445 (9)0.0480 (2)
O20.26110 (15)0.13305 (14)0.13264 (10)0.0536 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0564 (2)0.0582 (2)0.0640 (2)0.02759 (18)0.01797 (18)0.01678 (18)
Cl20.0595 (2)0.0481 (2)0.0721 (3)0.00034 (16)0.00404 (19)0.02775 (19)
C60.0336 (5)0.0369 (6)0.0318 (5)0.0132 (4)0.0005 (4)0.0123 (4)
C130.0329 (5)0.0370 (6)0.0337 (5)0.0155 (4)0.0016 (4)0.0151 (4)
C150.0460 (7)0.0399 (6)0.0344 (6)0.0138 (5)0.0027 (5)0.0109 (5)
C140.0439 (6)0.0405 (6)0.0315 (5)0.0151 (5)0.0027 (4)0.0165 (5)
C70.0319 (5)0.0330 (5)0.0463 (6)0.0083 (4)0.0025 (5)0.0161 (5)
C160.0401 (6)0.0364 (6)0.0484 (7)0.0119 (5)0.0004 (5)0.0188 (5)
C20.0348 (6)0.0478 (7)0.0385 (6)0.0163 (5)0.0002 (4)0.0157 (5)
C170.0540 (8)0.0516 (8)0.0451 (7)0.0119 (6)0.0003 (6)0.0297 (6)
C180.0487 (7)0.0488 (7)0.0348 (6)0.0119 (6)0.0042 (5)0.0205 (5)
C80.0371 (6)0.0369 (6)0.0601 (8)0.0121 (5)0.0005 (5)0.0177 (6)
C90.0532 (9)0.0539 (9)0.1019 (14)0.0269 (7)0.0039 (9)0.0379 (9)
C50.0488 (8)0.0723 (10)0.0500 (8)0.0347 (7)0.0054 (6)0.0195 (7)
C120.0481 (7)0.0489 (7)0.0559 (8)0.0162 (6)0.0048 (6)0.0295 (7)
C110.0651 (10)0.0654 (10)0.0756 (11)0.0147 (8)0.0005 (8)0.0483 (9)
C40.0702 (10)0.0756 (11)0.0547 (9)0.0449 (9)0.0033 (7)0.0260 (8)
C100.0665 (11)0.0683 (11)0.1120 (16)0.0252 (9)0.0017 (10)0.0592 (12)
O10.0450 (5)0.0713 (7)0.0346 (4)0.0322 (5)0.0057 (4)0.0203 (4)
O20.0545 (6)0.0796 (7)0.0372 (5)0.0400 (6)0.0004 (4)0.0209 (5)
Geometric parameters (Å, º) top
Cl1—C81.7388 (16)C17—C181.387 (2)
Cl2—C161.7402 (13)C17—H170.93
C6—C71.5146 (17)C18—H180.93
C6—C131.5189 (16)C8—C91.390 (2)
C6—C21.5278 (17)C9—C101.375 (3)
C6—H60.98C9—H90.93
C13—C181.3885 (18)C5—O11.4261 (17)
C13—C141.3926 (16)C5—C41.491 (2)
C15—C161.3794 (19)C5—H5A0.97
C15—C141.3843 (19)C5—H5B0.97
C15—H150.93C12—C111.390 (2)
C14—H140.93C12—H120.93
C7—C121.389 (2)C11—C101.373 (3)
C7—C81.3980 (18)C11—H110.93
C16—C171.380 (2)C4—O21.4181 (19)
C2—O11.4067 (16)C4—H4A0.97
C2—O21.4131 (17)C4—H4B0.97
C2—H20.98C10—H100.93
C7—C6—C13111.98 (9)C17—C18—H18119.3
C7—C6—C2113.89 (10)C13—C18—H18119.3
C13—C6—C2112.22 (10)C9—C8—C7121.93 (15)
C7—C6—H6106C9—C8—Cl1117.88 (12)
C13—C6—H6106C7—C8—Cl1120.19 (11)
C2—C6—H6106C10—C9—C8119.73 (16)
C18—C13—C14118.17 (12)C10—C9—H9120.1
C18—C13—C6120.66 (11)C8—C9—H9120.1
C14—C13—C6121.16 (11)O1—C5—C4102.77 (12)
C16—C15—C14119.10 (12)O1—C5—H5A111.2
C16—C15—H15120.5C4—C5—H5A111.2
C14—C15—H15120.5O1—C5—H5B111.2
C15—C14—C13121.18 (12)C4—C5—H5B111.2
C15—C14—H14119.4H5A—C5—H5B109.1
C13—C14—H14119.4C7—C12—C11121.95 (15)
C12—C7—C8116.50 (12)C7—C12—H12119
C12—C7—C6122.60 (11)C11—C12—H12119
C8—C7—C6120.88 (12)C10—C11—C12119.98 (18)
C15—C16—C17121.23 (12)C10—C11—H11120
C15—C16—Cl2119.47 (10)C12—C11—H11120
C17—C16—Cl2119.26 (11)O2—C4—C5104.37 (13)
O1—C2—O2106.64 (11)O2—C4—H4A110.9
O1—C2—C6112.75 (10)C5—C4—H4A110.9
O2—C2—C6108.83 (11)O2—C4—H4B110.9
O1—C2—H2109.5C5—C4—H4B110.9
O2—C2—H2109.5H4A—C4—H4B108.9
C6—C2—H2109.5C11—C10—C9119.91 (16)
C16—C17—C18118.86 (12)C11—C10—H10120
C16—C17—H17120.6C9—C10—H10120
C18—C17—H17120.6C2—O1—C5104.87 (10)
C17—C18—C13121.38 (12)C2—O2—C4108.24 (11)
C7—C6—C13—C18133.67 (12)C14—C13—C18—C171.9 (2)
C2—C6—C13—C1896.78 (13)C6—C13—C18—C17177.41 (12)
C7—C6—C13—C1445.63 (15)C12—C7—C8—C90.6 (2)
C2—C6—C13—C1483.91 (14)C6—C7—C8—C9178.89 (13)
C16—C15—C14—C130.08 (19)C12—C7—C8—Cl1179.03 (10)
C18—C13—C14—C151.94 (18)C6—C7—C8—Cl10.74 (17)
C6—C13—C14—C15177.38 (11)C7—C8—C9—C100.6 (3)
C13—C6—C7—C1292.97 (14)Cl1—C8—C9—C10179.00 (14)
C2—C6—C7—C1235.70 (17)C8—C7—C12—C110.2 (2)
C13—C6—C7—C885.22 (14)C6—C7—C12—C11178.07 (13)
C2—C6—C7—C8146.12 (12)C7—C12—C11—C100.9 (3)
C14—C15—C16—C172.2 (2)O1—C5—C4—O228.32 (18)
C14—C15—C16—Cl2175.65 (10)C12—C11—C10—C90.9 (3)
C7—C6—C2—O174.72 (14)C8—C9—C10—C110.1 (3)
C13—C6—C2—O153.83 (15)O2—C2—O1—C531.23 (15)
C7—C6—C2—O2167.18 (10)C6—C2—O1—C5150.62 (12)
C13—C6—C2—O264.28 (13)C4—C5—O1—C236.44 (17)
C15—C16—C17—C182.2 (2)O1—C2—O2—C412.74 (16)
Cl2—C16—C17—C18175.63 (11)C6—C2—O2—C4134.64 (13)
C16—C17—C18—C130.1 (2)C5—C4—O2—C29.89 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···Cl10.982.573.0566 (13)111
C12—H12···O10.932.383.046 (2)128

Experimental details

Crystal data
Chemical formulaC16H14Cl2O2
Mr309.17
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.5728 (2), 10.2268 (2), 11.2858 (2)
α, β, γ (°)63.357 (1), 84.021 (1), 71.194 (1)
V3)738.68 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.44
Crystal size (mm)0.59 × 0.56 × 0.29
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.783, 0.883
No. of measured, independent and
observed [I > 2σ(I)] reflections
24953, 4556, 3654
Rint0.022
(sin θ/λ)max1)0.717
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.117, 1.05
No. of reflections4556
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.29

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···Cl10.982.573.0566 (13)111
C12—H12···O10.932.383.046 (2)128
 

Acknowledgements

The authors thank the Brazilian agencies CNPq and CAPES (grants 141600/2008–0 and 2847/10–8, respectively) for financial support and Dr Jaísa F. Soares for helpful discussions.

References

First citationBerruti, A., Terzolo, M., Sperone, P., Pia, A., Casa, S. D., Gross, D. J., Carnaghi, C., Casali, P., Porpiglia, F., Mantero, F., Reimondo, G., Angeli, A. & Dogliotti, L. (2005). Endocr. Relat. Cancer, 12, 657–666.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBleiberg, M. J. & Larson, P. S. (1973). J. Pharmacol. Exp. Ther. 121, 421–431.  Google Scholar
First citationBolte, M., Marx, R. & Scholtyssik, M. (1997). Acta Cryst. C53, 1464–1466.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCantillana, T. & Eriksson, L. (2009). Acta Cryst. E65, o297.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFassnacht, M., Johanssen, S., Fenske, W., Weismann, D., Agha, A., Beuschlein, F., Fuhrer, D., Jurowich, C., Quinkler, M., Petersenn, S., Spahn, M., Hahner, S. & Allolio, B. (2010). J. Clin. Endocrinol. Metab. 95, 4925–4932.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFuentes, M. S., Benimeli, C. S., Cuozzo, S. A. & Amoroso, M. J. (2010). Int. Biodeterior. Biodegrad. 64, 434–441.  Web of Science CrossRef CAS Google Scholar
First citationGrummitt, O., Buck, A. & Egan, R. (1946). Org. Synth. 26, 21–23.  CAS Google Scholar
First citationJabbar, M. A., Aritome, I., Shimakoshi, H. & Hisaeda, Y. (2006). Acta Cryst. C62, o663–o665.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMaluf, D. F., Oliveira, B. H. & Lalli, E. (2011). Am. J. Cancer Res. 1, 222–232.  PubMed Google Scholar
First citationMatsumoto, E., Kawanaka, Y., Yun, S. J. & Oyaizu, H. (2009). Appl. Microbiol. Biotechnol. 84, 205–16.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPurnomo, A. S., Mori, T., Kamei, I. & Kondo, R. (2011). Int. Biodeterior. Biodegrad. 65, 921–930.  Web of Science CrossRef CAS Google Scholar
First citationRosati, R., Cerrato, F., Doghman, M., Pianovski, M. A., Parise, G. A., Custodio, G., Zambetti, G. P., Ribeiro, R. C., Riccio, A., Figueiredo, B. C. & Lalli, E. (2008). Cancer Genet. Cytogenet. 186, 19–24.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSchteingart, D. E., Sinsheimer, J. E., Counsell, R. E., Abrams, G. D., Mcclellan, N., Djanegara, T., Hines, J., Ruangwises, N., Benitez, R. & Wotring, L. L. (1993). Cancer Chemother. Pharmacol. 3, 459–466.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, R. A. & Bennett, M. J. (1977). Acta Cryst. B33, 1126–1128.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationTerzolo, M., Angeli, A., Fassnacht, M., Daffara, F., Tauchmanova, L., Conton, P. A., Rossetto, R., Buci, L., Sperone, P., Grossrubatscher, E., Reimondo, G., Bollito, E., Papotti, M., Saeger, W., Hahner, S., Koschker, A. C., Arvat, E., Ambrosi, B., Loli, P., Lombardi, G., Mannelli, M., Bruzzi, P., Mantero, F., Allolio, B., Dogliotti, L. & Berruti, A. (2007). N. Engl. J. Med. 356, 2372–2380.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds