organic compounds
rac-2-[(2-Chlorophenyl)(4-chlorophenyl)methyl]-1,3-dioxolane
aDepartament of Pharmacy, Federal University of Paraná - UFPR, 81531-990, Curitiba - PR, Brazil, bDepartament of Science and Technology, State University of Santa Cruz - UESC, 45662-900, Ilhéus - BA, Brazil, cInstitute of Chemistry, University of Brasília - UnB, 70904-970, Brasília - DF, Brazil, and dDepartament of Chemistry, Federal University of Paraná - UFPR, 81531-990, Curitiba - PR, Brazil
*Correspondence e-mail: ccgatto@unb.br
The title compound, C16H14Cl2O2, is a chiral mitotane derivative that contains a dioxolane ring and crystallizes from methanol as a It was obtained in high yield from mitotane and ethyleneglycol in alkaline medium, followed by neutralization with sulfuric acid and extraction with ethyl acetate. The molecular structure is stabilized by an intramolecular C— H⋯ O hydrogen bond. The dihedral angle between the aromatic rings is 80.1 (2)°. The dioxolane ring adopts a puckered with an O atom as the flap.
Related literature
For related dioxolane geometry, see: Bolte et al. (1997). For organochlorines, see: Smith & Bennett (1977); Cantillana & Eriksson (2009); Jabbar et al. (2006). For dechlorination of organochlorine compounds, see: Grummitt et al. (1946). For their adrenolytic activity, see: Fassnacht et al. (2010); Berruti et al. (2005). For organochlorine as insecticide metabolites in bioremediation studies, see: Purnomo et al. (2011); Fuentes et al. (2010); Matsumoto et al. (2009). For the use of mitotane [systematic name: 2-(2-chlorophenyl)-2-(4-chlorophenyl)-1,1-dichloroethane] in adrenocortical carcinoma treatment, see: Maluf et al. (2011); Rosati et al. (2008); Terzolo et al. (2007). For structure–activity studies of mitotane derivatives, see: Bleiberg & Larson (1973); Schteingart et al. (1993).
Experimental
Crystal data
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536812023781/bx2412sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812023781/bx2412Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536812023781/bx2412Isup3.cml
Mitotane (o,p'-DDD) was added to a mixture of ethylene glycol, KOH and water. The reaction was carried out overnight under reflux at 137°C. After this period, the reaction mixture was cooled down to room temperature and diluted with water. Concentrated sulfuric acid (98%) was then added to take the solution pH down to 3.0. The salt formed was removed by filtration on a Büchner funnel. The filtrate was extracted with ethyl acetate, the organic layer was concentrated by rotary evaporation and the oily yellow residue was redissolved in warm methanol (30°C). Thin, colorless plate-like crystals suitable for X-ray
were obtained from this methanol solution. Total reaction yield: 84%.All H-atoms were positioned geometrically and refined using a riding model, with C—H = 0.93—0.98 Å and Uiso(H) =1.2Ueq(C).
The title compound, which crystallizes from methanol as a
has been obtained after C1 oxidation and dechlorination of 2-(2-chlorophenyl)-2-(4-chlorophenyl)-1,1-dichloroethane, also known as mitotane or o,p'-DDD. The reaction generated an additional structural feature in the molecule, the dioxolane ring. While organochlorine compounds are widely described in the literature as insecticide metabolites in bioremediation studies (Purnomo et al., 2011; Fuentes et al., 2010; Matsumoto et al., 2009), mitotane itself is a drug used exclusively for adrenocortical carcinoma treatment (Maluf et al., 2011; Rosati et al., 2008, Terzolo et al., 2007). However, mitotane therapy produces important side effects due to its toxicity. Therefore, derivatives have been prepared in order to overcome those limitations. Several studies of structure-activity relationship report that the substitution of the hydrogen at the C1 position of mitotane results in the loss of activity and the use of the o,p'-DDD isomer – which refers to a specific substitution pattern in the aromatic rings – leads to a better pharmacological effect than that provided by the m,p' and p,p' isomers (Bleiberg and Larson, 1973; Schteingart et al., 1993). Search for new compounds that keep the single hydrogen bound to C1 and also the o,p'-substitution in the aromatic rings is necessary for an improved treatment of this malignant cancer. The molecule described herein is a good example of a mitotane derivative that presents these structural features relevant for adrenolytic activity. The molecular structure of the title compound is depicted in Figure 1. Bond lenghts and angles are as expected. The dioxolane ring adopts a puckered with C2, O2, C4 and C5 in the same plane, with the O1 atom placed about 0.4661 (1) Å above it. The coplanar atoms of the dioxolane ring form a dihedral angle of 74.63 (3)° with p-chloro-phenyl ring and an angle of 9.83 (3)° with the o-chloro-phenyl ring. The angle between the aromatic groups is 80.1 (2)°. The molecular structure is stabilized by an intramolecular C— H··· O hydrogen bond interaction (C···O 3.046 (2)Å; C—H···O 128° ). Weak C—H···Cl is also observed.For related dioxolane geometry, see: Bolte et al. (1997). For organochlorines, see: Smith & Bennett (1977); Cantillana & Eriksson (2009); Jabbar et al. (2006). For dechlorination of organochlorine compounds, see: Grummitt et al. (1946). For their adrenolytic activity, see: Fassnacht et al. (2010); Berruti et al. (2005). For organochlorine as insecticide metabolites in bioremediation studies, see: Purnomo et al. (2011); Fuentes et al. (2010); Matsumoto et al. (2009). For the use of mitotane [systematic name: 2-(2-chlorophenyl)-2-(4-chlorophenyl)-1,1-dichloroethane] in adrenocortical carcinoma treatment, see: Maluf et al. (2011); Rosati et al. (2008); Terzolo et al. (2007). For structure–activity studies of mitotane derivatives, see: Bleiberg & Larson (1973); Schteingart et al. (1993).
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids for non-H atoms. |
C16H14Cl2O2 | Z = 2 |
Mr = 309.17 | F(000) = 320 |
Triclinic, P1 | Dx = 1.39 Mg m−3 |
a = 7.5728 (2) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.2268 (2) Å | Cell parameters from 4556 reflections |
c = 11.2858 (2) Å | θ = 4.2–57.4° |
α = 63.357 (1)° | µ = 0.44 mm−1 |
β = 84.021 (1)° | T = 296 K |
γ = 71.194 (1)° | Block, colourless |
V = 738.68 (3) Å3 | 0.59 × 0.56 × 0.29 mm |
Bruker SMART APEXII CCD diffractometer | 4556 independent reflections |
Radiation source: sealed tube | 3654 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.022 |
phi & ω scans | θmax = 30.7°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −10→10 |
Tmin = 0.783, Tmax = 0.883 | k = −14→14 |
24953 measured reflections | l = −16→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | H-atom parameters constrained |
wR(F2) = 0.117 | w = 1/[σ2(Fo2) + (0.0556P)2 + 0.1712P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.001 |
4556 reflections | Δρmax = 0.37 e Å−3 |
181 parameters | Δρmin = −0.29 e Å−3 |
0 restraints |
C16H14Cl2O2 | γ = 71.194 (1)° |
Mr = 309.17 | V = 738.68 (3) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.5728 (2) Å | Mo Kα radiation |
b = 10.2268 (2) Å | µ = 0.44 mm−1 |
c = 11.2858 (2) Å | T = 296 K |
α = 63.357 (1)° | 0.59 × 0.56 × 0.29 mm |
β = 84.021 (1)° |
Bruker SMART APEXII CCD diffractometer | 4556 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 3654 reflections with I > 2σ(I) |
Tmin = 0.783, Tmax = 0.883 | Rint = 0.022 |
24953 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | 0 restraints |
wR(F2) = 0.117 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.37 e Å−3 |
4556 reflections | Δρmin = −0.29 e Å−3 |
181 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.77214 (6) | 0.38255 (5) | 0.01175 (4) | 0.06217 (13) | |
Cl2 | 1.10734 (6) | −0.41352 (5) | 0.31682 (5) | 0.06334 (13) | |
C6 | 0.51390 (16) | 0.19844 (14) | 0.17862 (11) | 0.0346 (2) | |
H6 | 0.5131 | 0.2544 | 0.0818 | 0.041* | |
C13 | 0.65594 (16) | 0.04056 (14) | 0.21569 (11) | 0.0335 (2) | |
C15 | 0.86840 (19) | −0.19344 (15) | 0.37708 (13) | 0.0417 (3) | |
H15 | 0.9191 | −0.2545 | 0.4634 | 0.05* | |
C14 | 0.73344 (18) | −0.05219 (15) | 0.34448 (12) | 0.0379 (2) | |
H14 | 0.6938 | −0.0186 | 0.4098 | 0.046* | |
C7 | 0.57303 (16) | 0.28987 (14) | 0.23302 (13) | 0.0377 (2) | |
C16 | 0.92668 (18) | −0.24239 (15) | 0.27971 (14) | 0.0414 (3) | |
C2 | 0.31576 (17) | 0.19008 (16) | 0.21133 (13) | 0.0406 (3) | |
H2 | 0.2303 | 0.2932 | 0.1918 | 0.049* | |
C17 | 0.8485 (2) | −0.15571 (17) | 0.15211 (14) | 0.0479 (3) | |
H17 | 0.8857 | −0.1914 | 0.088 | 0.058* | |
C18 | 0.7135 (2) | −0.01446 (16) | 0.12117 (13) | 0.0437 (3) | |
H18 | 0.6605 | 0.0446 | 0.0353 | 0.052* | |
C8 | 0.69189 (19) | 0.37655 (15) | 0.16361 (16) | 0.0458 (3) | |
C9 | 0.7506 (2) | 0.4593 (2) | 0.2126 (2) | 0.0655 (5) | |
H9 | 0.8287 | 0.5168 | 0.1639 | 0.079* | |
C5 | 0.1532 (2) | 0.0332 (2) | 0.34243 (16) | 0.0560 (4) | |
H5A | 0.033 | 0.1052 | 0.3428 | 0.067* | |
H5B | 0.1653 | −0.0658 | 0.4177 | 0.067* | |
C12 | 0.5178 (2) | 0.28940 (17) | 0.35447 (16) | 0.0483 (3) | |
H12 | 0.4384 | 0.2333 | 0.4035 | 0.058* | |
C11 | 0.5776 (3) | 0.3703 (2) | 0.4049 (2) | 0.0630 (4) | |
H11 | 0.5397 | 0.3666 | 0.4872 | 0.076* | |
C4 | 0.1763 (3) | 0.0197 (2) | 0.21519 (17) | 0.0620 (4) | |
H4A | 0.2555 | −0.0822 | 0.2289 | 0.074* | |
H4B | 0.0563 | 0.0397 | 0.1765 | 0.074* | |
C10 | 0.6927 (3) | 0.4557 (2) | 0.3333 (2) | 0.0729 (5) | |
H10 | 0.7314 | 0.511 | 0.3664 | 0.088* | |
O1 | 0.30232 (14) | 0.08905 (13) | 0.34445 (9) | 0.0480 (2) | |
O2 | 0.26110 (15) | 0.13305 (14) | 0.13264 (10) | 0.0536 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0564 (2) | 0.0582 (2) | 0.0640 (2) | −0.02759 (18) | 0.01797 (18) | −0.01678 (18) |
Cl2 | 0.0595 (2) | 0.0481 (2) | 0.0721 (3) | 0.00034 (16) | −0.00404 (19) | −0.02775 (19) |
C6 | 0.0336 (5) | 0.0369 (6) | 0.0318 (5) | −0.0132 (4) | 0.0005 (4) | −0.0123 (4) |
C13 | 0.0329 (5) | 0.0370 (6) | 0.0337 (5) | −0.0155 (4) | 0.0016 (4) | −0.0151 (4) |
C15 | 0.0460 (7) | 0.0399 (6) | 0.0344 (6) | −0.0138 (5) | −0.0027 (5) | −0.0109 (5) |
C14 | 0.0439 (6) | 0.0405 (6) | 0.0315 (5) | −0.0151 (5) | 0.0027 (4) | −0.0165 (5) |
C7 | 0.0319 (5) | 0.0330 (5) | 0.0463 (6) | −0.0083 (4) | −0.0025 (5) | −0.0161 (5) |
C16 | 0.0401 (6) | 0.0364 (6) | 0.0484 (7) | −0.0119 (5) | 0.0004 (5) | −0.0188 (5) |
C2 | 0.0348 (6) | 0.0478 (7) | 0.0385 (6) | −0.0163 (5) | −0.0002 (4) | −0.0157 (5) |
C17 | 0.0540 (8) | 0.0516 (8) | 0.0451 (7) | −0.0119 (6) | −0.0003 (6) | −0.0297 (6) |
C18 | 0.0487 (7) | 0.0488 (7) | 0.0348 (6) | −0.0119 (6) | −0.0042 (5) | −0.0205 (5) |
C8 | 0.0371 (6) | 0.0369 (6) | 0.0601 (8) | −0.0121 (5) | 0.0005 (5) | −0.0177 (6) |
C9 | 0.0532 (9) | 0.0539 (9) | 0.1019 (14) | −0.0269 (7) | 0.0039 (9) | −0.0379 (9) |
C5 | 0.0488 (8) | 0.0723 (10) | 0.0500 (8) | −0.0347 (7) | 0.0054 (6) | −0.0195 (7) |
C12 | 0.0481 (7) | 0.0489 (7) | 0.0559 (8) | −0.0162 (6) | 0.0048 (6) | −0.0295 (7) |
C11 | 0.0651 (10) | 0.0654 (10) | 0.0756 (11) | −0.0147 (8) | −0.0005 (8) | −0.0483 (9) |
C4 | 0.0702 (10) | 0.0756 (11) | 0.0547 (9) | −0.0449 (9) | 0.0033 (7) | −0.0260 (8) |
C10 | 0.0665 (11) | 0.0683 (11) | 0.1120 (16) | −0.0252 (9) | −0.0017 (10) | −0.0592 (12) |
O1 | 0.0450 (5) | 0.0713 (7) | 0.0346 (4) | −0.0322 (5) | 0.0057 (4) | −0.0203 (4) |
O2 | 0.0545 (6) | 0.0796 (7) | 0.0372 (5) | −0.0400 (6) | −0.0004 (4) | −0.0209 (5) |
Cl1—C8 | 1.7388 (16) | C17—C18 | 1.387 (2) |
Cl2—C16 | 1.7402 (13) | C17—H17 | 0.93 |
C6—C7 | 1.5146 (17) | C18—H18 | 0.93 |
C6—C13 | 1.5189 (16) | C8—C9 | 1.390 (2) |
C6—C2 | 1.5278 (17) | C9—C10 | 1.375 (3) |
C6—H6 | 0.98 | C9—H9 | 0.93 |
C13—C18 | 1.3885 (18) | C5—O1 | 1.4261 (17) |
C13—C14 | 1.3926 (16) | C5—C4 | 1.491 (2) |
C15—C16 | 1.3794 (19) | C5—H5A | 0.97 |
C15—C14 | 1.3843 (19) | C5—H5B | 0.97 |
C15—H15 | 0.93 | C12—C11 | 1.390 (2) |
C14—H14 | 0.93 | C12—H12 | 0.93 |
C7—C12 | 1.389 (2) | C11—C10 | 1.373 (3) |
C7—C8 | 1.3980 (18) | C11—H11 | 0.93 |
C16—C17 | 1.380 (2) | C4—O2 | 1.4181 (19) |
C2—O1 | 1.4067 (16) | C4—H4A | 0.97 |
C2—O2 | 1.4131 (17) | C4—H4B | 0.97 |
C2—H2 | 0.98 | C10—H10 | 0.93 |
C7—C6—C13 | 111.98 (9) | C17—C18—H18 | 119.3 |
C7—C6—C2 | 113.89 (10) | C13—C18—H18 | 119.3 |
C13—C6—C2 | 112.22 (10) | C9—C8—C7 | 121.93 (15) |
C7—C6—H6 | 106 | C9—C8—Cl1 | 117.88 (12) |
C13—C6—H6 | 106 | C7—C8—Cl1 | 120.19 (11) |
C2—C6—H6 | 106 | C10—C9—C8 | 119.73 (16) |
C18—C13—C14 | 118.17 (12) | C10—C9—H9 | 120.1 |
C18—C13—C6 | 120.66 (11) | C8—C9—H9 | 120.1 |
C14—C13—C6 | 121.16 (11) | O1—C5—C4 | 102.77 (12) |
C16—C15—C14 | 119.10 (12) | O1—C5—H5A | 111.2 |
C16—C15—H15 | 120.5 | C4—C5—H5A | 111.2 |
C14—C15—H15 | 120.5 | O1—C5—H5B | 111.2 |
C15—C14—C13 | 121.18 (12) | C4—C5—H5B | 111.2 |
C15—C14—H14 | 119.4 | H5A—C5—H5B | 109.1 |
C13—C14—H14 | 119.4 | C7—C12—C11 | 121.95 (15) |
C12—C7—C8 | 116.50 (12) | C7—C12—H12 | 119 |
C12—C7—C6 | 122.60 (11) | C11—C12—H12 | 119 |
C8—C7—C6 | 120.88 (12) | C10—C11—C12 | 119.98 (18) |
C15—C16—C17 | 121.23 (12) | C10—C11—H11 | 120 |
C15—C16—Cl2 | 119.47 (10) | C12—C11—H11 | 120 |
C17—C16—Cl2 | 119.26 (11) | O2—C4—C5 | 104.37 (13) |
O1—C2—O2 | 106.64 (11) | O2—C4—H4A | 110.9 |
O1—C2—C6 | 112.75 (10) | C5—C4—H4A | 110.9 |
O2—C2—C6 | 108.83 (11) | O2—C4—H4B | 110.9 |
O1—C2—H2 | 109.5 | C5—C4—H4B | 110.9 |
O2—C2—H2 | 109.5 | H4A—C4—H4B | 108.9 |
C6—C2—H2 | 109.5 | C11—C10—C9 | 119.91 (16) |
C16—C17—C18 | 118.86 (12) | C11—C10—H10 | 120 |
C16—C17—H17 | 120.6 | C9—C10—H10 | 120 |
C18—C17—H17 | 120.6 | C2—O1—C5 | 104.87 (10) |
C17—C18—C13 | 121.38 (12) | C2—O2—C4 | 108.24 (11) |
C7—C6—C13—C18 | −133.67 (12) | C14—C13—C18—C17 | −1.9 (2) |
C2—C6—C13—C18 | 96.78 (13) | C6—C13—C18—C17 | 177.41 (12) |
C7—C6—C13—C14 | 45.63 (15) | C12—C7—C8—C9 | −0.6 (2) |
C2—C6—C13—C14 | −83.91 (14) | C6—C7—C8—C9 | −178.89 (13) |
C16—C15—C14—C13 | 0.08 (19) | C12—C7—C8—Cl1 | 179.03 (10) |
C18—C13—C14—C15 | 1.94 (18) | C6—C7—C8—Cl1 | 0.74 (17) |
C6—C13—C14—C15 | −177.38 (11) | C7—C8—C9—C10 | 0.6 (3) |
C13—C6—C7—C12 | −92.97 (14) | Cl1—C8—C9—C10 | −179.00 (14) |
C2—C6—C7—C12 | 35.70 (17) | C8—C7—C12—C11 | −0.2 (2) |
C13—C6—C7—C8 | 85.22 (14) | C6—C7—C12—C11 | 178.07 (13) |
C2—C6—C7—C8 | −146.12 (12) | C7—C12—C11—C10 | 0.9 (3) |
C14—C15—C16—C17 | −2.2 (2) | O1—C5—C4—O2 | −28.32 (18) |
C14—C15—C16—Cl2 | 175.65 (10) | C12—C11—C10—C9 | −0.9 (3) |
C7—C6—C2—O1 | −74.72 (14) | C8—C9—C10—C11 | 0.1 (3) |
C13—C6—C2—O1 | 53.83 (15) | O2—C2—O1—C5 | −31.23 (15) |
C7—C6—C2—O2 | 167.18 (10) | C6—C2—O1—C5 | −150.62 (12) |
C13—C6—C2—O2 | −64.28 (13) | C4—C5—O1—C2 | 36.44 (17) |
C15—C16—C17—C18 | 2.2 (2) | O1—C2—O2—C4 | 12.74 (16) |
Cl2—C16—C17—C18 | −175.63 (11) | C6—C2—O2—C4 | 134.64 (13) |
C16—C17—C18—C13 | −0.1 (2) | C5—C4—O2—C2 | 9.89 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6···Cl1 | 0.98 | 2.57 | 3.0566 (13) | 111 |
C12—H12···O1 | 0.93 | 2.38 | 3.046 (2) | 128 |
Experimental details
Crystal data | |
Chemical formula | C16H14Cl2O2 |
Mr | 309.17 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 296 |
a, b, c (Å) | 7.5728 (2), 10.2268 (2), 11.2858 (2) |
α, β, γ (°) | 63.357 (1), 84.021 (1), 71.194 (1) |
V (Å3) | 738.68 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.44 |
Crystal size (mm) | 0.59 × 0.56 × 0.29 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.783, 0.883 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 24953, 4556, 3654 |
Rint | 0.022 |
(sin θ/λ)max (Å−1) | 0.717 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.117, 1.05 |
No. of reflections | 4556 |
No. of parameters | 181 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.37, −0.29 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6···Cl1 | 0.98 | 2.57 | 3.0566 (13) | 111 |
C12—H12···O1 | 0.93 | 2.38 | 3.046 (2) | 128 |
Acknowledgements
The authors thank the Brazilian agencies CNPq and CAPES (grants 141600/2008–0 and 2847/10–8, respectively) for financial support and Dr Jaísa F. Soares for helpful discussions.
References
Berruti, A., Terzolo, M., Sperone, P., Pia, A., Casa, S. D., Gross, D. J., Carnaghi, C., Casali, P., Porpiglia, F., Mantero, F., Reimondo, G., Angeli, A. & Dogliotti, L. (2005). Endocr. Relat. Cancer, 12, 657–666. Web of Science CrossRef PubMed CAS Google Scholar
Bleiberg, M. J. & Larson, P. S. (1973). J. Pharmacol. Exp. Ther. 121, 421–431. Google Scholar
Bolte, M., Marx, R. & Scholtyssik, M. (1997). Acta Cryst. C53, 1464–1466. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cantillana, T. & Eriksson, L. (2009). Acta Cryst. E65, o297. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Fassnacht, M., Johanssen, S., Fenske, W., Weismann, D., Agha, A., Beuschlein, F., Fuhrer, D., Jurowich, C., Quinkler, M., Petersenn, S., Spahn, M., Hahner, S. & Allolio, B. (2010). J. Clin. Endocrinol. Metab. 95, 4925–4932. Web of Science CrossRef CAS PubMed Google Scholar
Fuentes, M. S., Benimeli, C. S., Cuozzo, S. A. & Amoroso, M. J. (2010). Int. Biodeterior. Biodegrad. 64, 434–441. Web of Science CrossRef CAS Google Scholar
Grummitt, O., Buck, A. & Egan, R. (1946). Org. Synth. 26, 21–23. CAS Google Scholar
Jabbar, M. A., Aritome, I., Shimakoshi, H. & Hisaeda, Y. (2006). Acta Cryst. C62, o663–o665. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Maluf, D. F., Oliveira, B. H. & Lalli, E. (2011). Am. J. Cancer Res. 1, 222–232. PubMed Google Scholar
Matsumoto, E., Kawanaka, Y., Yun, S. J. & Oyaizu, H. (2009). Appl. Microbiol. Biotechnol. 84, 205–16. Web of Science CrossRef PubMed CAS Google Scholar
Purnomo, A. S., Mori, T., Kamei, I. & Kondo, R. (2011). Int. Biodeterior. Biodegrad. 65, 921–930. Web of Science CrossRef CAS Google Scholar
Rosati, R., Cerrato, F., Doghman, M., Pianovski, M. A., Parise, G. A., Custodio, G., Zambetti, G. P., Ribeiro, R. C., Riccio, A., Figueiredo, B. C. & Lalli, E. (2008). Cancer Genet. Cytogenet. 186, 19–24. Web of Science CrossRef PubMed CAS Google Scholar
Schteingart, D. E., Sinsheimer, J. E., Counsell, R. E., Abrams, G. D., Mcclellan, N., Djanegara, T., Hines, J., Ruangwises, N., Benitez, R. & Wotring, L. L. (1993). Cancer Chemother. Pharmacol. 3, 459–466. CrossRef Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Smith, R. A. & Bennett, M. J. (1977). Acta Cryst. B33, 1126–1128. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Terzolo, M., Angeli, A., Fassnacht, M., Daffara, F., Tauchmanova, L., Conton, P. A., Rossetto, R., Buci, L., Sperone, P., Grossrubatscher, E., Reimondo, G., Bollito, E., Papotti, M., Saeger, W., Hahner, S., Koschker, A. C., Arvat, E., Ambrosi, B., Loli, P., Lombardi, G., Mannelli, M., Bruzzi, P., Mantero, F., Allolio, B., Dogliotti, L. & Berruti, A. (2007). N. Engl. J. Med. 356, 2372–2380. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound, which crystallizes from methanol as a racemic mixture, has been obtained after C1 oxidation and dechlorination of 2-(2-chlorophenyl)-2-(4-chlorophenyl)-1,1-dichloroethane, also known as mitotane or o,p'-DDD. The reaction generated an additional structural feature in the molecule, the dioxolane ring. While organochlorine compounds are widely described in the literature as insecticide metabolites in bioremediation studies (Purnomo et al., 2011; Fuentes et al., 2010; Matsumoto et al., 2009), mitotane itself is a drug used exclusively for adrenocortical carcinoma treatment (Maluf et al., 2011; Rosati et al., 2008, Terzolo et al., 2007). However, mitotane therapy produces important side effects due to its toxicity. Therefore, derivatives have been prepared in order to overcome those limitations. Several studies of structure-activity relationship report that the substitution of the hydrogen at the C1 position of mitotane results in the loss of activity and the use of the o,p'-DDD isomer – which refers to a specific substitution pattern in the aromatic rings – leads to a better pharmacological effect than that provided by the m,p' and p,p' isomers (Bleiberg and Larson, 1973; Schteingart et al., 1993). Search for new compounds that keep the single hydrogen bound to C1 and also the o,p'-substitution in the aromatic rings is necessary for an improved treatment of this malignant cancer. The molecule described herein is a good example of a mitotane derivative that presents these structural features relevant for adrenolytic activity. The molecular structure of the title compound is depicted in Figure 1. Bond lenghts and angles are as expected. The dioxolane ring adopts a puckered envelope conformation with C2, O2, C4 and C5 in the same plane, with the O1 atom placed about 0.4661 (1) Å above it. The coplanar atoms of the dioxolane ring form a dihedral angle of 74.63 (3)° with p-chloro-phenyl ring and an angle of 9.83 (3)° with the o-chloro-phenyl ring. The angle between the aromatic groups is 80.1 (2)°. The molecular structure is stabilized by an intramolecular C— H··· O hydrogen bond interaction (C···O 3.046 (2)Å; C—H···O 128° ). Weak C—H···Cl is also observed.