metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris(1,10-phenanthroline-κ2N,N′)iron(II) bis­­(1,1-di­cyano-2-eth­­oxy-2-oxoethanide)

aCollege of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
*Correspondence e-mail: shzhzhan@scut.edu.cn

(Received 23 May 2012; accepted 14 June 2012; online 20 June 2012)

The title compound, [Fe(C12H8N2)3](C6H5N2O2)2, consists of one [Fe(phen)3]2+ cation (phen = 1,10-phenanthroline) and two 1,1-dicyano-2-eth­oxy-2-oxoethanide anions. Five atoms of the anion are disordered over two positions [site occupancy = 0.521 (13) for the major component]. In the complex cation, the FeII atom is coordinated by six N atoms from three phen ligands in a distorted octa­hedral geometry. Two intra­molecular C—H⋯N hydrogen bonds occur in the complex cation. The crystal structure is mainly stabilized by Coulombic inter­actions. Weak intermolecular C—H⋯N inter­actions are also observed.

Related literature

For tetra­cyano­ethyl­ene (TCNE) mol­ecular reactions, see: Kaim & Moscherosch (1994[Kaim, W. & Moscherosch, M. (1994). Coord. Chem. Rev. 129, 157-193.]). For geometrical parameters of TCNE, see: Miller (2006[Miller, J. S. (2006). Angew. Chem. Int. Ed. 45, 2508-2525.]). For the synthesis of the dicyano­ethyl­acetate anion, see: Lv et al. (2008[Lv, Q. Y., Li, W., Zhan, S. Z., Wang, J. G. & Su, J. Y. (2008). J. Organomet. Chem. 693, 1155-1158.]). For the structure of free TCNE, see: Drück & Güth (1982[Drück, U. & Güth, H. (1982). Z. Kristallogr. 161, 103-110.]). For a related structure, see: Uçar et al. (2005[Uçar, I., Paşaoĝlu, H., Büyükgüngör, O. & Bulut, A. (2005). Acta Cryst. E61, m1405-m1407.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C12H8N2)3](C6H5N2O2)2

  • Mr = 870.70

  • Monoclinic, P 21 /n

  • a = 15.5855 (5) Å

  • b = 13.0261 (4) Å

  • c = 21.4979 (6) Å

  • β = 109.068 (1)°

  • V = 4125.0 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.43 mm−1

  • T = 296 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.920, Tmax = 0.959

  • 36630 measured reflections

  • 8551 independent reflections

  • 4862 reflections with I > 2σ(I)

  • Rint = 0.081

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.156

  • S = 1.02

  • 8551 reflections

  • 614 parameters

  • 71 restraints

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C25—H25⋯N2 0.93 2.62 3.089 (4) 112
C34—H34⋯N3 0.93 2.60 3.078 (4) 113
C3—H3⋯N8i 0.93 2.47 3.206 (6) 136
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Tetracyanoethylene(TCNE) molecule is one of the most versatile organic compounds as it is used in a many different of reactions (Kaim & Moscherosch, 1994), due to its very low-lying p* orbital. Our interest focus on the reactivity of TCNE and transitionmetal complexes to form discrete as well as polymeric charge-transfer compoundsin which the donors and acceptors are coordinated through nitrile positions. With this mind, we have tried the reaction of FeCl3×6H2O, 1,10-phenanthroline and TCNE, surprisingly, the title complex {[FeII(phen)3][(NC)2C—CO2C2H5]} is obtained. In the presence of H2O, TCNE can react with ethanol to give dicyanoethylacetate anion-radical (Lv, et al., 2008). The title complex consists of one [FeII(phen)3]2+ cation, and two dicyanoethylacetate anion-radical. The CN distances are normal range from 1.139 (5) to 1.154 (5) Å. The average C—CN distance of 1.400 (6) Å is 0.035 Å shorter than that observed for the free TCNE (1.435 Å) (Drück & Güth, 1982). The NC—C—CN bond angle are 118.5 (3) and 122.5 (4)o, which are longer than observed in free TCNE (116.5 (12)o) in accord with its sp2 central carbon atom (Miller, 2006; Lv, et al., 2008). In the cation, the FeII atom is coordinated by six N atoms from three phen ligands in a distorted octahedral geometry.The average bond length of Fe—N is 1.973 (3) Å and similar to tris(1,10-phenanthroline-2N,N')iron(II) squarate octahydrate (Uçar, et al., 2005) as representative example.The crystal structure is mainly stabilized by coulombic interactions. Weak C—H ···N and C—H ···F interactions are also observed, See Table 1.

Related literature top

For tetracyanoethylene (TCNE) molecular reactions, see: Kaim & Moscherosch (1994); For geometrical parameters of TCNE, see: Miller (2006). For the synthesis of the dicyanoethylacetate anion, see: Lv et al. (2008). For the structure of free TCNE, see: Drück & Güth (1982). For a related structure, see: Uçar et al. (2005).

Experimental top

After addition of tetracyanoethylene (0.261 g, 2 mmol) in ethanol (10 ml) to the solution containing FeCl3×6H2O(0.270 g, 1 mmol) and 1,10-phenanthroline (phen)(0.400 g, 2 mmol) in ethanol (10 ml), the mixture was stirred at room temperature for 1 h. The solution color turned from red to brown. Single crystals were obtained from the filtrate which was allowed to stand at room temperature for several days, collected by filtration, and dried in vacuo (0.26 g, 29.5%). Calcd for C48H34Fe2N10O4:C 66.15, H 3.91, N 16.08. Found: C 65.95, H 3.93, N 16.10.

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C).The C and O atoms of the ethyl formate anion (C46, C47, C48, O3, O4, C46', C47', C48', O3', O4') are disordered over two positions with a refined site-occupancy ratio of 0.521 (13)/0.479 (13). The geometric parameters of two disordered components in each groups were restrained by using SADI restraints and using ISOR constraints. The bond lengths of the disordered atoms were restrained by using DFIX instructions. All non-hydrogen atoms were treated anisotropically.

Structure description top

Tetracyanoethylene(TCNE) molecule is one of the most versatile organic compounds as it is used in a many different of reactions (Kaim & Moscherosch, 1994), due to its very low-lying p* orbital. Our interest focus on the reactivity of TCNE and transitionmetal complexes to form discrete as well as polymeric charge-transfer compoundsin which the donors and acceptors are coordinated through nitrile positions. With this mind, we have tried the reaction of FeCl3×6H2O, 1,10-phenanthroline and TCNE, surprisingly, the title complex {[FeII(phen)3][(NC)2C—CO2C2H5]} is obtained. In the presence of H2O, TCNE can react with ethanol to give dicyanoethylacetate anion-radical (Lv, et al., 2008). The title complex consists of one [FeII(phen)3]2+ cation, and two dicyanoethylacetate anion-radical. The CN distances are normal range from 1.139 (5) to 1.154 (5) Å. The average C—CN distance of 1.400 (6) Å is 0.035 Å shorter than that observed for the free TCNE (1.435 Å) (Drück & Güth, 1982). The NC—C—CN bond angle are 118.5 (3) and 122.5 (4)o, which are longer than observed in free TCNE (116.5 (12)o) in accord with its sp2 central carbon atom (Miller, 2006; Lv, et al., 2008). In the cation, the FeII atom is coordinated by six N atoms from three phen ligands in a distorted octahedral geometry.The average bond length of Fe—N is 1.973 (3) Å and similar to tris(1,10-phenanthroline-2N,N')iron(II) squarate octahydrate (Uçar, et al., 2005) as representative example.The crystal structure is mainly stabilized by coulombic interactions. Weak C—H ···N and C—H ···F interactions are also observed, See Table 1.

For tetracyanoethylene (TCNE) molecular reactions, see: Kaim & Moscherosch (1994); For geometrical parameters of TCNE, see: Miller (2006). For the synthesis of the dicyanoethylacetate anion, see: Lv et al. (2008). For the structure of free TCNE, see: Drück & Güth (1982). For a related structure, see: Uçar et al. (2005).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. ORTEP view of the title compound, at the 30% probability level.
Tris(1,10-phenanthroline-κ2N,N')iron(II) bis(1,1-dicyano-2-ethoxy-2-oxoethanide) top
Crystal data top
[Fe(C12H8N2)3](C6H5N2O2)2F(000) = 1800
Mr = 870.70Dx = 1.402 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 15.5855 (5) ÅCell parameters from 36630 reflections
b = 13.0261 (4) Åθ = 1.9–26.5°
c = 21.4979 (6) ŵ = 0.43 mm1
β = 109.068 (1)°T = 296 K
V = 4125.0 (2) Å3Block, brown
Z = 40.20 × 0.10 × 0.10 mm
Data collection top
Bruker APEXII
diffractometer
4862 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.081
Graphite monochromatorθmax = 26.5°, θmin = 1.9°
ω scansh = 1719
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1516
Tmin = 0.920, Tmax = 0.959l = 2626
36630 measured reflections2 standard reflections every 0 reflections
8551 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.072P)2]
where P = (Fo2 + 2Fc2)/3
8551 reflections(Δ/σ)max = 0.001
614 parametersΔρmax = 0.40 e Å3
71 restraintsΔρmin = 0.44 e Å3
Crystal data top
[Fe(C12H8N2)3](C6H5N2O2)2V = 4125.0 (2) Å3
Mr = 870.70Z = 4
Monoclinic, P21/nMo Kα radiation
a = 15.5855 (5) ŵ = 0.43 mm1
b = 13.0261 (4) ÅT = 296 K
c = 21.4979 (6) Å0.20 × 0.10 × 0.10 mm
β = 109.068 (1)°
Data collection top
Bruker APEXII
diffractometer
4862 reflections with I > 2σ(I)
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
Rint = 0.081
Tmin = 0.920, Tmax = 0.9592 standard reflections every 0 reflections
36630 measured reflections intensity decay: none
8551 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05571 restraints
wR(F2) = 0.156H-atom parameters constrained
S = 1.02Δρmax = 0.40 e Å3
8551 reflectionsΔρmin = 0.44 e Å3
614 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.6345 (3)0.3762 (3)0.44089 (16)0.0541 (9)
H10.67990.38730.42240.065*
C20.5468 (3)0.4080 (3)0.40622 (19)0.0655 (11)
H20.53480.44050.36570.079*
C30.4785 (3)0.3919 (3)0.43135 (19)0.0651 (11)
H30.41940.41110.40760.078*
C40.4982 (3)0.3459 (3)0.49352 (18)0.0544 (9)
C50.4325 (3)0.3255 (3)0.5255 (2)0.0691 (11)
H50.37190.34210.50440.083*
C60.4576 (3)0.2826 (3)0.5858 (2)0.0656 (11)
H60.41380.27100.60570.079*
C70.5496 (3)0.2542 (3)0.62009 (17)0.0508 (9)
C80.5801 (3)0.2082 (3)0.6821 (2)0.0650 (11)
H80.53950.19430.70460.078*
C90.6692 (3)0.1840 (3)0.70946 (18)0.0635 (11)
H90.68990.15400.75100.076*
C100.7298 (3)0.2040 (3)0.67522 (16)0.0521 (9)
H100.79070.18710.69490.063*
C110.6143 (2)0.2716 (2)0.58900 (15)0.0425 (8)
C120.5876 (2)0.3171 (2)0.52548 (15)0.0429 (8)
C130.7824 (3)0.4959 (3)0.58974 (17)0.0511 (9)
H130.72230.50220.56290.061*
C140.8288 (3)0.5838 (3)0.61999 (18)0.0593 (10)
H140.79970.64720.61300.071*
C150.9162 (3)0.5766 (3)0.65943 (18)0.0564 (10)
H150.94730.63530.67910.068*
C160.9600 (2)0.4812 (3)0.67077 (16)0.0473 (9)
C171.0508 (3)0.4632 (3)0.71111 (18)0.0644 (11)
H171.08650.51840.73200.077*
C181.0870 (3)0.3674 (3)0.72003 (18)0.0644 (11)
H181.14690.35850.74690.077*
C191.0352 (2)0.2796 (3)0.68906 (17)0.0517 (9)
C201.0665 (3)0.1785 (3)0.69839 (19)0.0648 (11)
H201.12530.16410.72550.078*
C211.0102 (3)0.1015 (3)0.6674 (2)0.0645 (11)
H211.02980.03380.67390.077*
C220.9227 (3)0.1240 (3)0.62577 (18)0.0539 (9)
H220.88570.07000.60450.065*
C230.9460 (2)0.2961 (2)0.64793 (15)0.0405 (8)
C240.9083 (2)0.3960 (2)0.63876 (15)0.0396 (8)
C250.6919 (2)0.0594 (3)0.52483 (17)0.0526 (9)
H250.67420.06390.56210.063*
C260.6700 (3)0.0289 (3)0.4865 (2)0.0639 (11)
H260.63900.08220.49860.077*
C270.6940 (3)0.0369 (3)0.43108 (18)0.0591 (10)
H270.67810.09500.40460.071*
C280.7426 (2)0.0423 (2)0.41425 (15)0.0452 (8)
C290.7748 (3)0.0411 (3)0.35912 (16)0.0541 (9)
H290.76280.01560.33130.065*
C300.8218 (2)0.1198 (3)0.34666 (16)0.0519 (9)
H300.84170.11630.31040.062*
C310.8423 (2)0.2094 (2)0.38756 (14)0.0420 (8)
C320.8902 (2)0.2946 (3)0.37698 (16)0.0529 (9)
H320.91090.29650.34110.063*
C330.9061 (3)0.3750 (3)0.41977 (17)0.0536 (9)
H330.93770.43220.41310.064*
C340.8749 (2)0.3714 (2)0.47350 (16)0.0471 (8)
H340.88680.42720.50210.056*
C350.8125 (2)0.2118 (2)0.44221 (14)0.0372 (7)
C360.7623 (2)0.1283 (2)0.45555 (14)0.0385 (7)
C370.6703 (3)0.4689 (4)0.7487 (2)0.0763 (12)
C380.6090 (3)0.3700 (3)0.8186 (2)0.0660 (11)
C390.6846 (3)0.4054 (3)0.80393 (18)0.0583 (10)
C400.7696 (3)0.3642 (3)0.8385 (2)0.0757 (13)
C410.9236 (5)0.3382 (6)0.8253 (4)0.165 (3)
H41A0.91840.26700.83680.197*
H41B0.94620.34270.78830.197*
C420.9732 (6)0.3985 (6)0.8793 (4)0.200 (4)
H42A1.03450.37380.89600.300*
H42B0.94570.39420.91320.300*
H42C0.97320.46860.86550.300*
C430.2814 (3)0.4440 (3)0.66824 (19)0.0667 (11)
C440.3051 (3)0.2615 (3)0.68039 (17)0.0541 (9)
C450.2585 (3)0.3446 (3)0.64328 (17)0.0560 (10)
Fe10.77305 (3)0.27189 (3)0.55530 (2)0.03744 (16)
N10.65628 (18)0.33070 (19)0.49930 (12)0.0418 (6)
N20.70377 (19)0.24633 (19)0.61563 (12)0.0413 (7)
N30.82099 (19)0.40325 (18)0.59777 (12)0.0393 (6)
N40.88960 (18)0.21919 (18)0.61503 (12)0.0397 (6)
N50.73710 (18)0.13796 (19)0.51064 (12)0.0409 (6)
N60.82885 (17)0.29195 (18)0.48604 (12)0.0372 (6)
N70.5459 (3)0.3409 (3)0.8287 (2)0.0994 (14)
N80.6593 (3)0.5196 (4)0.7032 (2)0.1231 (18)
N90.3453 (3)0.1940 (3)0.70941 (16)0.0832 (12)
N100.3005 (3)0.5257 (3)0.68888 (19)0.1009 (14)
O10.7877 (2)0.3023 (2)0.88383 (16)0.0938 (10)
O20.8340 (3)0.4014 (4)0.8148 (2)0.157 (2)
C460.2022 (7)0.3307 (8)0.5764 (4)0.053 (4)0.479 (13)
C470.0833 (11)0.2138 (9)0.5114 (7)0.105 (5)0.479 (13)
H47A0.09200.25120.47490.126*0.479 (13)
H47B0.02880.24000.51830.126*0.479 (13)
C480.0702 (12)0.1014 (9)0.4937 (8)0.097 (5)0.479 (13)
H48A0.01120.09110.46190.146*0.479 (13)
H48B0.07540.06200.53260.146*0.479 (13)
H48C0.11590.07950.47560.146*0.479 (13)
O30.1259 (6)0.3932 (8)0.5550 (5)0.079 (3)0.479 (13)
O40.1607 (7)0.2316 (9)0.5704 (5)0.061 (3)0.479 (13)
C46'0.1785 (7)0.3322 (10)0.5883 (4)0.069 (4)0.521 (13)
C47'0.1297 (7)0.2109 (7)0.4935 (4)0.064 (3)0.521 (13)
H47C0.16120.17650.46730.076*0.521 (13)
H47D0.10200.27310.47100.076*0.521 (13)
C48'0.0582 (9)0.1405 (12)0.5053 (8)0.095 (4)0.521 (13)
H48D0.01840.11580.46390.142*0.521 (13)
H48E0.02370.17810.52740.142*0.521 (13)
H48F0.08760.08340.53200.142*0.521 (13)
O3'0.1696 (10)0.4051 (7)0.5404 (4)0.099 (3)0.521 (13)
O4'0.1919 (8)0.2343 (9)0.5587 (5)0.074 (3)0.521 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.053 (3)0.060 (2)0.048 (2)0.0086 (19)0.0151 (18)0.0114 (17)
C20.063 (3)0.070 (3)0.057 (2)0.010 (2)0.011 (2)0.0147 (19)
C30.048 (3)0.069 (3)0.068 (3)0.015 (2)0.004 (2)0.008 (2)
C40.041 (2)0.054 (2)0.065 (2)0.0016 (18)0.0134 (19)0.0042 (17)
C50.038 (3)0.074 (3)0.094 (3)0.006 (2)0.020 (2)0.000 (2)
C60.053 (3)0.068 (3)0.087 (3)0.001 (2)0.039 (2)0.001 (2)
C70.052 (3)0.052 (2)0.056 (2)0.0057 (18)0.0281 (19)0.0062 (16)
C80.072 (3)0.073 (3)0.067 (3)0.007 (2)0.046 (2)0.002 (2)
C90.079 (3)0.073 (3)0.042 (2)0.002 (2)0.027 (2)0.0065 (18)
C100.058 (3)0.057 (2)0.0433 (19)0.0047 (18)0.0190 (18)0.0011 (15)
C110.044 (2)0.0387 (18)0.0463 (19)0.0010 (16)0.0173 (16)0.0053 (14)
C120.039 (2)0.0422 (18)0.0475 (19)0.0017 (16)0.0137 (16)0.0046 (14)
C130.058 (3)0.042 (2)0.055 (2)0.0050 (18)0.0198 (18)0.0033 (16)
C140.079 (3)0.042 (2)0.064 (2)0.004 (2)0.033 (2)0.0053 (17)
C150.078 (3)0.041 (2)0.060 (2)0.015 (2)0.036 (2)0.0143 (16)
C160.053 (3)0.050 (2)0.0442 (19)0.0133 (18)0.0227 (18)0.0078 (15)
C170.054 (3)0.070 (3)0.065 (3)0.023 (2)0.014 (2)0.014 (2)
C180.043 (3)0.078 (3)0.063 (2)0.011 (2)0.0060 (19)0.004 (2)
C190.039 (2)0.060 (2)0.051 (2)0.0027 (19)0.0091 (17)0.0015 (17)
C200.044 (3)0.067 (3)0.074 (3)0.007 (2)0.008 (2)0.013 (2)
C210.054 (3)0.049 (2)0.086 (3)0.014 (2)0.016 (2)0.013 (2)
C220.055 (3)0.0355 (19)0.068 (2)0.0039 (17)0.016 (2)0.0051 (16)
C230.036 (2)0.047 (2)0.0389 (17)0.0058 (15)0.0121 (15)0.0028 (14)
C240.044 (2)0.0392 (18)0.0383 (17)0.0023 (16)0.0171 (16)0.0032 (13)
C250.064 (3)0.044 (2)0.053 (2)0.0112 (18)0.0235 (19)0.0044 (16)
C260.076 (3)0.042 (2)0.078 (3)0.017 (2)0.030 (2)0.0052 (18)
C270.065 (3)0.044 (2)0.065 (2)0.0106 (19)0.018 (2)0.0161 (17)
C280.043 (2)0.0416 (19)0.048 (2)0.0016 (16)0.0105 (16)0.0062 (15)
C290.058 (3)0.054 (2)0.046 (2)0.0073 (19)0.0103 (18)0.0144 (16)
C300.049 (2)0.065 (2)0.0411 (19)0.0140 (19)0.0142 (17)0.0026 (16)
C310.038 (2)0.049 (2)0.0363 (17)0.0077 (16)0.0093 (15)0.0003 (14)
C320.054 (3)0.064 (2)0.047 (2)0.0060 (19)0.0236 (18)0.0102 (17)
C330.060 (3)0.052 (2)0.058 (2)0.0038 (19)0.0319 (19)0.0051 (17)
C340.054 (2)0.0381 (18)0.052 (2)0.0023 (17)0.0224 (18)0.0015 (15)
C350.036 (2)0.0394 (18)0.0348 (16)0.0074 (14)0.0092 (14)0.0008 (13)
C360.037 (2)0.0387 (17)0.0372 (17)0.0044 (15)0.0082 (14)0.0001 (13)
C370.060 (3)0.078 (3)0.080 (3)0.007 (2)0.008 (2)0.013 (2)
C380.071 (3)0.047 (2)0.084 (3)0.002 (2)0.031 (3)0.0013 (19)
C390.059 (3)0.051 (2)0.061 (2)0.004 (2)0.015 (2)0.0043 (18)
C400.066 (3)0.065 (3)0.091 (3)0.010 (2)0.019 (3)0.018 (2)
C410.185 (9)0.158 (7)0.139 (6)0.006 (7)0.037 (6)0.052 (6)
C420.229 (10)0.144 (7)0.173 (8)0.026 (7)0.007 (7)0.016 (6)
C430.083 (3)0.058 (3)0.057 (2)0.003 (2)0.019 (2)0.0041 (19)
C440.065 (3)0.056 (2)0.0398 (19)0.005 (2)0.0150 (18)0.0088 (18)
C450.067 (3)0.049 (2)0.050 (2)0.0041 (19)0.016 (2)0.0046 (17)
Fe10.0397 (3)0.0350 (3)0.0381 (3)0.0002 (2)0.0134 (2)0.00014 (19)
N10.0431 (18)0.0413 (15)0.0392 (14)0.0023 (13)0.0112 (13)0.0004 (11)
N20.0422 (19)0.0451 (16)0.0369 (14)0.0004 (13)0.0132 (13)0.0015 (11)
N30.0465 (18)0.0328 (14)0.0419 (15)0.0044 (12)0.0191 (13)0.0003 (11)
N40.0405 (17)0.0355 (15)0.0430 (15)0.0027 (13)0.0136 (12)0.0007 (11)
N50.0419 (18)0.0404 (15)0.0396 (14)0.0020 (13)0.0123 (13)0.0026 (11)
N60.0349 (16)0.0364 (15)0.0408 (14)0.0012 (12)0.0129 (12)0.0001 (11)
N70.096 (4)0.070 (3)0.151 (4)0.008 (2)0.065 (3)0.017 (2)
N80.092 (3)0.151 (4)0.103 (3)0.014 (3)0.000 (3)0.065 (3)
N90.117 (3)0.060 (2)0.054 (2)0.011 (2)0.003 (2)0.0038 (17)
N100.135 (4)0.059 (2)0.089 (3)0.020 (2)0.011 (3)0.007 (2)
O10.090 (2)0.078 (2)0.099 (2)0.0072 (17)0.0109 (19)0.0327 (18)
O20.060 (3)0.169 (4)0.237 (5)0.023 (3)0.039 (3)0.130 (4)
C460.070 (7)0.052 (6)0.042 (5)0.027 (5)0.025 (5)0.003 (4)
C470.101 (9)0.081 (7)0.103 (8)0.014 (7)0.008 (6)0.028 (6)
C480.092 (9)0.089 (8)0.095 (8)0.008 (7)0.010 (6)0.017 (6)
O30.082 (6)0.057 (4)0.079 (5)0.017 (4)0.003 (4)0.000 (4)
O40.052 (5)0.058 (4)0.059 (5)0.014 (4)0.002 (3)0.020 (3)
C46'0.083 (8)0.060 (6)0.066 (6)0.023 (5)0.026 (6)0.010 (5)
C47'0.070 (6)0.066 (5)0.049 (4)0.015 (4)0.013 (4)0.002 (3)
C48'0.074 (7)0.087 (8)0.096 (8)0.021 (7)0.009 (5)0.001 (7)
O3'0.136 (8)0.066 (4)0.074 (4)0.019 (5)0.006 (5)0.012 (3)
O4'0.087 (7)0.064 (4)0.055 (4)0.026 (5)0.004 (4)0.010 (3)
Geometric parameters (Å, º) top
C1—N11.329 (4)C29—H290.9300
C1—C21.389 (5)C30—C311.433 (5)
C1—H10.9300C30—H300.9300
C2—C31.357 (5)C31—C321.396 (5)
C2—H20.9300C31—C351.398 (4)
C3—C41.404 (5)C32—C331.362 (5)
C3—H30.9300C32—H320.9300
C4—C121.389 (5)C33—C341.392 (4)
C4—C51.432 (5)C33—H330.9300
C5—C61.347 (5)C34—N61.337 (4)
C5—H50.9300C34—H340.9300
C6—C71.429 (5)C35—N61.373 (4)
C6—H60.9300C35—C361.423 (4)
C7—C81.396 (5)C36—N51.370 (4)
C7—C111.399 (4)C37—N81.147 (5)
C8—C91.356 (5)C37—C391.403 (6)
C8—H80.9300C38—N71.139 (5)
C9—C101.400 (5)C38—C391.394 (6)
C9—H90.9300C39—C401.398 (6)
C10—N21.330 (4)C40—O11.224 (5)
C10—H100.9300C40—O21.356 (5)
C11—N21.363 (4)C41—C421.405 (7)
C11—C121.421 (4)C41—O21.573 (7)
C12—N11.374 (4)C41—H41A0.9700
C13—N31.334 (4)C41—H41B0.9700
C13—C141.397 (5)C42—H42A0.9600
C13—H130.9300C42—H42B0.9600
C14—C151.352 (5)C42—H42C0.9600
C14—H140.9300C43—N101.154 (5)
C15—C161.401 (5)C43—C451.403 (5)
C15—H150.9300C44—N91.139 (5)
C16—C241.411 (4)C44—C451.399 (5)
C16—C171.417 (5)C45—C46'1.420 (8)
C17—C181.357 (5)C45—C461.431 (8)
C17—H170.9300Fe1—N21.968 (2)
C18—C191.432 (5)Fe1—N31.968 (3)
C18—H180.9300Fe1—N61.972 (2)
C19—C201.396 (5)Fe1—N41.974 (3)
C19—C231.399 (5)Fe1—N11.979 (3)
C20—C211.355 (5)Fe1—N51.982 (2)
C20—H200.9300C46—O31.390 (9)
C21—C221.396 (5)C46—O41.431 (16)
C21—H210.9300C47—O41.456 (9)
C22—N41.334 (4)C47—C481.509 (9)
C22—H220.9300C47—H47A0.9700
C23—N41.368 (4)C47—H47B0.9700
C23—C241.414 (4)C48—H48A0.9600
C24—N31.362 (4)C48—H48B0.9600
C25—N51.332 (4)C48—H48C0.9600
C25—C261.391 (5)C46'—O3'1.375 (9)
C25—H250.9300C46'—O4'1.470 (17)
C26—C271.365 (5)C47'—O4'1.452 (8)
C26—H260.9300C47'—C48'1.526 (9)
C27—C281.396 (5)C47'—H47C0.9700
C27—H270.9300C47'—H47D0.9700
C28—C361.400 (4)C48'—H48D0.9600
C28—C291.430 (4)C48'—H48E0.9600
C29—C301.337 (5)C48'—H48F0.9600
N1—C1—C2122.9 (3)C33—C34—H34118.4
N1—C1—H1118.5N6—C35—C31123.8 (3)
C2—C1—H1118.5N6—C35—C36115.7 (3)
C3—C2—C1120.1 (4)C31—C35—C36120.5 (3)
C3—C2—H2119.9N5—C36—C28123.8 (3)
C1—C2—H2119.9N5—C36—C35115.9 (3)
C2—C3—C4119.3 (4)C28—C36—C35120.3 (3)
C2—C3—H3120.3N8—C37—C39178.8 (6)
C4—C3—H3120.3N7—C38—C39178.0 (5)
C12—C4—C3117.2 (3)C38—C39—C40118.5 (4)
C12—C4—C5118.1 (3)C38—C39—C37118.3 (4)
C3—C4—C5124.7 (4)C40—C39—C37122.5 (4)
C6—C5—C4120.7 (4)O1—C40—O2121.9 (4)
C6—C5—H5119.6O1—C40—C39127.4 (4)
C4—C5—H5119.6O2—C40—C39110.7 (4)
C5—C6—C7122.1 (4)C42—C41—O292.8 (7)
C5—C6—H6119.0C42—C41—H41A113.1
C7—C6—H6119.0O2—C41—H41A113.1
C8—C7—C11116.9 (4)C42—C41—H41B113.1
C8—C7—C6125.1 (3)O2—C41—H41B113.1
C11—C7—C6118.0 (3)H41A—C41—H41B110.5
C9—C8—C7119.7 (3)C41—C42—H42A109.5
C9—C8—H8120.2C41—C42—H42B109.5
C7—C8—H8120.2H42A—C42—H42B109.5
C8—C9—C10120.0 (3)C41—C42—H42C109.5
C8—C9—H9120.0H42A—C42—H42C109.5
C10—C9—H9120.0H42B—C42—H42C109.5
N2—C10—C9122.5 (4)N10—C43—C45179.7 (6)
N2—C10—H10118.7N9—C44—C45177.5 (4)
C9—C10—H10118.7C44—C45—C43118.5 (3)
N2—C11—C7124.0 (3)C44—C45—C46'122.5 (6)
N2—C11—C12116.3 (3)C43—C45—C46'117.9 (6)
C7—C11—C12119.7 (3)C44—C45—C46120.6 (5)
N1—C12—C4123.5 (3)C43—C45—C46119.8 (5)
N1—C12—C11115.1 (3)C46'—C45—C4620.8 (8)
C4—C12—C11121.3 (3)N2—Fe1—N392.77 (10)
N3—C13—C14122.6 (4)N2—Fe1—N6172.88 (11)
N3—C13—H13118.7N3—Fe1—N692.34 (10)
C14—C13—H13118.7N2—Fe1—N495.68 (10)
C15—C14—C13119.8 (4)N3—Fe1—N482.61 (11)
C15—C14—H14120.1N6—Fe1—N489.89 (10)
C13—C14—H14120.1N2—Fe1—N182.70 (11)
C14—C15—C16120.3 (3)N3—Fe1—N194.58 (11)
C14—C15—H15119.8N6—Fe1—N191.95 (10)
C16—C15—H15119.8N4—Fe1—N1176.71 (10)
C15—C16—C24116.4 (3)N2—Fe1—N592.36 (10)
C15—C16—C17125.9 (3)N3—Fe1—N5173.92 (11)
C24—C16—C17117.7 (3)N6—Fe1—N582.84 (10)
C18—C17—C16121.7 (4)N4—Fe1—N593.64 (10)
C18—C17—H17119.2N1—Fe1—N589.30 (11)
C16—C17—H17119.2C1—N1—C12116.8 (3)
C17—C18—C19121.5 (4)C1—N1—Fe1130.4 (2)
C17—C18—H18119.2C12—N1—Fe1112.7 (2)
C19—C18—H18119.2C10—N2—C11116.9 (3)
C20—C19—C23117.7 (3)C10—N2—Fe1130.1 (2)
C20—C19—C18124.7 (4)C11—N2—Fe1112.9 (2)
C23—C19—C18117.6 (3)C13—N3—C24117.4 (3)
C21—C20—C19119.1 (4)C13—N3—Fe1129.8 (2)
C21—C20—H20120.4C24—N3—Fe1112.79 (19)
C19—C20—H20120.4C22—N4—C23116.4 (3)
C20—C21—C22120.0 (4)C22—N4—Fe1131.1 (2)
C20—C21—H21120.0C23—N4—Fe1112.4 (2)
C22—C21—H21120.0C25—N5—C36116.7 (3)
N4—C22—C21123.2 (3)C25—N5—Fe1130.7 (2)
N4—C22—H22118.4C36—N5—Fe1112.6 (2)
C21—C22—H22118.4C34—N6—C35116.2 (3)
N4—C23—C19123.5 (3)C34—N6—Fe1130.8 (2)
N4—C23—C24115.7 (3)C35—N6—Fe1112.9 (2)
C19—C23—C24120.8 (3)C40—O2—C41119.4 (4)
N3—C24—C16123.5 (3)O3—C46—O4100.7 (11)
N3—C24—C23115.8 (3)O3—C46—C45115.9 (8)
C16—C24—C23120.7 (3)O4—C46—C45108.4 (8)
N5—C25—C26123.0 (3)O4—C47—C48112.2 (11)
N5—C25—H25118.5O4—C47—H47A109.2
C26—C25—H25118.5C48—C47—H47A109.2
C27—C26—C25119.7 (3)O4—C47—H47B109.2
C27—C26—H26120.1C48—C47—H47B109.2
C25—C26—H26120.1H47A—C47—H47B107.9
C26—C27—C28119.8 (3)C47—C48—H48A109.5
C26—C27—H27120.1C47—C48—H48B109.5
C28—C27—H27120.1H48A—C48—H48B109.5
C27—C28—C36116.9 (3)C47—C48—H48C109.5
C27—C28—C29125.0 (3)H48A—C48—H48C109.5
C36—C28—C29118.1 (3)H48B—C48—H48C109.5
C30—C29—C28121.4 (3)C46—O4—C47116.4 (10)
C30—C29—H29119.3O3'—C46'—C45113.0 (9)
C28—C29—H29119.3O3'—C46'—O4'105.5 (12)
C29—C30—C31121.9 (3)C45—C46'—O4'104.4 (9)
C29—C30—H30119.0O4'—C47'—C48'105.0 (9)
C31—C30—H30119.0O4'—C47'—H47C110.7
C32—C31—C35117.4 (3)C48'—C47'—H47C110.7
C32—C31—C30124.9 (3)O4'—C47'—H47D110.7
C35—C31—C30117.7 (3)C48'—C47'—H47D110.7
C33—C32—C31119.4 (3)H47C—C47'—H47D108.8
C33—C32—H32120.3C47'—C48'—H48D109.5
C31—C32—H32120.3C47'—C48'—H48E109.5
C32—C33—C34119.9 (3)H48D—C48'—H48E109.5
C32—C33—H33120.0C47'—C48'—H48F109.5
C34—C33—H33120.0H48D—C48'—H48F109.5
N6—C34—C33123.3 (3)H48E—C48'—H48F109.5
N6—C34—H34118.4C47'—O4'—C46'117.1 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C25—H25···N20.932.623.089 (4)112
C34—H34···N30.932.603.078 (4)113
C3—H3···N8i0.932.473.206 (6)136
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Fe(C12H8N2)3](C6H5N2O2)2
Mr870.70
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)15.5855 (5), 13.0261 (4), 21.4979 (6)
β (°) 109.068 (1)
V3)4125.0 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.43
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerBruker APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.920, 0.959
No. of measured, independent and
observed [I > 2σ(I)] reflections
36630, 8551, 4862
Rint0.081
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.156, 1.02
No. of reflections8551
No. of parameters614
No. of restraints71
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.44

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C25—H25···N20.932.623.089 (4)112
C34—H34···N30.932.603.078 (4)113
C3—H3···N8i0.932.473.206 (6)136
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

We thank Dr Yan-Wei Ren and Professor Zhi-Yong Fu of the College of Chemistry and Chemical Engineering, South China University of Technology, for their help with this study.

References

First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDrück, U. & Güth, H. (1982). Z. Kristallogr. 161, 103–110.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKaim, W. & Moscherosch, M. (1994). Coord. Chem. Rev. 129, 157–193.  CrossRef CAS Web of Science Google Scholar
First citationLv, Q. Y., Li, W., Zhan, S. Z., Wang, J. G. & Su, J. Y. (2008). J. Organomet. Chem. 693, 1155–1158.  Web of Science CSD CrossRef CAS Google Scholar
First citationMiller, J. S. (2006). Angew. Chem. Int. Ed. 45, 2508–2525.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUçar, I., Paşaoĝlu, H., Büyükgüngör, O. & Bulut, A. (2005). Acta Cryst. E61, m1405–m1407.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds