organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Chloro­anilinium 2-carb­­oxy­acetate

aCollege of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: chenxinyuanseu@yahoo.com.cn

(Received 23 May 2012; accepted 5 June 2012; online 13 June 2012)

In the title molecular salt, C6H7ClN+·C3H3O4, the components are linked by N—H⋯O and O—H⋯O hydrogen bonds, leading to a two-dimensional network parallel to the bc plane. Weak C—H⋯O inter­actions are also observed.

Related literature

For the structures and properties of related compounds, see: Chen et al. (2001[Chen, Z.-F., Li, B.-Q., Xie, Y.-R., Xiong, R.-G., You, X.-Z. & Feng, X.-L. (2001). Inorg. Chem. Commun. 4, 346-349.]); Wang et al. (2002[Wang, L.-Z., Wang, X.-S., Li, Y.-H., Bai, Z.-P., Xiong, R.-G., Xiong, M. & Li, G.-W. (2002). Chin. J. Inorg. Chem. 18, 1191-1194.]); Xue et al. (2002[Xue, X., Abrahams, B. F., Xiong, R.-G. & You, X.-Z. (2002). Aust. J. Chem. 55, 495-497.]); Huang et al. (1999[Huang, S.-P.-D., Xiong, R.-G., Han, J.-D. & Weiner, B. R. (1999). Inorg. Chim. Acta 294, 95-98.]); Zhang et al. (2001[Zhang, J., Xiong, R.-G., Chen, X.-T., Che, C.-M., Xue, Z.-L. & You, X.-Z. (2001). Organometallics 20, 4118-4121.]); Ye et al. (2008[Ye, Q., Fu, D.-W., Hang, T., Xiong, R.-G., Chan, P. W. H. & Huang, S.-P.-D. (2008). Inorg. Chem. 47, 772-774.]).

[Scheme 1]

Experimental

Crystal data
  • C6H7ClN+·C3H3O4

  • Mr = 231.63

  • Monoclinic, P 21 /c

  • a = 12.8272 (19) Å

  • b = 9.2273 (10) Å

  • c = 8.4114 (13) Å

  • β = 93.809 (2)°

  • V = 993.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.38 mm−1

  • T = 153 K

  • 0.10 × 0.05 × 0.05 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.910, Tmax = 1.000

  • 6935 measured reflections

  • 2259 independent reflections

  • 1985 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.088

  • S = 1.06

  • 2259 reflections

  • 137 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O1i 0.82 1.71 2.5314 (14) 176
N1—H1B⋯O2ii 0.89 1.87 2.7546 (16) 176
N1—H1C⋯O4i 0.89 2.25 2.8702 (15) 127
N1—H1C⋯O2iii 0.89 2.25 2.9313 (15) 133
N1—H1A⋯O3 0.89 1.91 2.7848 (15) 166
C3—H3A⋯O3 0.93 2.55 3.2599 (18) 134
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y-1, z; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Simple organic salts containing strong intrermolecular H–bonds have attracted an attention as materials which display ferroelectric–paraelectric phase transitions (Chen et al., 2001; Huang et al., 1999; Zhang et al., 2001). With the purpose of obtaining phase transition crystals of organic salts, various organic molecules have been studied and a series of new crystal materials have been elaborated (Wang et al., 2002; Xue et al., 2002; Ye et al. ,2008). Herewith, we present the synthesis and crystal structure of the title compound, 4-chloroanilinium 2–carboxyacetate.

In the title compound (Fig. 1), the bond lengths and angles have normal values. The asymmetric unit contains one 4-chloroanilinium cation and one 2–carboxyacetate anion. The protonated N atom is involved in strong intramolecular N—H···O hydrogen bonds with the N···O distances of N1—H1A···O3 = 2.7848 (15)Å; N1—H1B···O2 = 2.7546 (16)Å, N1—H1C···O2 = 2.9313 (15)Å and N1—H1C···O4 = 2.8702 (15)Å. The N—H···O and O—H···O H–bonding interactions connected the components into a 2D network parallel to the bc–plane. A weak non–classical intermolecular C3—H3A···O3 interaction is observed , Table1.

Related literature top

For the structures and properties of related compounds, see: Chen et al. (2001); Wang et al. (2002); Xue et al. (2002); Huang et al. (1999); Zhang et al. (2001); Ye et al. (2008).

Experimental top

The malonic acid (10 mmol), 4-chloroaniline (10 mmol) and ethanol (50 mL) were added into a 100 mL flask. The mixture was stirred at 333 K for 2 h, and then the precipitate was filtrated out. Colourless crystals suitable for X–ray diffraction were obtained by slow evaporation of the solution.

Refinement top

All the H atoms attached to C atoms were placed into the idealized positions and treated as riding with C—H = 0.93Å (aromatic) and C—H = 0.97Å (methylene) with Uiso(H) = 1.2Ueq(C). The H atoms based on N and O were placed into the calculated positions with the H—N = 0.89Å and H—O = 0.82Å and refined with Uiso(H) = 1.5Ueq(N and O).

Structure description top

Simple organic salts containing strong intrermolecular H–bonds have attracted an attention as materials which display ferroelectric–paraelectric phase transitions (Chen et al., 2001; Huang et al., 1999; Zhang et al., 2001). With the purpose of obtaining phase transition crystals of organic salts, various organic molecules have been studied and a series of new crystal materials have been elaborated (Wang et al., 2002; Xue et al., 2002; Ye et al. ,2008). Herewith, we present the synthesis and crystal structure of the title compound, 4-chloroanilinium 2–carboxyacetate.

In the title compound (Fig. 1), the bond lengths and angles have normal values. The asymmetric unit contains one 4-chloroanilinium cation and one 2–carboxyacetate anion. The protonated N atom is involved in strong intramolecular N—H···O hydrogen bonds with the N···O distances of N1—H1A···O3 = 2.7848 (15)Å; N1—H1B···O2 = 2.7546 (16)Å, N1—H1C···O2 = 2.9313 (15)Å and N1—H1C···O4 = 2.8702 (15)Å. The N—H···O and O—H···O H–bonding interactions connected the components into a 2D network parallel to the bc–plane. A weak non–classical intermolecular C3—H3A···O3 interaction is observed , Table1.

For the structures and properties of related compounds, see: Chen et al. (2001); Wang et al. (2002); Xue et al. (2002); Huang et al. (1999); Zhang et al. (2001); Ye et al. (2008).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the asymmetric unit with the atomic numbering scheme. The displacement ellipsoids were drawn at the 30% probability level.
4-Chloroanilinium 2-carboxyacetate top
Crystal data top
C6H7ClN+·C3H3O4F(000) = 480
Mr = 231.63Dx = 1.549 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2259 reflections
a = 12.8272 (19) Åθ = 2.7–27.5°
b = 9.2273 (10) ŵ = 0.38 mm1
c = 8.4114 (13) ÅT = 153 K
β = 93.809 (2)°Block, colourless
V = 993.4 (2) Å30.10 × 0.05 × 0.05 mm
Z = 4
Data collection top
Rigaku Mercury CCD
diffractometer
2259 independent reflections
Radiation source: fine-focus sealed tube1985 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 2.7°
CCD profile fitting scansh = 1616
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 911
Tmin = 0.910, Tmax = 1.000l = 1010
6935 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0471P)2 + 0.2506P]
where P = (Fo2 + 2Fc2)/3
2259 reflections(Δ/σ)max < 0.001
137 parametersΔρmax = 0.32 e Å3
4 restraintsΔρmin = 0.27 e Å3
Crystal data top
C6H7ClN+·C3H3O4V = 993.4 (2) Å3
Mr = 231.63Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.8272 (19) ŵ = 0.38 mm1
b = 9.2273 (10) ÅT = 153 K
c = 8.4114 (13) Å0.10 × 0.05 × 0.05 mm
β = 93.809 (2)°
Data collection top
Rigaku Mercury CCD
diffractometer
2259 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1985 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 1.000Rint = 0.025
6935 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0344 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.06Δρmax = 0.32 e Å3
2259 reflectionsΔρmin = 0.27 e Å3
137 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.58798 (3)0.24099 (5)0.04636 (6)0.03142 (14)
O10.05355 (8)0.92647 (10)0.25990 (11)0.0154 (2)
O20.12165 (8)1.07190 (10)0.45291 (12)0.0164 (2)
O30.16242 (8)0.58923 (10)0.41276 (12)0.0176 (2)
O40.00722 (7)0.64921 (10)0.40573 (11)0.0150 (2)
H40.02120.57440.35620.022*
N10.16273 (9)0.31425 (13)0.27635 (14)0.0144 (3)
H1A0.16110.39420.33530.022*
H1B0.14690.23790.33480.022*
H1C0.11650.32200.19300.022*
C90.09274 (11)0.67518 (15)0.43794 (15)0.0125 (3)
C70.09565 (10)0.95030 (15)0.39848 (16)0.0119 (3)
C40.26723 (10)0.29563 (15)0.22045 (15)0.0137 (3)
C10.46232 (12)0.26233 (17)0.11081 (19)0.0203 (3)
C80.11608 (11)0.82132 (15)0.51033 (16)0.0139 (3)
H8A0.18890.82330.54950.017*
H8B0.07430.83320.60140.017*
C60.39676 (12)0.14367 (17)0.11557 (19)0.0217 (3)
H6A0.41860.05330.08170.026*
C50.29804 (12)0.16053 (16)0.17131 (17)0.0186 (3)
H5A0.25320.08160.17550.022*
C20.43096 (12)0.39847 (17)0.15827 (18)0.0206 (3)
H2A0.47550.47760.15310.025*
C30.33224 (11)0.41483 (16)0.21357 (17)0.0174 (3)
H3A0.30980.50540.24590.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0211 (2)0.0287 (3)0.0460 (3)0.00583 (15)0.01430 (18)0.00397 (18)
O10.0212 (5)0.0124 (5)0.0121 (5)0.0001 (4)0.0013 (4)0.0001 (4)
O20.0213 (5)0.0111 (5)0.0167 (5)0.0022 (4)0.0002 (4)0.0015 (4)
O30.0179 (5)0.0131 (5)0.0219 (5)0.0021 (4)0.0030 (4)0.0023 (4)
O40.0165 (5)0.0108 (5)0.0171 (5)0.0002 (4)0.0019 (4)0.0018 (4)
N10.0143 (5)0.0126 (6)0.0161 (6)0.0000 (4)0.0005 (5)0.0010 (4)
C90.0177 (6)0.0113 (7)0.0086 (6)0.0002 (5)0.0012 (5)0.0032 (5)
C70.0105 (6)0.0126 (7)0.0129 (6)0.0013 (5)0.0028 (5)0.0005 (5)
C40.0141 (6)0.0146 (7)0.0122 (6)0.0012 (5)0.0005 (5)0.0002 (5)
C10.0154 (7)0.0235 (8)0.0223 (7)0.0046 (6)0.0043 (6)0.0032 (6)
C80.0164 (6)0.0122 (7)0.0126 (6)0.0007 (5)0.0011 (5)0.0008 (5)
C60.0251 (8)0.0154 (8)0.0249 (8)0.0049 (6)0.0032 (6)0.0008 (6)
C50.0205 (7)0.0142 (8)0.0210 (7)0.0005 (5)0.0000 (6)0.0006 (5)
C20.0187 (7)0.0187 (8)0.0245 (8)0.0026 (6)0.0028 (6)0.0023 (6)
C30.0187 (7)0.0131 (7)0.0203 (7)0.0011 (5)0.0003 (6)0.0016 (5)
Geometric parameters (Å, º) top
Cl1—C11.7455 (16)C4—C51.379 (2)
O1—C71.2709 (16)C4—C31.384 (2)
O2—C71.2488 (17)C1—C61.383 (2)
O3—C91.2238 (17)C1—C21.386 (2)
O4—C91.3149 (16)C8—H8A0.9700
O4—H40.8200C8—H8B0.9700
N1—C41.4598 (17)C6—C51.388 (2)
N1—H1A0.8900C6—H6A0.9300
N1—H1B0.8900C5—H5A0.9300
N1—H1C0.8900C2—C31.386 (2)
C9—C81.5015 (19)C2—H2A0.9300
C7—C81.5289 (18)C3—H3A0.9300
C9—O4—H4115.8C9—C8—C7115.35 (11)
C4—N1—H1A109.5C9—C8—H8A108.4
C4—N1—H1B109.5C7—C8—H8A108.4
H1A—N1—H1B109.5C9—C8—H8B108.4
C4—N1—H1C109.5C7—C8—H8B108.4
H1A—N1—H1C109.5H8A—C8—H8B107.5
H1B—N1—H1C109.5C1—C6—C5119.42 (14)
O3—C9—O4124.03 (13)C1—C6—H6A120.3
O3—C9—C8121.60 (12)C5—C6—H6A120.3
O4—C9—C8114.37 (11)C4—C5—C6119.25 (14)
O2—C7—O1125.35 (12)C4—C5—H5A120.4
O2—C7—C8116.31 (11)C6—C5—H5A120.4
O1—C7—C8118.34 (12)C1—C2—C3118.99 (14)
C5—C4—C3121.36 (13)C1—C2—H2A120.5
C5—C4—N1119.37 (12)C3—C2—H2A120.5
C3—C4—N1119.25 (12)C4—C3—C2119.60 (13)
C6—C1—C2121.38 (14)C4—C3—H3A120.2
C6—C1—Cl1119.71 (12)C2—C3—H3A120.2
C2—C1—Cl1118.91 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O1i0.821.712.5314 (14)176
N1—H1B···O2ii0.891.872.7546 (16)176
N1—H1C···O4i0.892.252.8702 (15)127
N1—H1C···O2iii0.892.252.9313 (15)133
N1—H1A···O30.891.912.7848 (15)166
C3—H3A···O30.932.553.2599 (18)134
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y1, z; (iii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC6H7ClN+·C3H3O4
Mr231.63
Crystal system, space groupMonoclinic, P21/c
Temperature (K)153
a, b, c (Å)12.8272 (19), 9.2273 (10), 8.4114 (13)
β (°) 93.809 (2)
V3)993.4 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.38
Crystal size (mm)0.10 × 0.05 × 0.05
Data collection
DiffractometerRigaku Mercury CCD
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.910, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6935, 2259, 1985
Rint0.025
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.088, 1.06
No. of reflections2259
No. of parameters137
No. of restraints4
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.27

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O1i0.821.712.5314 (14)175.5
N1—H1B···O2ii0.891.872.7546 (16)176.2
N1—H1C···O4i0.892.252.8702 (15)126.9
N1—H1C···O2iii0.892.252.9313 (15)133.2
N1—H1A···O30.891.912.7848 (15)165.7
C3—H3A···O30.932.553.2599 (18)134
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y1, z; (iii) x, y+3/2, z1/2.
 

Acknowledgements

This work was supported by a start-up grant from Southeast University, China.

References

First citationChen, Z.-F., Li, B.-Q., Xie, Y.-R., Xiong, R.-G., You, X.-Z. & Feng, X.-L. (2001). Inorg. Chem. Commun. 4, 346–349.  Web of Science CSD CrossRef CAS Google Scholar
First citationHuang, S.-P.-D., Xiong, R.-G., Han, J.-D. & Weiner, B. R. (1999). Inorg. Chim. Acta 294, 95–98.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, L.-Z., Wang, X.-S., Li, Y.-H., Bai, Z.-P., Xiong, R.-G., Xiong, M. & Li, G.-W. (2002). Chin. J. Inorg. Chem. 18, 1191–1194.  CAS Google Scholar
First citationXue, X., Abrahams, B. F., Xiong, R.-G. & You, X.-Z. (2002). Aust. J. Chem. 55, 495–497.  CSD CrossRef CAS Google Scholar
First citationYe, Q., Fu, D.-W., Hang, T., Xiong, R.-G., Chan, P. W. H. & Huang, S.-P.-D. (2008). Inorg. Chem. 47, 772–774.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, J., Xiong, R.-G., Chen, X.-T., Che, C.-M., Xue, Z.-L. & You, X.-Z. (2001). Organometallics 20, 4118–4121.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds