organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(E)-({3-[(E)-(2-Hy­dr­oxy­benzyl­­idene)amino­meth­yl]-1,4-dioxa­spiro­[4.5]decan-2-yl}meth­yl)imino­meth­yl]phenol

aKey Laboratory of Fine Chemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, People's Republic of China
*Correspondence e-mail: erliwanglili@163.com

(Received 14 June 2012; accepted 27 June 2012; online 30 June 2012)

In the title compound, C24H28N2O4, the dioxalane ring has an envelope conformation. The cyclo­hexane ring adopts a chair conformation. The dihedral angle between the benzene rings is 72.5 (3)°. The mol­ecular conformation is stabilized by two intra­molecular O—H⋯N hydrogen-bonding inter­actions with an S(6) graph-set motif. The crystal structure is stabilized by van der Waals inter­actions.

Related literature

For the synthesis, see: Gan (2008[Gan, C. S. (2008). Can. J. Chem. 86, 261-263.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C24H28N2O4

  • Mr = 408.48

  • Monoclinic, P 21

  • a = 5.7443 (8) Å

  • b = 21.558 (3) Å

  • c = 9.0075 (11) Å

  • β = 95.074 (6)°

  • V = 1111.1 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.20 × 0.18 × 0.15 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.984, Tmax = 0.988

  • 6560 measured reflections

  • 2102 independent reflections

  • 1522 reflections with I > 2σ(I)

  • Rint = 0.045

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.169

  • S = 1.01

  • 2102 reflections

  • 285 parameters

  • 13 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯N2 0.82 1.91 2.561 (5) 135
O4—H4⋯N1 0.82 (8) 1.83 (8) 2.601 (6) 157 (8)

Data collection: CAD-4 Software (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Multidentate and chiral C2-symmetric ligands have attracted considerable interest, however, the number of chiral precursors available from nature is seriously limited. Gan, (2008) have reported some similar C2-symmetric tartaric acid derivatives which have ability to metal coordination and effect to catalytic Henry reaction.We have undertaken the X-ray crystal-structure determination of (I) in order to establish its molecular conformation and relative stereochemistry. We are not able to determine the absolute stereochemistry by X-ray methods. We report here the synthesis and the crystal structure of the title compound based on L-tartaric acid. The dioxalane ring has an envelope conformation.(Q2=0.291 (5)Å, φ2 = 286.4 (10)°. The cyclohexane ring adopt chair conformation (QT= 0.560 (6) Å, θ= 175.4 (6)°, φ2 = 176.0 (8)° (Cremer & Pople, 1975). The dihedral angle between the two phenyl rings is 72.5 (3)°. The molecular conformation is stabilized by two intramolecular O—H···N hydrogen-bond interaction with graph-set motif S(6), (Bernstein et al., 1995) .The crystal structure is stabilized by van der Waals interactions. The bond lengths and angles are within normal ranges (Allen et al., 1987).

Related literature top

For the synthesis, see: Gan (2008). For standard bond lengths, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For ring conformations, see: Cremer & Pople (1975).

Experimental top

The title compound, (I) was prepared by a method reported by (Gan, 2008).To a solution of 2-hydroxybenzaldehyde(1.22 g, 10 mmol) in ethanol (15 ml), (2S,3S)-1,4-dioxaspiro[4.5]decane-2,3-diyldimethanamine(1 g, 5 mmol) dissolved in methanol(10 ml) was added. The mixture was refluxed for 2 h to complete the reaction and then cooled at room temperature. The compound was recrystallized from ethanol to afford a yellow solid (1.3 g, 63.7% yield, m.p. 360.45–361.25 K). Single crystal suitable for X-ray diffraction were also obtained by evaporation of an ethanol solution. The crystals were obtained by dissolving (I) (0.5 g, 1.22 mmol) in ethanol (25 ml) and evaporating the solvent slowly at room temperature for about 7 d.

Refinement top

All H atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.93 Å for aromatic H. Other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.97 Å for alkyl H, with Uiso(H) = xUeq(C), where x = 1.2 for aromatic H, and x = 1.5 for other H. In the absence of anomalous scatterers the absolute configuration could not be determined and therefore Friedel pairs were merged.

Structure description top

Multidentate and chiral C2-symmetric ligands have attracted considerable interest, however, the number of chiral precursors available from nature is seriously limited. Gan, (2008) have reported some similar C2-symmetric tartaric acid derivatives which have ability to metal coordination and effect to catalytic Henry reaction.We have undertaken the X-ray crystal-structure determination of (I) in order to establish its molecular conformation and relative stereochemistry. We are not able to determine the absolute stereochemistry by X-ray methods. We report here the synthesis and the crystal structure of the title compound based on L-tartaric acid. The dioxalane ring has an envelope conformation.(Q2=0.291 (5)Å, φ2 = 286.4 (10)°. The cyclohexane ring adopt chair conformation (QT= 0.560 (6) Å, θ= 175.4 (6)°, φ2 = 176.0 (8)° (Cremer & Pople, 1975). The dihedral angle between the two phenyl rings is 72.5 (3)°. The molecular conformation is stabilized by two intramolecular O—H···N hydrogen-bond interaction with graph-set motif S(6), (Bernstein et al., 1995) .The crystal structure is stabilized by van der Waals interactions. The bond lengths and angles are within normal ranges (Allen et al., 1987).

For the synthesis, see: Gan (2008). For standard bond lengths, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For ring conformations, see: Cremer & Pople (1975).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The S(6) motifs is shows as dashed lines.
2-[(E)-({3-[(E)-(2-Hydroxybenzylidene)aminomethyl]- 1,4-dioxaspiro[4.5]decan-2-yl}methyl)iminomethyl]phenol top
Crystal data top
C24H28N2O4F(000) = 436
Mr = 408.48Dx = 1.221 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1658 reflections
a = 5.7443 (8) Åθ = 2.3–20.6°
b = 21.558 (3) ŵ = 0.08 mm1
c = 9.0075 (11) ÅT = 296 K
β = 95.074 (6)°Block, colourless
V = 1111.1 (2) Å30.20 × 0.18 × 0.15 mm
Z = 2
Data collection top
Enraf–Nonius CAD-4
diffractometer
1522 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.045
Graphite monochromatorθmax = 25.5°, θmin = 1.9°
ω/2θ scansh = 66
Absorption correction: ψ scan
(North et al., 1968)
k = 2625
Tmin = 0.984, Tmax = 0.988l = 910
6560 measured reflections3 standard reflections every 200 reflections
2102 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.169H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.1156P)2]
where P = (Fo2 + 2Fc2)/3
2102 reflections(Δ/σ)max = 0.002
285 parametersΔρmax = 0.57 e Å3
13 restraintsΔρmin = 0.33 e Å3
Crystal data top
C24H28N2O4V = 1111.1 (2) Å3
Mr = 408.48Z = 2
Monoclinic, P21Mo Kα radiation
a = 5.7443 (8) ŵ = 0.08 mm1
b = 21.558 (3) ÅT = 296 K
c = 9.0075 (11) Å0.20 × 0.18 × 0.15 mm
β = 95.074 (6)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1522 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.045
Tmin = 0.984, Tmax = 0.9883 standard reflections every 200 reflections
6560 measured reflections intensity decay: 1%
2102 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05713 restraints
wR(F2) = 0.169H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.57 e Å3
2102 reflectionsΔρmin = 0.33 e Å3
285 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.7032 (5)0.0442 (2)0.2755 (3)0.0579 (8)
N10.4452 (7)0.19135 (19)0.6142 (4)0.0587 (10)
N20.7647 (7)0.01611 (17)0.5564 (4)0.0515 (9)
O30.3731 (6)0.0730 (2)0.5143 (5)0.0793 (11)
H30.48650.05790.47840.119*
O40.1145 (9)0.1775 (2)0.7908 (5)0.0814 (12)
C70.2202 (10)0.2762 (2)0.6925 (5)0.0613 (13)
C190.8210 (8)0.0504 (2)0.6661 (5)0.0573 (12)
H190.96400.04430.72090.069*
C240.7982 (8)0.0768 (2)0.4043 (5)0.0536 (11)
H240.90800.10860.37600.064*
C230.5846 (8)0.1074 (2)0.4606 (5)0.0560 (11)
H230.51180.07900.52780.067*
C140.4466 (9)0.1094 (2)0.6303 (6)0.0597 (12)
C130.6671 (8)0.0998 (2)0.7097 (5)0.0587 (12)
C80.0807 (9)0.2405 (2)0.7772 (5)0.0601 (13)
C200.9224 (7)0.0312 (2)0.5111 (5)0.0584 (12)
H20A1.04880.01180.46360.070*
H20B0.98980.05330.59850.070*
C210.4048 (11)0.2486 (3)0.6123 (6)0.0667 (14)
H210.49550.27440.55790.080*
C220.6410 (11)0.1678 (3)0.5390 (7)0.0675 (14)
C40.5053 (8)0.0777 (3)0.2129 (5)0.0636 (12)
C10.4141 (10)0.0380 (3)0.0967 (5)0.0721 (14)
H1A0.44930.01360.18240.087*
H1B0.27720.06300.12540.087*
C100.1293 (12)0.3299 (3)0.8382 (8)0.0847 (19)
H100.25210.34740.88440.102*
C20.3642 (11)0.0043 (3)0.0280 (6)0.0752 (16)
H2A0.49740.03120.05270.090*
H2B0.23010.03010.00240.090*
C160.3780 (13)0.1954 (3)0.7878 (8)0.0859 (18)
H160.28540.22880.81120.103*
C120.1847 (16)0.3400 (3)0.6869 (7)0.096 (2)
H120.28060.36470.63360.115*
C150.3060 (11)0.1579 (3)0.6720 (7)0.0732 (15)
H150.16120.16460.61980.088*
C60.6157 (11)0.0792 (3)0.0503 (6)0.0833 (18)
H6A0.64610.10620.13260.100*
H6B0.75400.05410.02600.100*
C90.0925 (11)0.2673 (3)0.8512 (7)0.0775 (16)
H90.18350.24330.90940.093*
C180.7323 (12)0.1387 (4)0.8281 (7)0.0866 (19)
H180.87850.13360.87980.104*
C30.3153 (9)0.0337 (3)0.1633 (6)0.0712 (14)
H3A0.17190.05690.14030.085*
H3B0.29060.00570.24470.085*
C50.5689 (10)0.1184 (3)0.0836 (6)0.0738 (15)
H5A0.44170.14690.05620.089*
H5B0.70690.14260.11490.089*
C110.0057 (15)0.3675 (3)0.7606 (7)0.094 (2)
H110.01950.41010.75650.113*
C170.5884 (14)0.1845 (4)0.8717 (8)0.102 (2)
H170.63100.20800.95640.122*
H22A0.682 (10)0.196 (3)0.479 (7)0.075 (18)*
H22B0.802 (9)0.158 (2)0.614 (6)0.067 (15)*
H40.237 (13)0.175 (4)0.752 (9)0.10 (3)*
O10.4339 (7)0.1163 (3)0.3301 (4)0.0890 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0607 (18)0.0631 (18)0.0497 (17)0.0170 (16)0.0035 (13)0.0074 (15)
N10.069 (2)0.052 (2)0.055 (2)0.007 (2)0.0034 (18)0.0128 (18)
N20.050 (2)0.052 (2)0.051 (2)0.0082 (18)0.0011 (16)0.0039 (17)
O30.063 (2)0.080 (2)0.091 (3)0.000 (2)0.017 (2)0.024 (2)
O40.080 (3)0.057 (2)0.110 (3)0.001 (2)0.022 (2)0.005 (2)
C70.089 (3)0.051 (3)0.043 (2)0.016 (3)0.004 (2)0.001 (2)
C190.049 (2)0.072 (3)0.051 (3)0.012 (2)0.005 (2)0.002 (2)
C240.049 (2)0.061 (3)0.051 (2)0.006 (2)0.0059 (18)0.003 (2)
C230.054 (2)0.065 (3)0.047 (2)0.012 (2)0.0030 (18)0.014 (2)
C140.059 (3)0.056 (3)0.065 (3)0.019 (2)0.011 (2)0.003 (2)
C130.053 (3)0.071 (3)0.053 (2)0.017 (2)0.010 (2)0.005 (2)
C80.063 (3)0.057 (3)0.059 (3)0.000 (2)0.004 (2)0.010 (2)
C200.047 (2)0.065 (3)0.062 (3)0.004 (2)0.001 (2)0.003 (2)
C210.093 (4)0.054 (3)0.055 (3)0.002 (3)0.017 (3)0.000 (2)
C220.078 (4)0.055 (3)0.073 (4)0.001 (3)0.021 (3)0.012 (3)
C40.059 (3)0.081 (3)0.049 (2)0.021 (2)0.0022 (19)0.013 (2)
C10.090 (4)0.077 (3)0.050 (3)0.010 (3)0.003 (2)0.014 (3)
C100.078 (4)0.091 (4)0.082 (4)0.032 (4)0.008 (3)0.024 (4)
C20.083 (4)0.065 (3)0.075 (4)0.010 (3)0.008 (3)0.007 (3)
C160.099 (5)0.073 (4)0.090 (4)0.001 (4)0.033 (4)0.012 (3)
C120.152 (7)0.070 (4)0.069 (4)0.035 (4)0.027 (4)0.015 (3)
C150.070 (3)0.068 (3)0.084 (4)0.002 (3)0.017 (3)0.002 (3)
C60.087 (4)0.106 (5)0.058 (3)0.009 (4)0.018 (3)0.021 (3)
C90.068 (3)0.079 (4)0.087 (4)0.003 (3)0.014 (3)0.016 (3)
C180.077 (4)0.109 (5)0.073 (4)0.016 (4)0.004 (3)0.039 (4)
C30.062 (3)0.091 (4)0.060 (3)0.005 (3)0.005 (2)0.016 (3)
C50.089 (4)0.054 (3)0.074 (4)0.006 (3)0.014 (3)0.004 (3)
C110.149 (7)0.071 (4)0.064 (3)0.045 (4)0.020 (4)0.002 (3)
C170.098 (5)0.120 (6)0.089 (5)0.015 (5)0.021 (4)0.048 (4)
O10.084 (2)0.111 (3)0.067 (2)0.045 (2)0.0180 (17)0.0291 (19)
Geometric parameters (Å, º) top
O2—C41.420 (6)C4—C31.485 (8)
O2—C241.424 (6)C4—C51.528 (8)
N1—C211.257 (7)C1—C61.490 (8)
N1—C221.455 (7)C1—C21.494 (8)
N2—C191.253 (6)C1—H1A0.9700
N2—C201.447 (6)C1—H1B0.9700
O3—C141.344 (7)C10—C111.357 (10)
O3—H30.8200C10—C91.370 (9)
O4—C81.378 (8)C10—H100.9300
O4—H40.82 (7)C2—C31.515 (8)
C7—C81.387 (8)C2—H2A0.9700
C7—C121.389 (8)C2—H2B0.9700
C7—C211.461 (8)C16—C151.355 (9)
C19—C131.460 (7)C16—C171.388 (11)
C19—H190.9300C16—H160.9300
C24—C201.509 (7)C12—C111.404 (10)
C24—C231.519 (6)C12—H120.9300
C24—H240.9800C15—H150.9300
C23—O11.410 (6)C6—C51.516 (8)
C23—C221.503 (7)C6—H6A0.9700
C23—H230.9800C6—H6B0.9700
C14—C151.393 (7)C9—H90.9300
C14—C131.414 (7)C18—C171.367 (10)
C13—C181.383 (8)C18—H180.9300
C8—C91.373 (8)C3—H3A0.9700
C20—H20A0.9700C3—H3B0.9700
C20—H20B0.9700C5—H5A0.9700
C21—H210.9300C5—H5B0.9700
C22—H22A0.86 (6)C11—H110.9300
C22—H22B1.12 (6)C17—H170.9300
C4—O11.434 (6)
C4—O2—C24107.9 (4)C6—C1—H1A109.6
C21—N1—C22119.1 (5)C2—C1—H1A109.6
C19—N2—C20121.0 (4)C6—C1—H1B109.6
C14—O3—H3109.5C2—C1—H1B109.6
C8—O4—H498 (6)H1A—C1—H1B108.1
C8—C7—C12118.6 (6)C11—C10—C9122.8 (7)
C8—C7—C21121.7 (4)C11—C10—H10118.6
C12—C7—C21119.7 (6)C9—C10—H10118.6
N2—C19—C13121.5 (4)C1—C2—C3109.6 (5)
N2—C19—H19119.3C1—C2—H2A109.7
C13—C19—H19119.3C3—C2—H2A109.7
O2—C24—C20108.8 (4)C1—C2—H2B109.7
O2—C24—C23102.9 (3)C3—C2—H2B109.7
C20—C24—C23114.8 (4)H2A—C2—H2B108.2
O2—C24—H24110.0C15—C16—C17120.7 (6)
C20—C24—H24110.0C15—C16—H16119.7
C23—C24—H24110.0C17—C16—H16119.7
O1—C23—C22111.3 (5)C7—C12—C11120.8 (7)
O1—C23—C24103.6 (4)C7—C12—H12119.6
C22—C23—C24112.7 (4)C11—C12—H12119.6
O1—C23—H23109.7C16—C15—C14120.7 (6)
C22—C23—H23109.7C16—C15—H15119.6
C24—C23—H23109.7C14—C15—H15119.6
O3—C14—C15119.9 (5)C1—C6—C5111.6 (5)
O3—C14—C13120.9 (5)C1—C6—H6A109.3
C15—C14—C13119.2 (5)C5—C6—H6A109.3
C18—C13—C14118.1 (5)C1—C6—H6B109.3
C18—C13—C19121.4 (5)C5—C6—H6B109.3
C14—C13—C19120.5 (4)H6A—C6—H6B108.0
C9—C8—O4118.3 (6)C10—C9—C8119.1 (7)
C9—C8—C7120.8 (5)C10—C9—H9120.5
O4—C8—C7120.9 (5)C8—C9—H9120.5
N2—C20—C24111.5 (3)C17—C18—C13122.0 (6)
N2—C20—H20A109.3C17—C18—H18119.0
C24—C20—H20A109.3C13—C18—H18119.0
N2—C20—H20B109.3C4—C3—C2113.8 (4)
C24—C20—H20B109.3C4—C3—H3A108.8
H20A—C20—H20B108.0C2—C3—H3A108.8
N1—C21—C7122.3 (5)C4—C3—H3B108.8
N1—C21—H21118.8C2—C3—H3B108.8
C7—C21—H21118.8H3A—C3—H3B107.7
N1—C22—C23112.2 (5)C6—C5—C4110.9 (4)
N1—C22—H22A108 (4)C6—C5—H5A109.5
C23—C22—H22A112 (4)C4—C5—H5A109.5
N1—C22—H22B115 (3)C6—C5—H5B109.5
C23—C22—H22B105 (3)C4—C5—H5B109.5
H22A—C22—H22B105 (5)H5A—C5—H5B108.0
O2—C4—O1105.9 (3)C10—C11—C12117.8 (6)
O2—C4—C3109.6 (5)C10—C11—H11121.1
O1—C4—C3110.0 (5)C12—C11—H11121.1
O2—C4—C5110.9 (4)C18—C17—C16119.0 (6)
O1—C4—C5109.3 (5)C18—C17—H17120.5
C3—C4—C5110.9 (4)C16—C17—H17120.5
C6—C1—C2110.4 (4)C23—O1—C4109.9 (4)
C20—N2—C19—C13177.8 (4)C6—C1—C2—C357.8 (7)
C4—O2—C24—C20152.8 (4)C8—C7—C12—C112.3 (10)
C4—O2—C24—C2330.6 (5)C21—C7—C12—C11178.8 (6)
O2—C24—C23—O129.2 (5)C17—C16—C15—C143.0 (9)
C20—C24—C23—O1147.3 (5)O3—C14—C15—C16179.4 (6)
O2—C24—C23—C22149.6 (5)C13—C14—C15—C160.4 (8)
C20—C24—C23—C2292.2 (6)C2—C1—C6—C559.3 (7)
O3—C14—C13—C18179.9 (5)C11—C10—C9—C83.3 (10)
C15—C14—C13—C181.2 (8)O4—C8—C9—C10179.6 (6)
O3—C14—C13—C190.6 (7)C7—C8—C9—C101.3 (9)
C15—C14—C13—C19178.3 (4)C14—C13—C18—C171.6 (10)
N2—C19—C13—C18178.1 (5)C19—C13—C18—C17178.9 (6)
N2—C19—C13—C141.3 (7)O2—C4—C3—C270.3 (5)
C12—C7—C8—C91.4 (8)O1—C4—C3—C2173.6 (5)
C21—C7—C8—C9179.7 (5)C5—C4—C3—C252.5 (6)
C12—C7—C8—O4177.6 (5)C1—C2—C3—C455.8 (6)
C21—C7—C8—O41.2 (8)C1—C6—C5—C455.5 (6)
C19—N2—C20—C24165.4 (4)O2—C4—C5—C670.8 (6)
O2—C24—C20—N259.9 (5)O1—C4—C5—C6172.8 (4)
C23—C24—C20—N254.8 (5)C3—C4—C5—C651.3 (6)
C22—N1—C21—C7176.3 (5)C9—C10—C11—C122.4 (11)
C8—C7—C21—N10.8 (8)C7—C12—C11—C100.5 (11)
C12—C7—C21—N1179.6 (6)C13—C18—C17—C165.0 (11)
C21—N1—C22—C23141.1 (5)C15—C16—C17—C185.7 (11)
O1—C23—C22—N173.8 (6)C22—C23—O1—C4139.1 (5)
C24—C23—C22—N1170.2 (4)C24—C23—O1—C417.8 (6)
C24—O2—C4—O120.3 (6)O2—C4—O1—C230.5 (7)
C24—O2—C4—C3139.0 (4)C3—C4—O1—C23118.9 (5)
C24—O2—C4—C598.2 (4)C5—C4—O1—C23119.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N20.821.912.561 (5)135
O4—H4···N10.82 (8)1.83 (8)2.601 (6)157 (8)

Experimental details

Crystal data
Chemical formulaC24H28N2O4
Mr408.48
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)5.7443 (8), 21.558 (3), 9.0075 (11)
β (°) 95.074 (6)
V3)1111.1 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.20 × 0.18 × 0.15
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.984, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
6560, 2102, 1522
Rint0.045
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.169, 1.01
No. of reflections2102
No. of parameters285
No. of restraints13
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.57, 0.33

Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N20.82001.91002.561 (5)135.00
O4—H4···N10.82 (8)1.83 (8)2.601 (6)157 (8)
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for the data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEnraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGan, C. S. (2008). Can. J. Chem. 86, 261–263.  Web of Science CrossRef CAS Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds